Все формулы для радиуса вписанной окружности
1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол
a — сторона ромба
D — большая диагональ
d — меньшая диагональ
α — острый угол
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в ромб через диагонали ( r ) :
Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :
Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :
Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :
2. Радиус вписанной окружности ромба, равен половине его высоты
a — сторона ромба
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в ромб ( r ) :
www-formula.ru
Все формулы для радиуса описанной окружности
Все формулы для радиуса описанной окружности
, , — стороны треугольника
— полупериметр
— центр окружности
Формула радиуса описанной окружности треугольника ( R ) :
— сторона треугольника
— высота
— радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.
a, b — стороны треугольника
Формула радиуса описанной окружности равнобедренного треугольника(R):
Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.
a, b — катеты прямоугольного треугольника
c — гипотенуза
Формула радиуса описанной окружности прямоугольного треугольника (R):
a — боковые стороны трапеции
c — нижнее основание
b — верхнее основание
d — диагональ
p — полупериметр треугольника DBC
p = (a+d+c)/2
Формула радиуса описанной окружности равнобокой трапеции, (R)
Радиус описанной окружности квадрата равен половине его диагонали
a — сторона квадрата
d — диагональ
Формула радиуса описанной окружности квадрата (R):
Радиус описанной окружности прямоугольника равен половине его диагонали
a, b — стороны прямоугольника
d — диагональ
Формула радиуса описанной окружности прямоугольника (
a — сторона многоугольника
N — количество сторон многоугольника
Формула радиуса описанной окружности правильного многоугольника, (R):
a — сторона шестиугольника
d — диагональ шестиугольника
Радиус описанной окружности правильного шестиугольника (R):
Радиус описанной окружности
Наверх
© 2011-2019 Все права защищены.
При использовании материалов данного сайта обязательно указывать ссылку на источник.
www-formula.ru
формула длины окружности через радиус
Каждый школьник знает, что если взять циркуль, установить его острие в одну точку, а затем повернуть вокруг своей оси, то можно получить кривую, которая называется окружностью. Как рассчитать радиус через длину окружности, мы расскажем в статье.
Понятие об окружности
Согласно математическому определению, под окружностью понимают такую кривую, вся совокупность точек которой находится на одинаковом расстоянии от одной точки — от центра. Кривая является замкнутой и ограничивает внутри себя плоскую фигуру, которую принято называть кругом.
Элементы окружности:
- Радиус (R) — отрезок, соединяющий центр с любой точкой окружности.
- Диаметр (D) — отрезок, который соединяет две точки окружности и проходящий через ее центр. Его длина равна двум радиусам, то есть D = 2 * R.
- Хорда — любая секущая линия, пересекающая окружность в двух точках. Самой большой хордой является диаметр.
- Дуга — любая часть окружности. Измеряется либо в градусах, либо в единицах длины.
- Периметр — длина окружности.
Важными свойствами окружности являются следующие:
- Любая прямая, которая проходит через центр окружности и пересекает ее, является осью симметрии для этой фигуры.
- Окружность переходит сама в себя благодаря повороту на любой угол вокруг оси, проходящей через центр фигуры и перпендикулярной ее плоскости.
Периметр окружности
Интерес к расчету длины окружности возник еще в древнем Вавилоне и связан был с необходимостью определения периметра колеса, зная длину его радиуса.
Через радиус длину окружности по формуле можно вычислить: L = 2 * pi * R, где pi = 3,14159 — число пи.
Пользоваться ей достаточно просто. Например, определим, какую длину будет иметь окружность, если ее диаметр равен 10 см.
Поскольку диаметр больше радиуса в 2 раза, то получаем, что R = D / 2 = 10 / 2 = 5 см. Подставляя в формулу для периметра, получаем: L = 2 * pi * R = 2 * 3,14159 * 5 = 31,4159 см.
Поскольку число пи является константой, то из приведенного выражения следует, что длина окружности всегда будет больше ее радиуса в более чем 6 раз (в 6,28).
fb.ru