Z 2 2i – Mathway | Популярные задачи

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы
pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение
sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

Решите систему z1+2*z2=1+i 3*z1+i*z2=2-3*i (z1 плюс 2 умножить на z2 равно 1 плюс i 3 умножить на z1 плюс i умножить на z2 равно 2 минус 3 умножить на i) нескольких уравнений [Есть ОТВЕТ!]

Решение

$$z_{1} + 2 z_{2} = 1 + i$$

$$3 z_{1} + i z_{2} = 2 — 3 i$$

Подробное решение

[LaTeX]

Дана система ур-ний
$$z_{1} + 2 z_{2} = 1 + i$$
$$3 z_{1} + i z_{2} = 2 — 3 i$$

Из 1-го ур-ния выразим z1
$$z_{1} + 2 z_{2} = 1 + i$$
Перенесем слагаемое с переменной z2 из левой части в правую со сменой знака
$$z_{1} = — 2 z_{2} + 1 + i$$
$$z_{1} = — 2 z_{2} + 1 + i$$
Подставим найденное z1 в 2-е ур-ние
$$3 z_{1} + i z_{2} = 2 — 3 i$$
Получим:
$$i z_{2} + 3 \left(- 2 z_{2} + 1 + i\right) = 2 — 3 i$$
$$- 6 z_{2} + i z_{2} + 3 + 3 i = 2 — 3 i$$
Перенесем свободное слагаемое 3 + 3*i из левой части в правую со сменой знака
$$- 6 z_{2} + i z_{2} = -3 — 3 i + 2 — 3 i$$
$$- 6 z_{2} + i z_{2} = -1 — 6 i$$
Разделим обе части ур-ния на множитель при z2
$$\frac{- 6 z_{2} + i z_{2}}{- 6 z_{2} + i z_{2}} = \frac{-1 — 6 i}{- 6 z_{2} + i z_{2}}$$
$$\frac{1 + 6 i}{z_{2} \left(6 — i\right)} = 1$$
Т.к.
$$z_{1} = — 2 z_{2} + 1 + i$$
то
$$z_{1} = -2 + 1 + i$$
$$z_{1} = -1 + i$$

Ответ:
$$z_{1} = -1 + i$$
$$\frac{1 + 6 i}{z_{2} \left(6 — i\right)} = 1$$

Быстрый ответ

[LaTeX]

$$z_{21} = i$$
=
$$i$$
=
1*i

$$z_{11} = 1 — i$$
=
$$1 — i$$
=
1 - 1*i
Метод Крамера

[LaTeX]

$$z_{1} + 2 z_{2} = 1 + i$$
$$3 z_{1} + i z_{2} = 2 — 3 i$$

Приведём систему ур-ний к каноническому виду
$$z_{1} + 2 z_{2} — 1 — i = 0$$
$$3 z_{1} + i z_{2} — 2 + 3 i = 0$$
Запишем систему линейных ур-ний в матричном виде
$$\left[\begin{matrix}x_{1} + 2 x_{2}\\3 x_{1} + i x_{2}\end{matrix}\right] = \left[\begin{matrix}1 + i\\2 — 3 i\end{matrix}\right]$$
— это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = \operatorname{det}{\left (\left[\begin{matrix}1 & 2\\3 & i\end{matrix}\right] \right )} = -6 + i$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = \frac{1}{-6 + i} \operatorname{det}{\left (\left[\begin{matrix}1 + i & 2\\2 — 3 i & i\end{matrix}\right] \right )} = 1 — \frac{-2 — 12 i}{-6 + i} + i$$
=
$$1 — i$$
$$x_{2} = \frac{1}{-6 + i} \operatorname{det}{\left (\left[\begin{matrix}1 & 1 + i\\3 & 2 — 3 i\end{matrix}\right] \right )} = \frac{-1 — 6 i}{-6 + i}$$
=
$$i$$

Метод Гаусса

[LaTeX]

Дана система ур-ний
$$z_{1} + 2 z_{2} = 1 + i$$
$$3 z_{1} + i z_{2} = 2 — 3 i$$

Приведём систему ур-ний к каноническому виду
$$z_{1} + 2 z_{2} — 1 — i = 0$$
$$3 z_{1} + i z_{2} — 2 + 3 i = 0$$
Запишем систему линейных ур-ний в матричном виде
$$\left[\begin{matrix}1 & 2 & 1 + i\\3 & i & 2 — 3 i\end{matrix}\right]$$
В 1 ом столбце
$$\left[\begin{matrix}1\\3\end{matrix}\right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
— Для этого берём 1 ую строку
$$\left[\begin{matrix}1 & 2 & 1 + i\end{matrix}\right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$\left[\begin{matrix}0 & -6 + i & — 3 + 3 i + 2 — 3 i\end{matrix}\right] = \left[\begin{matrix}0 & -6 + i & -1 — 6 i\end{matrix}\right]$$
получаем
$$\left[\begin{matrix}1 & 2 & 1 + i\\0 & -6 + i & -1 — 6 i\end{matrix}\right]$$
Во 2 ом столбце
$$\left[\begin{matrix}2\\-6 + i\end{matrix}\right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
— Для этого берём 2 ую строку
$$\left[\begin{matrix}0 & -6 + i & -1 — 6 i\end{matrix}\right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$\left[\begin{matrix}- 0 + 1 & — 2 + 2 & — \frac{-2 — 12 i}{-6 + i} + 1 + i\end{matrix}\right] = \left[\begin{matrix}1 & 0 & 1 — \frac{-2 — 12 i}{-6 + i} + i\end{matrix}\right]$$
получаем
$$\left[\begin{matrix}1 & 0 & 1 — \frac{-2 — 12 i}{-6 + i} + i\\0 & -6 + i & -1 — 6 i\end{matrix}\right]$$

Все почти готово — осталось только найти неизвестные, решая элементарные ур-ния:
$$x_{1} — 1 — i + \frac{-2 — 12 i}{-6 + i} = 0$$
$$x_{2} \left(-6 + i\right) + 1 + 6 i = 0$$
Получаем ответ:
$$x_{1} = 1 — i$$
$$x_{2} = i$$

Численный ответ

[LaTeX]

z11 = 1.0 - 1.0*i
z21 = 1.033975765691285e-25 + 1.0*i
z12 = 1.0 - 1.0*i
z22 = 2.584939414228211e-26 + 1.0*i
z13 = 1.0 - 1.0*i
z23 = 1.0*i
z14 = 1.0 - 1.0*i
z24 = -5.169878828456423e-26 + 1.0*i
z15 = 1.0 - 1.0*i
z25 = -2.067951531382569e-25 + 1.0*i
z16 = 1.0 - 1.0*i
z26 = -2.584939414228211e-26 + 1.0*i

www.kontrolnaya-rabota.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *