Примеры решения задач нормальное распределение – Нормальный закон распределения вероятностей. Пример решения задачи на Викиматик

Нормальный закон распределения вероятностей. Пример решения задачи на Викиматик

На практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная величина $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$ 

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена банкнота в 10 марок ФРГ, которая использовалась еще до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график плотности не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как график плотности меняет свою форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$ 

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ — функция Лапласа. Значения этой функции берутся из специальной таблицы. Можно отметить следующие свойства функции $\Phi \left(x\right)$.

1. $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2. $\Phi \left(x\right)$ — монотонно возрастающая функция.

3. ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим значений функции $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left|X-a\right| < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$ 

Правило трех сигм. Практически достоверно, что нормально распределенная случайная величина $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1. Случайная величина $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left|X-a\right| < 0,2$.

Используя формулу 

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$ 

находим $P\left(0,5;1\right)=\Phi \left({{1-2}\over {3}}\right)-\Phi \left({{0,5-2}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,191-0,129=0,062$.

$$P\left(\left|X-a\right| < 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$ 

Пример 2. Предположим, что в течение года цена на акции некоторой компании есть случайная величина, распределенная по нормальному закону с математическим ожиданием, равным 50 условным денежным единицам, и стандартным отклонением, равным 10. Чему равна вероятность того, что в случайно выбранный день обсуждаемого периода цена за акцию будет:

а) более 70 условных денежных единиц?

б) ниже 50 за акцию?

в) между 45 и 58 условными денежными единицами за акцию?

Пусть случайная величина $X$ — цена на акции некоторой компании. По условию $X$ подчинена нормальному закону распределению с параметрами $a=50$ — математическое ожидание, $\sigma =10$ — стандартное отклонение. Вероятность $P\left(\alpha < X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$ 

$$а)\ P\left(X>70\right)=\Phi \left({{\infty -50}\over {10}}\right)-\Phi \left({{70-50}\over {10}}\right)=0,5-\Phi \left(2\right)=0,5-0,4772=0,0228.$$ 

$$б)\ P\left(X < 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$ 

$$в)\ P\left(45 < X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$ 

$$=0,2881+0,1915=0,4796.$$ 

wikimatik.ru

8.8. Нормальный закон распределения | Решение задач по математике и дру

Непрерывная случайная величина Х

имеет Нормальный закон распределения (закон Гаусса) с параметрами А и , если ее плотность вероятности имеет вид

.

Кривую нормального закона распределения называют Нормальной или Гауссовой кривой.

На рис. 8.14 приведены нормальная кривая Р(Х) с параметрами А и , т. е. , и график функции распределения случайной величины Х, имеющей нормальный закон


Рис. 8.14

Нормальная кривая симметрична относительно прямой Х = а, имеет максимум в точке Х = а, равный , и две точки перегиба с ординатой .

Для случайной величины, распределенной по нормальному закону, , .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(Х) по формуле

,

Где .

Вероятность попадания значений нормальной случайной величины

Х в интервал Определяется формулой

.

Вероятность того, что отклонение случайной величины Х, распределенной по нормальному закону, от математического ожидания А не превысит величину (по абсолютной величине), равна

.

«Правило трех сигм»: если случайная величина Х имеет нормальный закон распределения с параметрами А и т. е. , то практически достоверно, что ее значения заключены в интервале

.

Асимметрия нормального распределения А = 0; эксцесс нормального распределения Е = 0.

Пример 8.23. Определить закон распределения случайной величины Х, если ее плотность распределения вероятностей задана функцией

.

Найти математическое ожидание, дисперсию и функцию распределения случайной величины Х.

Решение. Сравнивая данную функцию Р(Х) с функцией плотности вероятности для случайной величины, распределенной по нормальному закону, заключаем, что случайная величина

Х распределена по нормальному закону с параметрами А = 1 и .

Тогда , , .

Функция распределения случайной величины Х имеет вид

.

Пример 8.24. Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием 15 ден. ед. и средним квадратическим отклонением 0,2 ден. ед.

Найти вероятность того, что цена акции: а) не выше 15,3 ден. ед.; б) не ниже 15,4 ден. ед.; в) от 14,9 до 15,3 ден. ед. С помощью «правила трех сигм» найти границы, в которых будет находиться текущая цена акции.

Решение. Так как А = 15 и , то

По «правилу трех сигм» и, следовательно, . Окончательно .

Пример 8.25. Автомат изготавливает детали, которые считаются годными, если отклонение Х от контрольного размера по модулю не превышает 0,8 мм. Каково наиболее вероятное число годных деталей из 150, если случайная величина

Х распределена нормально с Мм?

Решение. Найдем вероятность отклонения при и

Считая приближенно Р = 0,95 и в соответствии с формулой

Где  — наивероятнейшее число, находим при

Откуда

Пример 8.26. Размер диаметра втулок, изготовленных заводом, можно считать нормально распределенной случайной величиной с математическим ожиданием А = 2,5 см и средним квадратическим отклонением См.
В каких границах можно практически гарантировать размер диаметра втулки, если за вероятность практической достоверности принимается 0,9973?

Решение. По «правилу трех сигм» . Отсюда , т. е. .

Пример 8.27. Рост взрослых мужчин является случайной величиной, распределенной по нормальному закону. Пусть математическое ожидание ее равно 175 см, а среднее квадратическое отклонение — 6 см. Определить вероятность того, что хотя бы один из наудачу выбранных пяти мужчин будет иметь рост от 170 до 180 см.

Решение. Найдем вероятность того, что рост мужчины будет принадлежать интервалу :

Тогда вероятность того, что рост мужчины не будет принадлежать интервалу (170; 180) Q = 1 — 0,6 = 0,4.

Вероятность того, что хотя бы один из 5 мужчин будет иметь рост от
170 до 180 см равна

.

Пример 8.28. Браковка шариков для подшипников производится следу­ющим образом: если шарик не проходит через отверстие диаметром , но проходит через отверстие диаметром , то его размер считается приемлемым. Если какое-нибудь из этих условий не выполняется, то шарик бракуется. Известно, что диаметр шарика есть случайная величина с характеристиками и . Определить вероятность того, что шарик будет забракован.

Решение.

Так как , то

< Предыдущая   Следующая >

matica.org.ua

Нормальный закон распределения непрерывной случайной величины

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

Дадим понятие нормального закона распределения, функции распределения такого закона, порядка вычисления вероятности попадания случайной величины Х в определенный интервал.

Пример решения задачи по теме «Нормальный закон распределения непрерывной случайной величины»

Задача.

Длина X некоторой детали представляет собой случайную величину, распределенную по нормальному закону распределения, и имеет среднее значение 20 мм и среднее квадратическое отклонение – 0,2 мм.
Необходимо:
а) записать выражение плотности распределения;
б) найти вероятность того, что длина детали будет заключена между 19,7 и 20,3 мм;
в) найти вероятность того, что величина отклонения не превышает 0,1 мм;
г) определить, какой процент составляют детали, отклонение которых от среднего значения не превышает 0,1 мм;
д) найти, каким должно быть задано отклонение, чтобы процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%;
е) найти интервал, симметричный относительно среднего значения, в котором будет находиться X с вероятностью 0,95.

Решение. а) Плотность вероятности случайной величины X, распределенной по нормальному закону находим по формуле 1:

при условии, что mx=20, σ =0,2.

б) Для нормального распределения случайной величины вероятность попасть в интервал (19,7; 20,3) определяется по формуле 3:
Ф((20,3-20)/0,2) – Ф((19,7-20)/0,2) = Ф(0,3/0,2) – Ф(-0,3/0,2) = 2Ф(0,3/0,2) = 2Ф(1,5) = 2*0,4332 = 0,8664.
Значение Ф(1,5) = 0,4332 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (таблица 2)

в) Вероятность того, что абсолютная величина отклонения меньше положительного числа 0,1 найдем по формуле 4:
Р(|Х-20| < 0,1) = 2Ф(0,1/0,2) = 2Ф(0,5) = 2*0,1915 = 0,383.
Значение Ф(0,5) = 0,1915 мы нашли в приложениях, в таблице значений интегральной функции Лапласа Φ(x) (

таблица 2)

г) Поскольку вероятность отклонения, меньшего 0,1 мм, равна 0,383, то отсюда следует, что в среднем 38,3 детали из 100 окажутся с таким отклонением, т.е. 38,3%.

д) Поскольку процент деталей, отклонение которых от среднего не превышает заданного, повысился до 54%, то Р(|Х-20| < δ) = 0,54. Отсюда следует, что 2Ф(δ/σ) = 0,54, а значит Ф(δ/σ) = 0,27.

Используя приложение (таблица 2), находим δ/σ = 0,74. Отсюда δ = 0,74*σ = 0,74*0,2 = 0,148 мм.

е) Поскольку искомый интервал симметричен относительно среднего значения mx = 20, то его можно определить как множество значений X, удовлетворяющих неравенству 20 − δ < X < 20 + δ или |x − 20| < δ .

По условию вероятность нахождения X в искомом интервале равна 0,95, значит P(|x − 20| < δ)= 0,95. С другой стороны P(|x − 20| < δ) = 2Ф(δ/σ), следовательно 2Ф(δ/σ) = 0,95, а значит Ф(δ/σ) = 0,475.

Используя приложение (таблица 2), находим δ/σ = 1,96. Отсюда δ = 1,96*σ = 1,96*0,2 = 0,392.
Искомый интервал: (20 – 0,392; 20 + 0,392) или (19,608; 20,392).

Другие статьи по данной теме:

Список использованных источников

  1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике / М. — «Высшая школа», 2004;
  2. Лисьев В.П. Теория вероятностей и математическая статистика: Учебное пособие/ Московский государственный университет экономики, статистики и информатики. – М., 2006;
  3. Семёнычев В. К. Теория вероятности и математическая статистика: Лекции /Самара, 2007;
  4. Теория вероятностей: контрольные работы и метод. указания для студентов / сост. Л.В. Рудная и др. / УрГЭУ — Екатеринбург, 2008.

www.ekonomika-st.ru

Нормальное распределение

Нормальное распределение

Тема «Нормальное распределение»

 

Нормальным называют распределение вероятностей непрерывной случайной величины, которое задается плотностью
.
Нормальное распределение задается двумя параметрами: – математическим ожиданием, – средним квадратическим отклонением.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса).
Нормированным называют нормальное распределение с параметрами .
Плотность нормированного распределения задается формулой
.

 

Вероятность попадания в заданный интервал нормальной случайной величины

Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , равна определенному интегралу от плотности распределения, взятому в соответствующих пределах:
.
Для нормально распределенной случайной величины соответственно получим:
.
Преобразуем последнее выражение, введя новую переменную . Следовательно, показатель степени выражения, стоящего под интегралом преобразуется в:
.
Для замены переменной в определенном интеграле еще необходимо заменить дифференциал и пределы интегрирования, предварительно выразив переменную из формулы замены:
;
;
– нижний предел интегрирования;
– верхний предел интегрирования;
(для нахождения пределов интегрирования по новой переменной в формулу замены переменной были подставлены и – пределы интегрирования по старой переменной ).
Подставим все в последнюю из формул для нахождения вероятности:

где – функция Лапласа.
Вывод: вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение данной случайной величины.

 

Примеры решения задач

Пример 1. Случайная величина имеет нормальное распределение с математическим ожиданием и средним квадратическим отклонением . Найти вероятность того, что случайная величина примет значение, принадлежащее интервалу .

Решение.

Известно, что вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение.
По условию . Следовательно,

Ответ: .

 

Вычисление вероятности заданного отклонения

Вычислим вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит , то есть вероятность осуществления неравенства .
Заменим неравенство с модулем равносильным ему двойным неравенством:

Теперь мы можем воспользоваться формулой для нахождения вероятности попадания в заданный интервал нормальной случайной величины, где границами интервала являются
:

(в последних преобразованиях использовано свойство нечетности функции Лапласа: ).
Вывод: вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение.

 

Примеры решения задач

Пример 1. Случайная величина имеет нормальное распределение с математическим ожиданием и средним квадратическим отклонением . Найти вероятность того, что случайная величина отклонится от своего математического ожидания по абсолютной величине не больше, чем на .

Решение.

Известно, что вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение.
По условию . Следовательно,
.

Ответ: .

 

Правило трех сигм

Вычислим вероятность того, что отклонение нормально распределенной случайной величины от своего математического ожидания по абсолютной величине не превысит .
Воспользуемся формулой для нахождения вероятности заданного отклонения, в которую в качестве подставим :
.
Таким образом, вероятность того, что отклонение случайной величины по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Другими словами, вероятность того, что абсолютная величина отклонения превысит , составляет всего 0,0027. Такое событие, исходя их принципа невозможности маловероятных событий, можно считать практически невозможным.
Вывод (правило трех сигм): если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.


Понятие о теореме Ляпунова

Известно, что нормально распределенные случайные величины широко распределены на практике. Объяснение этому было дано А.М.Ляпуновым в центральной предельной теореме: если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.


pgsksaa07.narod.ru

Нормальный закон распределения — 18 Декабря 2012 — Примеры решений задач

2. Нормальный закон  распределения.

2.1.Интегральная и дифференциальная функции распределения. Вероятность попадания в заданный интервал.

Одним из наиболее часто встречающихся распределений является нормальное распределение. Оно играет большую роль в теории вероятностей и занимает среди других распределений особое положение. Нормальный закон распределения является предельным законом, к которому приближаются другие законы распределения при часто встречающихся аналогичных условиях.

Если предоставляется возможность рассматривать некоторую случайную величину как сумму достаточно большого числа других случайных величин, то данная случайная величина обычно подчиняется нормальному закону распределения. Суммируемые случайные величины могут подчиняться каким угодно распределениям, но при этом должно выполняться условие их независимости (или слабой зависимости). При соблюдении некоторых не очень жестких условий указанная сумма случайных величин подчиняется приближенно нормальному закону распределения и тем точнее, чем большее количество величин суммируется.

Ни одна из суммируемых случайных величин не должна резко отличаться от других, т. е. каждая из них должна играть в общей сумме примерно одинаковую роль и не иметь исключительно большую по сравнению с другими величинами дисперсию.

Для примера рассмотрим изготовление некоторой детали на станке-автомате. Размеры изготовленных деталей несколько отличаются от требуемых. Это отклонение размеров от стандарта вызывается различными причинами, которые более или менее независимы друг от друга. К ним могут относиться: неравномерный режим обработки детали; неоднородность обрабатываемого материала; неточность установки заготовки в станке; износ режущего инструмента и деталей станков; упругие деформаций узлов станка; состояние микроклимата в цехе; колебание напряжения в электросети и т. д. Каждая из перечисленных и подобных им причин влияет на отклонение размера изготовляемой детали от стандарта. Таким образом, общее отклонение размера, фиксируемое измерительным прибором, является суммой большего числа отклонений, обусловленных различными причинами. Если ни одна из этих причин не является доминирующей, то суммарное отклонение является случайной величиной, имеющей нормальный закон распределения.

Так как нормальному закону подчиняются только непрерывные случайные величины, то это распределение можно задать в виде плотности распределения вероятности.

Определение: Непрерывная случайная величина Х имеет нормальное распределение (распределена по нормальному закону), если плотность распределения вероятности f(x) имеет вид

 

где а и σ—некоторые постоянные, называемые параметрами нормального распределения.

Функция распределения F(x) в рассматриваемом случае принимает вид

Параметр а— есть математическое ожидание НСВХ, имеющей нормальное распределение, σ — среднее квадратическое отклонение, тогда дисперсия равна

 Выясним геометрический смысл параметров распределения а и σ . Для этого исследуем поведение функции f(x). График функции f(x) называется нормальной кривой.

Рассмотрим свойства функции f(x):

1°. Областью определения функции f(x) является вся числовая ось.

2°. Функция f{x) может принимать только положительные значения, т. е. f(x}>0.

3°. Предел функции f(x) при неограниченном возрастании |х| равен нулю, т. е. ось ОХ является горизонтальной асимптотой графика функции.

      4°. Функция f{x) имеет в точке х = a  максимум, равный

5°. График функции f(x) симметричен относительно прямой х = а.

6°. Нормальная кривая в точках х = а +σ  имеет перегиб,

 

 

На основании доказанных свойств построим график плотности нормального распределения f(x).



 

 

 

 

 

Как видно из рисунка, нормальная кривая имеет колоколообразную форму. Эта форма является отличительной чертой нормального распределения. Иногда нормальную кривую называют кривой Гаусса.

При изменении параметра а форма нормальной кривой не изменяется. В этом случае, если математическое ожидание (параметр а) уменьшилось или увеличилось, график нормальной кривой сдвигается влево или вправо .



 

 

 

 

При изменении параметра  s изменяется форма нормальной кривой. Если этот параметр увеличивается, то максимальное значение  функции f(x) убывает, и наоборот. Так как площадь, ограниченная кривой распределения и осью Ох, должна быть постоянной и равной 1, то с увеличением параметра  кривая приближается к оси Ох и растягивается вдоль нее, а с уменьшением s  кривая стягивается к прямой х=а .


 

 

 

 

 

 

 

 

 

Использование формул  f(x) и F(x) для практических расчетов затруднительно. Но решение задач по этим  формулам  можно упростить, если от нормального распределения с произвольными параметрами а и s перейти  к нормальному распределению с параметрами а=0, σ = 1.

Функция плотности нормального распределения f(x) с параметрами а=0, σ =1 называется плотностью стандартной нормальной случайной величины и ее график имеет вид:

Функция плотности и интегральная функция стандартной нормальной СВ будут иметь вид:

Для вычисления вероятности попадания СВ в интервал (a, b) воспользуемся функцией    Лапласа:

Перейдем к стандартной нормальной случайной величине

   

Тогда

Значения функции Ф(u) необходимо взять из таблицы приложений «Таблица значений функции Ф(х)» .

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание и среднее квадратическое отклонение этой величины соответственно равны 30 и 10. Найти вероятность того, что Х примет значение, принадлежащее интервалу (10, 50).

Решение:

 По условию:a  =10, b=50, а=30, σ =10, следовательно,

По таблице  находим Ф (2) = 0,4772. Отсюда, искомая вероятность:

Р(10 < Х < 50) =2×0,4772=0,9544.

Решение контрольных работ в авторском исполнении

www.reshim.su

Определение 2. Общим нормальным распределением вероят­ностей непрерывной случайной величины Х называется рас­пределение с плотностью

Нормальное распределение задается двумя параметрами: А и σ. Согласно определениям математического ожидания и дисперсии (формулы (18.36) и (18.38)), после выполнения соответствующих интегрирований можно вывести, что для нор­мального распределения справедливы формулы

Определение 3. Нормальное распределение с параметрами А = 0 и σ = 1 называется Нормированным; его плотность равна

Рассмотрим функцию нормального распределения как пер­вообразную плотности распределения вероятностей. Для слу­чая нормированного нормального распределения (18.41) она, согласно формуле (18.34), имеет вид

Поскольку функция (18.41) является четной, то неопределен­ный интеграл от нее является нечетной функцией, и потому вместо функции распределения (18.42) используется функция Лапласа (см. п. 17.5)

Функции (18.41) и (18.43) табулированы (см. Приложение).

График плотности нормального распределения (18.40) для разных значений А показан на рис. 18.6.

Определение 4. Модой Мо(Х) называется возможное значе­ние случайной величины X, при котором плотность распреде­ления имеет максимум.

Определение 5. Медианой Ме(Х) называется такое возмож­ное значение случайной величины X, что вертикальная пря­мая Х = Me(X) делит пополам площадь, ограниченную кривой плотности распределения.

Нетрудно видеть, что график плотности нормального рас­пределения симметричен относительно прямой Х = а, и потому и мода и медиана в данном случае совпадают с математичес­ким ожиданием:

Пусть случайная величина Х задана плотностью нормаль­ного распределения (18.40), тогда вероятность того, что Х при­мет значение на интервале (α, β), согласно формуле (18.33), равна

Преобразование этой формулы путем введения новой перемен­ной интегрирования Z = (х — А)/σ приводит к удобной вычис­лительной формуле:

Где Ф — функция Лапласа, определенная по формуле (18.43).

Пример 3. Случайная величина распределена по нормальному закону с математическим ожиданием и средним квадратическим отклонением, соответственно равными 10 и 5. Найти ве­роятность того, что Х примет значение на интервале (20, 30).

Решение. Воспользуемся формулой (18.44). По условию А = 10, σ = 5, α = 20 и β = 30. Следовательно,

По табл. 2 Приложения находим соответствующие значения функции Лапласа и окончательно получаем

Пример 4. Магазин производит продажу мужских костюмов. По данным статистики, распределение по размерам является нормальным с математическим ожиданием и средним квадратическим отклонением, соответственно равными 48 и 2. Опре­делить процент спроса на 50-й размер при условии разброса значений этой величины в интервале (49, 51).

Решение. По условию задачи А = 48, σ = 2, α = 49, β = 51. Используя формулу (18.44), получаем, что вероятность спроса на 50-й размер в заданном интервале равна

Следовательно, спрос на 50-й размер костюмов составит около 24%, и магазину нужно предусмотреть это в общем объеме закупки.

< Предыдущая   Следующая >

matica.org.ua

Нормальное распределение

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Непрерывная случайная величина X имеет нормальное распределение, если ее плотность распределения вероятности имеет вид:

где и–параметры распределения, причем =M(X), =(X).

График дифференциальной функции распределения называют нормальной кривой, или кривой Гаусса (рис.1).

Рис.1

Если (X) = 0, (X) = 1, то нормально распределенная случайная величина называется нормированной, ее дифференциальная функция распределения табулирована.

Вероятность попадания нормально распределенной случайной величины в интервал (,) находим по формуле:

Данный интеграл выражается через функцию Лапласа, которую еще называют интегралом вероятностей и обозначают Ф(t):

Ф(t) .

Функция Лапласа – это вероятность попадания нормированной нормально распределенной случайной величины в интервал ( 0, t).

Функция Лапласа обладает следующими свойствами:

1. Ф(0) = 0.

2. Ф(–t) = –Ф(t), то есть она нечетная.

3. Ф() = 0,5 (практически уже при t  4).

Функция Ф(t) табулирована (см. прил. 2).

Применяя функцию Лапласа, получим:

При решении задач часто возникает необходимость определения вероятности отклонения нормально распределенной случайной величины от ее математического ожидания:

Пример 1. Средний процент выполнения плана некоторыми предприятиями составляет 105 %, среднее квадратическое отклонение – 5 % . Полагая, что выполнение плана предприятиями подчинено закону нормального распределения, вычислить долю предприятий, выполняющих план от 110 до 130 %, то есть определить вероятность попадания рассматриваемой величины в интервал ( 110, 130).

Решение. Случайная величина X – выполнение плана предприятиями; она имеет нормальное распределение с параметрами:

Для нахождения искомой вероятности воспользуемся формулой:

Пример 2. Длина изготовляемой детали представляет собой случайную величину, распределенную по нормальному закону. Средняя длина детали равна 50 мм, а дисперсия – 0,25 мм2. Какое поле допуска длины изготовляемой детали можно гарантировать с вероятностью 0,99?

Решение. Длина изготовляемой детали – случайная величина X, имеющая нормальный закон распределения с параметрами:

= (X) = 50 мм, =(X) = = 0,5.

Известна вероятность, гарантирующая некоторое поле допуска, то есть Р( X ) = 0,99. Чтобы найти это поле допуска, воспользуемся формулой:

Неравенство X–  эквивалентно неравенству ,следовательно, и равновероятно, то есть

Исходя из условия задачи, можем записать:

= 0,99; = 0,495.

По таблице значений функции Лапласа (см. прил. 2) находим = 2,58.

Отсюда = 2,58  = 1,29, тогда 50 – 1,29 X  50 + 1,2 или 48,71  X  51,29.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *