Перевести в дробь 1 75 – Mathway | Популярные задачи

Mathway | Популярные задачи

1 Вычислить 2+2
2 Вычислить 2^3
3 Вычислить 4^2
4 Разложить на простые множители 73
5 Вычислить 6/2(1+2)
6 Найти объем сфера (5)
7 Найти площадь окружность (5)
8 Вычислить корень четвертой степени -625
9 Вычислить -5^2
10 Вычислить 2^4
11 Найти площадь поверхности сфера (5)
12 Вычислить -3^2
13 Вычислить 2^5
14 Вычислить 6÷2(1+2)
15 Вычислить 3^2
16 Преобразовать в десятичную форму 1/4
17 Вычислить (-3)^3
18 Вычислить -2^2
19 Вычислить 2^2
20 Вычислить 6^2
21 Вычислить квадратный корень 3* квадратный корень 12
22 Вычислить (-4)^2
23 Вычислить -7^2
24 Преобразовать в десятичную форму 3/4
25 Преобразовать в десятичную форму 7/8
26 Вычислить квадратный корень 28+ квадратный корень 63
27 Преобразовать в десятичную форму 2/3
28 Найти площадь окружность (7)
29 Найти площадь окружность (2)
30 Вычислить 8^2
31 Разложить на простые множители 6
32 Преобразовать в обыкновенную дробь 0.75
33 Вычислить — корень четвертой степени 625
34 Найти площадь окружность (4)
35 Преобразовать в десятичную форму 3/8
36 Вычислить 4^3
37 Разложить на простые множители 8
38 Вычислить 5^3
39 Преобразовать в десятичную форму 3/8
40 Найти площадь окружность (6)
41 Преобразовать в десятичную форму 3/4
42 Вычислить (-4)^3
43 Вычислить 3^3
44 Разложить на простые множители 4
45 Найти объем сфера (4)
46 Перевести в процентное соотношение 1/8
47 Найти площадь окружность (3)
48 Преобразовать в десятичную форму 2/5
49 Вычислить (5/4(424333-10220^2))^(1/2)
50 Вычислить 5^2
51 Вычислить (-2)^4
52 Разложить на простые множители 2
53 Вычислить корень четвертой степени 256
54 Вычислить квадратный корень 81
55 Преобразовать в десятичную форму 1/2
56 Вычислить -4^2
57 Вычислить -9^2
58 Вычислить (-5)^2
59 Вычислить (-8)^2
60 Разложить на простые множители 741
61 Разложить на простые множители 9
62 Найти объем сфера (3)
63 Вычислить 3 квадратный корень 8*3 квадратный корень 10
64 Найти площадь окружность (10)
65 Найти площадь окружность (8)
66 Вычислить -8^2
67 Вычислить (-5)^3
68 Вычислить (-2)^3
69 Вычислить 10^6
70 Вычислить 10^2
71 Вычислить -6^2
72 Преобразовать в десятичную форму 1/5
73 Преобразовать в десятичную форму 4/5
74 Преобразовать в десятичную форму 10%
75 Найти площадь поверхности сфера (6)
76 Перевести в процентное соотношение 3/5
77 Вычислить (-2)^2
78 Разложить на простые множители 12
79 Разложить на простые множители 1162
80 Вычислить 6^3
81 Вычислить -3^4
82 Вычислить 2^2
83 Вычислить (-6)^2
84 Вычислить (-7)^2
85 Найти площадь окружность (1)
86 Преобразовать в десятичную форму 2/5
87 Вычислить квадратный корень 2+ квадратный корень 2
88 Вычислить 2^1
89 Вычислить 2^6
90 Разложить на простые множители what is the prime factoriztion of 40 use exponents to show any repeated prime factors what is the prime factoriztion of use exponents to show any repeated prime factors
91 Вычислить -2^3
92 Вычислить 3^5
93 Вычислить (-9)^2
94 Вычислить 4^1
95 Вычислить квадратный корень 100
96 Преобразовать в десятичную форму 25%
97 Найти длину окружности окружность (5)
98 Найти площадь поверхности сфера (6)
99 Найти объем сфера (2)
100 Найти объем сфера (6)

www.mathway.com

Mathway | Популярные задачи

1 Вычислить 2+2
2 Вычислить 2^3
3 Вычислить 4^2
4 Разложить на простые множители 73
5 Вычислить 6/2(1+2)
6 Найти объем сфера (5)
7 Найти площадь окружность (5)
8 Вычислить корень четвертой степени -625
9 Вычислить -5^2
10 Вычислить 2^4
11 Найти площадь поверхности сфера (5)
12 Вычислить -3^2
13 Вычислить 2^5
14 Вычислить 6÷2(1+2)
15 Вычислить 3^2
16 Преобразовать в десятичную форму 1/4
17 Вычислить (-3)^3
18 Вычислить -2^2
19 Вычислить 2^2
20 Вычислить 6^2
21 Вычислить квадратный корень 3* квадратный корень 12
22 Вычислить (-4)^2
23 Вычислить -7^2
24 Преобразовать в десятичную форму 3/4
25 Преобразовать в десятичную форму 7/8
26 Вычислить квадратный корень 28+ квадратный корень 63
27 Преобразовать в десятичную форму 2/3
28 Найти площадь окружность (7)
29 Найти площадь окружность (2)
30 Вычислить 8^2
31 Разложить на простые множители 6
32 Преобразовать в обыкновенную дробь 0.75
33 Вычислить — корень четвертой степени 625
34 Найти площадь окружность (4)
35 Преобразовать в десятичную форму 3/8
36 Вычислить 4^3
37 Разложить на простые множители 8
38 Вычислить 5^3
39 Преобразовать в десятичную форму 3/8
40 Найти площадь окружность (6)
41 Преобразовать в десятичную форму 3/4
42 Вычислить (-4)^3
43 Вычислить 3^3
44 Разложить на простые множители 4
45 Найти объем сфера (4)
46 Перевести в процентное соотношение 1/8
47 Найти площадь окружность (3)
48 Преобразовать в десятичную форму 2/5
49 Вычислить (5/4(424333-10220^2))^(1/2)
50 Вычислить 5^2
51 Вычислить (-2)^4
52 Разложить на простые множители 2
53 Вычислить корень четвертой степени 256
54 Вычислить квадратный корень 81
55 Преобразовать в десятичную форму 1/2
56 Вычислить -4^2
57 Вычислить -9^2
58 Вычислить (-5)^2
59 Вычислить (-8)^2
60 Разложить на простые множители 741
61 Разложить на простые множители 9
62 Найти объем сфера (3)
63 Вычислить 3 квадратный корень 8*3 квадратный корень 10
64 Найти площадь окружность (10)
65 Найти площадь окружность (8)
66 Вычислить -8^2
67 Вычислить (-5)^3
68 Вычислить (-2)^3
69 Вычислить 10^6
70 Вычислить 10^2
71 Вычислить -6^2
72 Преобразовать в десятичную форму 1/5
73 Преобразовать в десятичную форму 4/5
74 Преобразовать в десятичную форму 10%
75 Найти площадь поверхности сфера (6)
76 Перевести в процентное соотношение 3/5
77 Вычислить (-2)^2
78 Разложить на простые множители 12
79 Разложить на простые множители 1162
80 Вычислить 6^3
81 Вычислить -3^4
82 Вычислить 2^2
83 Вычислить (-6)^2
84 Вычислить (-7)^2
85 Найти площадь окружность (1)
86 Преобразовать в десятичную форму 2/5
87 Вычислить квадратный корень 2+ квадратный корень 2
88 Вычислить 2^1
89 Вычислить 2^6
90 Разложить на простые множители what is the prime factoriztion of 40 use exponents to show any repeated prime factors what is the prime factoriztion of use exponents to show any repeated prime factors
91 Вычислить -2^3
92 Вычислить 3^5
93 Вычислить (-9)^2
94 Вычислить 4^1
95 Вычислить квадратный корень 100
96 Преобразовать в десятичную форму 25%
97 Найти длину окружности окружность (5)
98 Найти площадь поверхности сфера (6)
99 Найти объем сфера (2)
100 Найти объем сфера (6)

www.mathway.com

Mathway | Популярные задачи

1 Вычислить 6^3-4^3-7^2
2 Найти медиану 11 , 13 , 5 , 15 , 14 , , , ,
3 Найти объем сфера (5)
4 Вычислить квадратный корень 12
5 Преобразовать в десятичную форму 3/8
6 Преобразовать в десятичную форму 5/8
7 Найти длину окружности окружность (5)
8 Вычислить 10^2
9 Вычислить квадратный корень 75
10 График y=2x
11 Вычислить квадратный корень 48
12 Найти площадь окружность (5)
13 Найти площадь окружность (6)
14 Вычислить 3^4
15 Вычислить 5^3
16 Вычислить 2^4
17 Вычислить квадратный корень 32
18 Вычислить квадратный корень 18
19 Вычислить квадратный корень 2
20 Вычислить квадратный корень 25
21 Вычислить квадратный корень 8
22 Найти площадь окружность (4)
23 Разложить на простые множители 360
24 Вычислить 3^-2
25 Вычислить 2+2
26 Преобразовать в десятичную форму 1/3
27 Вычислить квадратный корень 9
28 Вычислить квадратный корень 64
29 Преобразовать в десятичную форму 3/5
30 Вычислить квадратный корень 20
31 Вычислить pi
32 Вычислить -3^2
33 Вычислить 2^3
34 Вычислить (-3)^3
35 Вычислить квадратный корень 27
36 Вычислить квадратный корень 5
37 Вычислить квадратный корень 50
38 Вычислить квадратный корень 16
39 Преобразовать в десятичную форму 3/4
40 Преобразовать в десятичную форму 2/3
41 Найти площадь окружность (3)
42 Вычислить 3^2
43 Вычислить -9^2
44 Вычислить квадратный корень 72
45 Преобразовать в десятичную форму 2/5
46 Вычислить квадратный корень 100
47 Найти объем сфера (3)
48 Вычислить 2^5
49 Множитель x^2-4
50 Вычислить -8^2
51 Вычислить -6^2
52 Вычислить -7^2
53 Вычислить -3^4
54 Вычислить (-2)^3
55 Множитель x^2-9
56 Найти объем сфера (6)
57 Найти площадь окружность (8)
58 Вычислить квадратный корень 81
59 Вычислить кубический корень 64
60 Вычислить кубический корень 125
61 Вычислить квадратный корень 169
62 Вычислить квадратный корень 225
63 Вычислить квадратный корень 3
64 Преобразовать в десятичную форму 1/4
65 Преобразовать в смешанную дробь 5/2
66 Преобразовать в десятичную форму 1/2
67 Множитель x^2-16
68 Вычислить 5^2
69 Вычислить 4^-2
70 Вычислить 8^2
71 Преобразовать в смешанную дробь 13/4
72 Вычислить квадратный корень 24
73 Вычислить квадратный корень 28
74 Вычислить кубический корень 27
75 Найти длину окружности окружность (4)
76 Найти площадь окружность (7)
77 Найти объем сфера (2)
78 График y=3x
79 Найти объем сфера (4)
80 Найти длину окружности окружность (6)
81 Вычислить квадратный корень 150
82 Вычислить квадратный корень 45
83 Вычислить 4^3
84 Вычислить 2^-3
85 Вычислить 2^2
86 Вычислить -(-3)^3
87 Вычислить 3^3
88 Вычислить квадратный корень 54
89 Вычислить квадратный корень 10
90 Найти длину окружности окружность (3)
91 Преобразовать в смешанную дробь 10/3
92 Преобразовать в десятичную форму 2/5
93 Разложить на простые множители 36
94 Вычислить квадратный корень 144
95 Вычислить (-7)^2
96 Множитель x^2+5x+6
97 Вычислить (-4)^3
98 Вычислить (-5)^3
99 Вычислить 10^2
100 Вычислить 6^2

www.mathway.com

Как перевести десятичную дробь в обыкновенную: 3 способа

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

\[0,75=\frac{3}{4};\quad 1,33=1\frac{33}{100};\quad -7,41=-7\frac{41}{100}\]

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

  1. Переписать исходную дробь в виде новой дроби: в числителе останется исходная десятичная дробь, а в знаменателе нужно поставить единицу. При этом знак исходного числа также помещается в числитель. Например:

    \[0,75=\frac{0,75}{1};\quad 1,33=\frac{1,33}{1};\quad -7,41=\frac{-7,41}{1}\]

  2. Умножаем числитель и знаменатель полученной дроби на 10 до тех пор, пока в числителе не исчезнет запятая. Напомню: при каждом умножении на 10 запятая сдвигается вправо на один знак. Разумеется, поскольку знаменатель тоже умножается, там вместо числа 1 будут появляться 10, 100 и т.д. Примеры: Алгоритм перехода к обычным дробям
  3. Наконец, сокращаем полученную дробь по стандартной схеме: делим числитель и знаменатель на те числа, которым они кратны. Например, в первом примере 0,75=75/100, при этом и 75, и 100 делятся на 25. Поэтому получаем $0,75=\frac{75}{100}=\frac{3\cdot 25}{4\cdot 25}=\frac{3}{4}$ — вот и весь ответ.:)

Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

Примеры перехода от десятичной записи дробей к обычной

Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

Более быстрый способ

В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

  1. Посчитать, сколько цифр стоит после запятой. Например, у дроби 1,75 таких цифр две, а у 0,0025 — четыре. Обозначим это количество буквой $n$.
  2. Переписать исходное число в виде дроби вида $\frac{a}{{{10}^{n}}}$, где $a$ — это все цифры исходной дроби (без «стартовых» нулей слева, если они есть), а $n$ — то самое количество цифр после запятой, которое мы посчитали на первом шаге. Другими словами, необходимо разделить цифры исходной дроби на единицу с $n$ нулями.
  3. По возможности сократить полученную дробь.

Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

\[0,64=\frac{64}{100}=\frac{16}{25}\]

Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: ${{10}^{n}}={{10}^{2}}=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

Ещё один пример:

\[0,004=\frac{4}{1000}=\frac{1}{250}\]

Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на ${{10}^{n}}={{10}^{3}}=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

Наконец, последний пример:

\[1,88=\frac{188}{100}=\frac{47}{25}=\frac{25+22}{25}=1\frac{22}{25}\]

Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

Что делать с целой частью

На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

\[0,88=\frac{88}{100}=\frac{22}{25}\]

Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

\[\frac{22}{25}\to 1\frac{22}{25}\]

Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

\[\begin{align}& 2,15\to 0,15=\frac{15}{100}=\frac{3}{20}\to 2\frac{3}{20}; \\& 13,8\to 0,8=\frac{8}{10}=\frac{4}{5}\to 13\frac{4}{5}. \\\end{align}\]

В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

Преобразования «на слух»

Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

\[0,004=4:1000=\frac{4}{1000}=\frac{1}{250}\]

Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

\[2,5=2\frac{5}{10}=2\frac{1}{2}\]

А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

\[1,125=1\frac{125}{1000}=1\frac{1}{8}\]

В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 103, а 10 = 2 ∙ 5, поэтому

\[\begin{align}& 1000=10\cdot 10\cdot 10=2\cdot 5\cdot 2\cdot 5\cdot 2\cdot 5= \\& =2\cdot 2\cdot 2\cdot 5\cdot 5\cdot 5=8\cdot 125\end{align}\]

Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

На этом урок окончен. Переходим к более сложной обратной операции — см. «Переход от обыкновенной дроби к десятичной».

Смотрите также:

  1. Сравнение дробей
  2. Периодические десятичные дроби
  3. Метод узлов в задаче B5
  4. Тест к уроку «Сложение и вычитание дробей» (средний)
  5. Иррациональное уравнение: учимся решать методом уединения корня
  6. Задача B4: вклад в банке и проценты

www.berdov.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *