Синус равен 1 частный случай – sin x =1

Частные случаи решения тригонометрических уравнений

Частные случаи решения тригонометрических уравнений
Рассмотрим некоторые возможные стандартные варианты решений тригонометрических уравнений.
Частными случаями решения уравнения являются следующие уравнения:

   

   

   

То есть в роли возможных значений переменной а выступают табличные значения 0; —1 и 1.
Графически решение уравнения можно обосновать с помощью рисунка:

Для частных случаев решения можно найти несколькими способами, в частности их принято вносить в справочную информацию по тригонометрии. Наведем решения этих уравнений:
:
:
:
 
Частными случаями решения уравнения являются:
:
:
:
Графически решение уравнения можно обосновать с помощью рисунка:

Частные случаи решения уравнения :

:
:
:
Графически решение уравнения можно обосновать с помощью рисунка:

Частные случаи решения уравнения :
:
:
:
Графически решение уравнения можно обосновать с помощью рисунка:

К частным случаям решения тригонометрических уравнений можно отнести также и другие табличные значения, которым равны тригонометрические функции по таблице значений. Например, к частным случаям решения уравнения можно также отнести уравнения вида:

   

ru.solverbook.com

Решение простейших тригонометрических уравнений

Решение простейших тригонометрических уравнений.

Решение тригонометрических уравнений любого уровня сложности в конечном итоге сводится к решению простейших тригонометрических уравнений. И в этом наилучшим помощником снова оказывается тригонометрический круг.

Вспомним определения косинуса и синуса.

Косинусом  угла  называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .

Синусом угла называется ордината (то есть координата по оси  ) точки на единичной окружности, соответствующей повороту на данный угол .

Положительным направлением движения по тригонометрическому кругу считается движение против часовой стрелки. Повороту на 0 градусов ( или 0 радиан) соответствует точка с координатами (1;0)

Используем  эти определения для решения простейших тригонометрических уравнений.

1. Решим уравнение

Этому уравнению удовлетворяют все такие значения угла поворота , которые соответствуют точкам окружности, ордината которых равна .

Отметим на оси ординат точку с ординатой :

 Проведем горизонтальную линию параллельно оси абсцисс до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие  ординату. Эти точки соответствуют углам поворота на и радиан:

 Если мы, выйдя из точки, соответствующей углу поворота на радиан, обойдем полный круг, то мы придем в точку, соответствующую углу поворота на радиан и имеющую ту же ординату. То есть этот угол поворота также удовлетворяет нашему уравнению. Мы можем делать сколько угодно «холостых» оборотов, возвращаясь в ту же точку, и все эти значения углов будут удовлетворять нашему уравнению. Число «холостых» оборотов обозначим буквой (или ). Так как мы можем совершать эти обороты как в положительном, так и в отрицательном направлении, (или ) могут принимать любые целые значения.

То есть первая серия решений исходного уравнения имеет вид:

,  , — множество целых чисел (1)

Аналогично, вторая серия решений имеет вид:

, где ,  . (2)

Как вы догадались, в основе этой серии решений лежит точка окружности, соответствующая углу поворота на .

Эти две серии решений можно  объединить в одну запись:

   

Если мы в этой записи возьмем ( то есть четное ), то мы получим первую серию решений.

Если мы в этой записи возьмем ( то есть нечетное ), то мы получим вторую  серию решений.

2. Теперь давайте решим уравнение

Так как — это абсцисса точки единичной окружности, полученной поворотом на угол , отметим на оси точку с абсциссой :

  Проведем вертикальную линию параллельно оси до пересечения с окружностью. Мы получим две точки, лежащие на окружности  и имеющие  абсциссу . Эти точки соответствуют углам поворота на и радиан. Вспомним, что при движении по часовой стрелки мы получаем отрицательный угол поворота:

 

Запишем две серии решений:

,  

,  

(Мы попадаем в нужную точку, пройдя из основной полный круг, то есть .

Объедим эти две серии в одну запись:

   

 

3. Решим уравнение

Линия тангенсов проходит через точку с координатами (1,0) единичной окружности параллельно оси OY

Отметим на ней точку, с ординатой равной 1 (мы ищем, тангенс каких углов равен 1):

Соединим эту точку с началом координат прямой линией и отметим точки пересечения прямой с единичной окружностью. Точки пересечения прямой и окружности соответствуют углам поворота на и :

 

Так как точки, соответствующие углам поворота, которые удовлетворяют нашему уравнению, лежат на расстоянии  радиан друг от друга, то мы можем записать решение таким образом:

,

4. Решим уравнение

Линия котангенсов проходит через точку с координатами единичной окружности параллельно оси .

Отметим на линии котангенсов точку с абсциссой -1:

 Соединим эту точку с началом координат прямой  и продолжим ее до пересечения с окружностью. Эта прямая пересечет окружность в точках, соответствующих углам поворота на и радиан:

Поскольку эти точки отстоят друг от  друга на расстояние, равное , то общее решение этого уравнения мы можем записать так:

   

 В приведенных примерах, иллюстрирующих решение простейших тригонометрических уравнений были использованы табличные значения тригонометрических функций.

Однако, если в правой части уравнения стоит не табличное значение, то мы в общее решение уравнения подставляем значение обратной тригонометрической функции:

 

 

ОСОБЫЕ РЕШЕНИЯ:

1

Отметим на окружности точки, ордината которых равна 0:

 

2.

Отметим на окружности единственную точку, ордината которой равна 1:

 

 

3.

Отметим на окружности единственную точку, ордината которой равна -1:

Так как принято указывать значения, наиболее близкие у нулю, решение запишем так:

4.

Отметим на окружности точки, абсцисса которых равна 0:

 

5.
Отметим на окружности единственную точку, абсцисса которой равна 1:

 

 

6.

Отметим на окружности единственную точку, абсцисса которой равна -1:

 

И чуть более сложные примеры:

1. 

Синус равен единице, если аргумент равен  

Аргумент у нашего синуса равен , поэтому получим:

. Разделим обе части равенства на 3:

Ответ:

2. 

Косинус равен нулю, если аргумент косинуса равен

Аргумент у нашего косинуса равен , поэтому получим:

Выразим , для этого сначала перенесем  вправо с противоположным знаком:

Упростим правую часть:

Разделим обе части на -2:

Заметим, что перед слагаемым  знак не меняется, поскольку   k может принимать любые целые значения.

Ответ:

И в заключение посмотрите видеоурок «Отбор корней в тригонометрическом уравнении с помощью тригонометрической окружности»

На этом разговор о решении простейших тригонометрических уравнений мы закончим. Следующий раз мы с вами поговорим о том, как решать простейшие тригонометрические неравенства.

И.В. Фельдман, репетитор по математике.

Купить видеокурс «ВСЯ ТРИГОНОМЕТРИЯ. Часть В и Задание 13»

ege-ok.ru

sin x = 1 решение

Доброй ночи!
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение. Но это, на самом деле, не так страшно и не так сложно. Прежде, чем разобраться с Вашей уравнением sin x = 1, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке: 

   

Да, я понимаю, что это Вам особо не помогло. Но для этого есть определённое правило решения подобных уравнений, которое примет такой общий вид: 

   

 

   

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения: 

   

 

   

Значение  мы найдём при помощи таблицы. И исходя из этого получаем, что 
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение: 

   

 

   

Ответ: 

ru.solverbook.com

Чему равен Sin 1 (синус единицы) ?

Синус одного градуса или синус одного радиана?

девяносто градусов.

синус единицы в радианной мере равен углу в 90 градусов.

Если это синус градуса то 90, а если радиана то????

sin 1” = π/(180•60•60) eto sinus 1 sekunda

Синус дуги, которая равна радиусу, есть 1/1! — 1/3! + 1/5! — 1/7! + 1/9! — etc. = 1 — 1/6 + 1/120 — 1/5040 + 1/362880 — etc. Сложим эти пять чисел: (362880 — 60480 + 3024 — 72 + 1) / 362880 = (302400 + 3025 — 72) / 362880 = 305353 / 362880 ~ 0.8414710097. Отсюда нужно ещё вычесть малое положительное число 1/11! — 1/13! + 1/15! — 1/17! + etc. < 1/11! = 1/39.916.800 ~ 2.5*10^(-8). Достаточно запомнить sin(1) = 0.841471.

sin(-1) = -0.0175 <a rel=»nofollow» href=»http://tehtab.ru/Guide/GuideMathematics/GuideMathematicsFiguresTables/sinusTable0to360by1/» target=»_blank»>http://tehtab.ru/Guide/GuideMathematics/GuideMathematicsFiguresTables/sinusTable0to360by1/</a>

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *