Средняя линия прямоугольника формула – Средняя линия четырёхугольника

Средняя линия прямоугольной трапеции

 

1. Формула средней линии трапеции через основания (для всех видов трапеции)

 

a — нижнее основание

b — верхнее основание

m — средняя линия

 

 

Формула средней линии, (m ):


 

2. Формулы средней линии через основания, высоту и угол при нижнем основании

 

a, b — основания трапеции

c — боковая сторона под прямым углом к основаниям

d — боковая сторона

α — угол при основании

h — высота трапеции

m — средняя линия

 

Формулы средней линии трапеции, (m

):


 

3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

 

d1 , d2 — диагонали трапеции

α , β — углы между диагоналями

h — высота трапеции

m — средняя линия

 

Формулы средней линии трапеции, (m ):


 

4. Формула средней линии трапеции через площадь и высоту (для всех видов трапеции)

 

S — площадь трапеции

h — высота трапеции

m — средняя линия

 

 

Формула средней линии трапеции, (m ):



 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

zdesformula.ru

Средняя линия — это… Что такое Средняя линия?

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырехугольник, трапеция.

Средняя линия треугольника

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника.[1]

Свойства

  • средняя линия треугольника параллельна третьей стороне и равна её половине.
  • при проведении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
  • средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти площади исходного треугольника.

Средняя линия четырехугольника

Средняя линия четырехугольника — отрезок, соединяющий середины противолежащих сторон четырехугольника.

Свойства

Первая линия соединяет 2 противоположные стороны. Вторая соединяет 2 другие противоположные стороны. Третья соединяет центры двух диагоналей ( не во всех четырехугольниках центры пересекаются)

  • Если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.
  • Длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;
  • Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Свойства

  • средняя линия параллельна основаниям и равна их полусумме.

.

См. также

Примечания

dic.academic.ru

Все формулы основания прямоугольной трапеции


1. Формула длины оснований прямоугольной трапеции через среднюю линию

 

a — нижнее основание

b — верхнее основание

m — средняя линия

 

 

Формулы длины оснований :

 

 

2. Формулы длины оснований через боковые стороны и угол при нижнем основании

 

a — нижнее основание

b — верхнее основание

c , d — боковые стороны

α — угол при нижнем основании

 

 

Формулы длины оснований :


 

3. Формулы длины оснований трапеции через диагонали  и угол между ними

 

a — нижнее основание

b — верхнее основание

c — боковая сторона под прямым углом к основаниям

d1 , d2 — диагонали трапеции

α , β — углы между диагоналями

 

 

Формулы длины оснований :


 

4. Формулы длины оснований трапеции через площадь

 

a — нижнее основание

b — верхнее основание

c — боковая сторона под прямым углом к основаниям

h — высота трапеции

 

 

Формулы длины оснований :



 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru

Средняя линия — WiKi

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

Средняя линия треугольника

  Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника[1].

Свойства

  • средняя линия треугольника параллельна основанию и равна его половине.
  • средняя линия отсекает треугольник, подобный и гомотетичный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника.
  • три средние линии делят исходный треугольник на четыре равных треугольника. Центральный из этих треугольников называется дополнительным или серединным треугольником.

Признаки

  • Если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок – средняя линия.

Средняя линия четырёхугольника

Средняя линия четырёхугольника — отрезок, соединяющий середины противолежащих сторон четырёхугольника.

Свойства

Первая линия соединяет 2 противоположные стороны. Вторая соединяет 2 другие противоположные стороны. Третья соединяет центры двух диагоналей (не во всех четырёхугольниках диагонали пунктом пересечения делятся пополам).

  • Если в выпуклом четырёхугольнике средняя линия образует равные углы с диагоналями четырёхугольника, то диагонали равны.
  • Длина средней линии четырёхугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырёхугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;
  • Последний пункт означает следующее: В выпуклом четырёхугольнике можно провести четыре средние линии второго рода. Средние линии второго рода — четыре отрезка внутри четырёхугольника, проходящие через середины его смежных сторон параллельно диагоналям. Четыре
    средние линии второго рода
    выпуклого четырёхугольника разрезают его на четыре треугольника и один центральный четырёхугольник. Этот центральный четырёхугольник является параллелограммом Вариньона.
  • Точка пересечения средних линий четырёхугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырёхугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции

  Средняя линия трапеции

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Она рассчитывается по формуле: EF=AD+BC2{\displaystyle EF={\frac {AD+BC}{2}}} , где AD и BC — основания трапеции.

Свойства

  • средняя линия параллельна основаниям
  • средняя линия равна полусумме оснований
  • cредняя линия разбивает фигуру на две трапеции, площади которых соотносятся как [1]
S1S2=3BC+ADBC+3AD{\displaystyle {\frac {S_{1}}{S_{2}}}={\frac {3\,BC+AD}{BC+3\,AD}}} 

См. также

Примечания

ru-wiki.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *