1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
www.mathway.com
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | ||
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | ||
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | cos((5pi)/12) | |
3 | Найти точное значение | arctan(-1) | |
4 | Найти точное значение | sin(75) | |
5 | Найти точное значение | arcsin(-1) | |
6 | Найти точное значение | sin(60 град. ) | |
7 | Найти точное значение | sin(pi/3) | |
8 | Найти точное значение | arctan(- квадратный корень 3) | |
9 | Найти точное значение | cos(pi/3) | |
10 | Найти точное значение | sin(0) | |
11 | Найти точное значение | cos(pi/12) | |
12 | Найти точное значение | sin(30 град. ) | |
13 | Найти точное значение | cos(60 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | sin((2pi)/3) | |
16 | Найти точное значение | arcsin(1) | |
17 | Найти точное значение | sin(pi/2) | |
18 | График | f(x)=x^2 | |
19 | Найти точное значение | sin(45 град. ) | |
20 | Найти точное значение | sin(15) | |
21 | Упростить | квадратный корень x^2 | |
22 | Найти точное значение | arccos(-1) | |
23 | Найти точное значение | tan(60 град. ) | |
24 | Найти точное значение | cos(45 град. ) | |
25 | Вычислить | логарифм по основанию 2 от 8 | |
26 | Упростить | квадратный корень x^3 | |
27 | Найти точное значение | arcsin(-1/2) | |
28 | Найти точное значение | cos(45) | |
29 | Найти точное значение | tan(30 град. ) | |
30 | Найти точное значение | tan(30) | |
31 | Найти точное значение | arcsin(1) | |
32 | Найти точное значение | arctan( квадратный корень 3) | |
33 | Найти точное значение | sin(45) | |
34 | Найти точное значение | cos(0) | |
35 | Найти точное значение | tan(45 град. ) | |
36 | Найти точное значение | arctan(0) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | График | y=x^2 | |
39 | Вычислить | натуральный логарифм 1 | |
40 | Вычислить | логарифм по основанию 3 от 81 | |
41 | Найти точное значение | cos(15) | |
42 | Вычислить | логарифм по основанию 5 от 125 | |
43 | Упростить | кубический корень из квадратного корня 64x^6 | |
44 | Вычислить | логарифм по основанию 3 от 81 | |
45 | Вычислить | логарифм по основанию 2 от 8 | |
46 | Найти точное значение | arcsin(-( квадратный корень 2)/2) | |
47 | Найти точное значение | cos(75) | |
48 | Найти точное значение | sin((3pi)/4) | |
49 | Упростить | (1/( квадратный корень x+h)-1/( квадратный корень x))/h | |
50 | Упростить | кубический корень x^3 | |
51 | Найти точное значение | sin((5pi)/12) | |
52 | Найти точное значение | arcsin(-1/2) | |
53 | Найти точное значение | sin(30) | |
54 | Найти точное значение | sin(105) | |
55 | Найти точное значение | tan((3pi)/4) | |
56 | Упростить | квадратный корень s квадратный корень s^7 | |
57 | Упростить | корень четвертой степени x^4y^2z^2 | |
58 | Найти точное значение | sin(60) | |
59 | Найти точное значение | arccos(-( квадратный корень 2)/2) | |
60 | Найти точное значение | tan(0) | |
61 | Найти точное значение | sin((3pi)/2) | |
62 | Вычислить | логарифм по основанию 4 от 64 | |
63 | Упростить | корень шестой степени 64a^6b^7 | |
64 | Вычислить | квадратный корень 2 | |
65 | Найти точное значение | arccos(1) | |
66 | Найти точное значение | arcsin(( квадратный корень 3)/2) | |
67 | График | f(x)=2^x | |
68 | Найти точное значение | sin((3pi)/4) | |
69 | Преобразовать из радианов в градусы | (3pi)/4 | |
70 | Вычислить | логарифм по основанию 5 от 25 | |
71 | Найти точное значение | tan(pi/2) | |
72 | Найти точное значение | cos((7pi)/12) | |
73 | Упростить | 1/( кубический корень от x^4) | |
74 | Найти точное значение | sin((5pi)/6) | |
75 | Преобразовать из градусов в радианы | 150 | |
76 | Найти точное значение | tan(pi/2) | |
77 | Множитель | x^3-8 | |
78 | Упростить | корень пятой степени 1/(x^3) | |
79 | Упростить | корень пятой степени 1/(x^3) | |
80 | Найти точное значение | sin(135) | |
81 | Преобразовать из градусов в радианы | 30 | |
82 | Преобразовать из градусов в радианы | 60 | |
83 | Найти точное значение | sin(120) | |
84 | Найти точное значение | tan((2pi)/3) | |
85 | Вычислить | -2^2 | |
86 | Найти точное значение | tan(15) | |
87 | Найти точное значение | tan((7pi)/6) | |
88 | Найти точное значение | arcsin(( квадратный корень 3)/2) | |
89 | Найти точное значение | sin(pi/2) | |
90 | Преобразовать из радианов в градусы | (5pi)/6 | |
91 | Упростить | кубический корень 8x^7y^9z^3 | |
92 | Упростить | arccos(( квадратный корень 3)/2) | |
93 | Упростить | i^2 | |
94 | Вычислить | кубический корень 24 кубический корень 18 | |
95 | Упростить | квадратный корень 4x^2 | |
96 | Найти точное значение | sin((3pi)/4) | |
97 | Найти точное значение | tan((7pi)/6) | |
98 | Найти точное значение | tan((3pi)/4) | |
99 | Найти точное значение | arccos(-1/2) | |
100 | Упростить | корень четвертой степени x^4 |
www.mathway.com
arccos Википедия
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
- арксинус (обозначение:arcsinx;arcsinx{\displaystyle :\mathrm {arcsin} \,x;\mathrm {arcsin} \,x} — это угол, синус которого равен x{\displaystyle x})
- арккосинус (обозначение: arccosx;arccosx{\displaystyle \mathrm {arccos} \,x;\mathrm {arccos} \,x} — это угол, косинус которого равен x{\displaystyle x} и т. д.)
- арктангенс (обозначение: arctgx{\displaystyle \mathrm {arctg} \,x}; в иностранной литературе arctanx{\displaystyle \mathrm {arctan} \,x})
- арккотангенс (обозначение: arcctgx{\displaystyle \mathrm {arcctg} \,x}; в иностранной литературе arccotx{\displaystyle \mathrm {arccot} \,x} или arccotanx{\displaystyle \mathrm {arccotan} \,x})
- арксеканс (обозначение: arcsecx{\displaystyle \mathrm {arcsec} \,x})
- арккосеканс (обозначение: arccosecx{\displaystyle \mathrm {arccosec} \,x}; в иностранной литературе arccscx{\displaystyle \mathrm {arccsc} \,x}
ru-wiki.ru
arcsin arccos
Обратные функции arcsin и arccos
Рассмотрим основные свойства обратных функций к синусу и косинусу.
Arcsin
Функция арксинус является обратной к функции синус. Поэтому область определения арксинуса является областью значений синуса и равна промежутку от —1 до 1, а область значений арксинуса равна области определения синуса и, таким образом, равна всей числовой прямой.
Функция arcsin имеет такое свойство, что:
и
Чтобы получить график функции arcsin, достаточно перевернуть график синуса так, чтобы ось Ох поменялась местом с осью Оу.
Ветвь арксинуса, которая размещается в интервале от до , на котором она монотонна, называется главной его ветвью.
Arccos
Функция арккосинус — обратная функция к косинусу. Следовательно, область его определения является областью значений косинуса и лежит в промежутке между —1 и 1, а область значений арккосинуса совпадает с областью определения косинуса и, таким образом, равна всей числовой прямой.
Аналогично функции arcsin, функция arccos также обладает подобным свойством:
и
Для построения графика arccos нужно график cos перевернуть так, чтобы оси Ох и Оу поменялись местами.
Ветвь арккосинуса, которая размещается в интервале от 0 до , на котором функция монотонна, называется главной ветвью арккосинуса.
ru.solverbook.com
arcsin Википедия
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
- арксинус (обозначение:arcsinx;arcsinx{\displaystyle :\mathrm {arcsin} \,x;\mathrm {arcsin} \,x} — это угол, синус которого равен x{\displaystyle x})
- арккосинус (обозначение: arccosx;arccosx{\displaystyle \mathrm {arccos} \,x;\mathrm {arccos} \,x} — это угол, косинус которого равен x{\displaystyle x} и т. д.)
- арктангенс (обозначение: arctgx{\displaystyle \mathrm {arctg} \,x}; в иностранной литературе arctanx{\displaystyle \mathrm {arctan} \,x})
- арккотангенс (обозначение: arcctgx{\displaystyle \mathrm {arcctg} \,x}; в иностранной литературе arccotx{\displaystyle \mathrm {arccot} \,x} или arccotanx{\displaystyle \mathrm {arccotan} \,x})
- арксеканс (обозначение: arcsecx{\displaystyle \mathrm {arcsec} \,x})
- арккосеканс (обозначение: arccosecx{\displaystyle \mathrm {arccosec} \,x}; в иностранной литературе arccscx{\displaystyle \mathrm {arccsc} \,x}
ru-wiki.ru
Обратные тригонометрические функции — Википедия
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика Карла Шерфера (нем. Karl Scherffer; 1716—1783) и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: , но они не прижились[1]. Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п.[2], — это считается не совсем корректным, так как возможна путаница с возведением функции в степень −1.
Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданому числу. Например, означает множество углов , синус которых равен . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т.д.
В общем случае при условии все решения уравнения можно представить в виде [3]
www.wikiznanie.ru