Зависимые и независимые события в теории вероятности – Независимые события. Умножение вероятностей — урок. Алгебра, 11 класс.

Зависимые события. Вероятность произведения зависимых событий.

События A и B называются зависимыми, если вероятность одного из них зависит от того, произошло или не произошло другое событие.

Рассмотрим пример.

В коробке находится a белых и b черных шаров. По очереди один за другим извлекаются 2 шара и назад не возвращаются.

Обозначим случайные события:

A ‒ 1‒й шар белый;

B ‒ 2‒й шар белый.

Если событие A не произошло, то вероятность события B:

Если событие A произошло, то есть первый шар белый, тогда

Определение. Вероятность события B, вычисленная при условии, что событие

A произошло, называется условной вероятностью, и обозначается или

Для условной вероятности имеют место формулы:

Теорема 4. Вероятность произведения зависимых событий равна произведению вероятности одного из них на условную вероятность другого события, вычисленную при условии, что первое событие произошло.

Теорема следует из предыдущих формул:

или

Распространим эту теорему на любое число зависимых событий:

Пример.

На складе 20 мешков с мукой высшего сорта. 12 мешков первого сорта. 5 мешков второго сорта. По очереди один за другим достают 3 мешка с мукой и назад не возвращают.

Найти вероятность того, что первый мешок с мукой высшего сорта (событие ), второй мешок с мукой первого сорта (событие), третий мешок с мукой второго сорта (событие).

Решение:

6.Основные формулы теории вероятностей. Формула полной вероятности.

Теорема 1.Вероятность события A, вычисленная при условии осуществления одного из несовместных событий H1, H2,H3, …., Hn, образующих полную группу, находится по формуле:

‒ формула полной вероятности,

где события ‒ гипотезы.

Доказательство:

Так как событие A,может произойти только с одним из несовместных событий или или, или, то

Тогда по теореме о вероятности произведения зависимых событий, получим:

Пример 1.

Партия деталей изготавливается тремя рабочими. Причем первый рабочий изготовил 25% деталей. Второй 35% деталей. Третий 40% деталей. В продукции первого рабочего брак составляет 5%. У второго рабочего брак составляет 4%.У третьего рабочего брак составляет 2%. Случайно выбранная для контроля деталь оказалась бракованной. Найти, чей брак вероятнее всего.

Решение:

деталь изготовил первый рабочий.

деталь изготовил второй рабочий.

деталь изготовил третий рабочий.

A ‒ взятая деталь бракованная.

Формула Байеса.

Пусть событие A может произойти с одним из несовместимых событий образующих полную группу.

‒ формула Байеса.

Пример.

В торговую фирму поступили телевизоры от трех поставщиков в отношении 1:4:5. Телевизоры от первого, второго и третьего поставщиков не потребуют ремонта в течение гарантийного срока, в следующих 98%, 88% и 92% случаях.

Найти:

1. Вероятность того, что поступивший в торговую фирму телевизор не потребует ремонта в течение гарантийного срока (событие A).

2. Вероятность того, что проданный телевизор потребовал ремонта в течение гарантийного срока (событие B).

3. От какого поставщика вероятнее всего этот телевизор.

Решение:

телевизор поступил от i ‒ й фирмы, i= 1, 2, 3. Тогда

2.

Ответ: вероятнее всего брак второй фирмы, так как брак второй фирмы составил максимальную вероятность равную .

studfiles.net

Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).

События А,Б,В… называют зависимыми друг от друга, если вероятность появления хотя бы одного из них изменяется в зависимости от появления или непоявления других событий.

События называются независимыми, если вероятности появления каждого из них не зависят от появления или непоявления прочих из них.

Событие В называется независимым от события А, если его вероятность не меняется от того, произошло событие А или нет, т.е.

РА(В) = Р(В) (или РА(В)=Р(В)).

В противном случае, если РА(В) ≠ Р(В)(или РА(В) ≠ Р(В)). событие В называется зависимым от А.

Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А — деталь годная, В — деталь окрашенная, то АВ — деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событий. Например, если А, В, С — появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то АВС — выпадение «герба» во всех трех испытаниях.

Условной вероятностьюA(В) — условная вероятность события В относительно А) называют вероятность события В, вычисленную в предположении, что событие А уже наступило. Исходя из классического определения вероятности, формулу РA(В) = Р(АВ) / Р(А) где (Р(А)>0) можно доказать. Это обстоятельство и служит основанием для следующего общего (применимого не только для классической вероятности) определения. Условная вер-ть события В при условии, что событие А уже наступило, по определению, равна РA(В) = Р(АВ) / Р(А) где (Р(A)>0).

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р(АВ) = Р(А) • РА(В) = Р(В) • РВ(А).

Доказательство

З а м е ч ан и е. Применив формулу (*) к событию ВА, получим Р(ВА) = Р(В)•РВ(А), или, поскольку событие ВА не отличается от события АВ, -> Р(АВ) = Р(В)•Рв(А).

Сравнивая формулы Р(АВ) = Р(А)•РA(В) и Р(АВ) = Р(В)•Рв(А), заключаем о справедливости равенства Р(А)•РА(В) = Р(В)•Рв(А).

Теорема (правило) умножения вероятностей легко обобщается на случай произвольного числа событий:

P(ABC…KL) = Р(А)· РА(В)· РАВ(С) … РАВС…К(L),

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других; при этом условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример 1. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков — конусный, а второй — эллиптический.

Р е ш е н и е. Вероятность того, что первый валик окажется конусным (событие A), Р(А) = 3 / 10. Вероятность того, что второй валик окажется эллиптическим (событие В), вычисленная в предположении, что первый валик — конусный, т. е. условная вероятность РA(В) = 7 / 9.

По теореме умножения, искомая вероятность Р(АВ) = Р(А)•РA(В) = (3/10)• (7/9) = 7/30. Заметим, что, сохранив обозначения, легко найдем: Р(В) = 7/10, РB(А) = 3/9, Р(В)•РB(А) = 7/30, что наглядно иллюстрирует справедливость равенства.

studfiles.net

Как определить зависимость/независимость событий?



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса — ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший «Салат из свеклы с чесноком»


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение: вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события: А1– 1-й стрелок попадёт в мишень;

А2 – 2-й стрелок попадёт в мишень.

По условию: Р(А1) = 0,8; Р(А2) = 0,6.

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:


= 1 — = 1 – 0,8 = 0,2;

= 1 — = 1 – 0,6 = 0,4;

 

а) Рассмотрим событие: В – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

 

На языке алгебры событий этот факт запишется следующей формулой: В = +

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

Р(В) =Р( + ) = + Р( ) + Р( ) = Р( ) × Р( ) +Р( ) × Р( ) =

= 0,8 × 0,4 + 0,2 × 0,6 = 0,32 + 0,12 = 0,44 – вероятность того, что будет только одно попадание.

 

б) Рассмотрим событие: С – хотя бы один из стрелков попадёт в мишень.

 

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый: учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие В, состоящее в свою очередь из 2-х несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой D.

Таким образом: C = B + D.

По теореме умножения вероятностей независимых событий:

P (D) = P(А1 А2) = P(А1) × P(А2) = 0,8 × 0,6 = 0,48 – вероятность того, что 1-й стрелок попадёт и 2-ой стрелок попадёт.

По теореме сложения вероятностей несовместных событий:

Р(C) = Р(B + D) = Р( B) + Р( D) = 0,44 + 0,48 = 0,92. – вероятность хотя бы одного попадания по мишени.

Способ второй: рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

Р( ) = Р ( ) = Р ( ) × Р ( ) = 0,2 × 0,4 = 0,08.

В результате: Р(С) = 1 – Р( ) = 1 – 0,08 = 0,92.

 

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на теореме, которая будет рассмотрена на следующем уроке: теореме сложения совместных событий.

!Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий: события А1 и А2 совместны, а значит, их сумма А1 + А2 выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Р(А1 + А2) = Р(А1) + Р( А2) Р(А1× А2) = Р(А1) + Р( А2) Р(А1) × Р(А2) =

= 0,8 + 0,6 – 0,8 × 0,6 = 1,4 – 0,48 = 0,92

Выполним проверку: события , В и D (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:

Р( ) + Р(В) + Р(D) = 0,08 + 0,44 + 0,48 = 1, что и требовалось проверить.

Ответ: а) вероятность того, что только один стрелок попадёт в мишень, равна 0,44,

б) вероятность того, что хотя бы один из стрелков попадёт в мишень, равна 0,92

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается.

Похожие задачи:

Задача 6 для самостоятельного решения

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу, найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения).

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же!

Задача 7

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение: обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3-х выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ: 0,7

Просто и изящно.

 

Решения и ответы:

Задача 2: В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?

Решение:всего: 10 + 6 = 16 пуговиц в коробке.
способами можно извлечь 2 пуговицы из коробки;
способами можно извлечь 2 красные пуговицы;
способами можно извлечь 2 синие пуговицы.
По классическому определению:
– вероятность того, что из коробки будут извлечены две красные пуговицы;
– вероятность того, что из коробки будут извлечены две синие пуговицы.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что из коробки будут извлечены две одноцветные пуговицы.
Ответ: 0,5

Задача 4: В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Решение: рассмотрим события: – из 1-й, 2-й и 3-й урны соответственно будет извлечён белый шар. По классическому определению вероятности:

Тогда вероятности извлечения чёрного шара из соответствующих урн равны:

а) Рассмотрим событие: – из каждой урны будет извлечено по 1-му белому шару.
Данное событие выражается в виде произведения (из 1-й урны будет извлечён БШ и из 2-ой урны будет извлечён БШ и из 3-й урны будет извлечён БШ).
По теореме умножения вероятностей независимых событий:

б) Рассмотрим событие – из каждой урны будет извлечено по 1-му чёрному шару.
По теореме умножения вероятностей независимых событий:

Рассмотрим событие – все три шара будут одного цвета. Данное событие состоит в двух несовместных исходах: (будут извлечены 3 белых или 3 чёрных шара)
По теореме сложения вероятностей несовместных событий:

Ответ:

Задача 6: Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

Решение:рассмотрим следующие события:
– при возгорании сработает 1-й датчик;
– при возгорании сработает 2-й датчик.
По условию:
Вычислим вероятности противоположных событий:

а) Рассмотрим событие: – при пожаре оба датчика откажут.
По теореме умножения вероятностей независимых событий:

б) Рассмотрим событие: – при пожаре оба датчика сработают.
По теореме умножения вероятностей независимых событий:

в) Рассмотрим событие: – при пожаре сработает только один датчик.
События образуют полную группу, следовательно:

Проверим результат с помощью прямого вычисления. Событие состоит в 2-х несовместных исходах: 1-й датчик сработает и 2-й откажет или 1-ый откажет и 2-й сработает. Таким образом: .
По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

Ответ:

Следующий урок


megapredmet.ru

04. Зависимость событий. Теорема умножения вероятностей (вывод)

  1. Зависимость событий. Теорема умножения вероятностей (вывод).

Событие А называется независимым от события В, если вероятность события А не зависит от того, произошло событие В или нет.

Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Пример: Опыт состоит в бросании двух монет, выпадает решка или орел. Эти два события независимы друг от друга.

Пример: В урне два белых шара и один черный, два лица вынимают из урны по одному шару, рассматриваются события:

А – появление белого шара у 1-ого лица

В – появление белого шара у 2-ого лица

Вероятность события А до того, как известно что-либо о событии В, равна 2/3. Если стало известно, что событие В произошло, то вероятность события А становится равной ½, из чего заключаем, что событие А зависит от события В.

Вероятность события А, вычисленная при условии, что имело место другое событие В, называется условной вероятностью события А и обозначается

Р(А/В)

Для условий последнего примера

Р(А)=2/3

Р(А/В)=1/2

Условие независимости события А от события В можно записать в виде:

Р(А/В)=Р(А)

А условие зависимости – в виде:

Р(А/В)≠Р(А)

Важное замечание: Если выполняется условие

Р(А)Р(В)=Р(АВ), то А и В – независимы.(критерий проверки независимости событий)

Теорема умножения вероятностей формулируется следующим образом:

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место :

Р(АВ)=Р(А)Р(В/А) (2)

Докажем теорему умножения для схемы случаев. Пусть возможные исходы опыта сводятся к n случаям, которые мы для наглядности изобразим в виде n точек:

Предположим, что событию А благоприятны m случаев, а событию В благоприятны k случаев. Так как мы не предполагали события А и В несовместными, то вообще существуют случаи, благоприятные и событию А, и событию В одновременно. Пусть таких случаев l. Тогда

Р(АВ)=l/m; Р(А)=m/n

Вычислим Р(В/А), т. Е условную вероятность события В в предположении, что А имело место. Если известно, что событие А произошло, то из ранее возможных n случаев остаются возможными только те m, которые благоприятствовали событию А. Из них l случаев благоприятны событию В. Следовательно

Р(В/А)=l/m

Подставляя выражения Р(АВ), Р(А), Р(В/А) в формулу (2) получим тождество. Что и требовалось доказать.

С л е д с т в и е 1. Если событие А не зависит от события В, то и В не зависит от события А.

С л е д с т в и е 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий.

studfiles.net

Зависимые и независимые события. Условная вероятность события.

Поиск Лекций

Событие A называется независимым от события B, если возможность наступления события A не зависит от того, произошло событие B или нет.

В противном случае события являются зависимыми. Условной вероятностью события B при наличии A называется величина

(2.8)

(при этом полагается, что P(A) не равно 0).

Условную вероятность события P(B/A) можно трактовать как вероятность события B, вычисленная при условии, что событие A произошло.

Заметим, что если имеется несколько событий A1, A2, …, An, то их попарная независимость (т.е. независимость любых двух событий Ai и Aj, i≠j) еще не означает их независимости в совокупности.

Необходимое и достаточное условие

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны.

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.

 

 

8)9Формула полной вероятности.

Формула полной вероятностиявляется следствием основных правил теории вероятностей: теорем сложения и умножения вероятностей.

Допустим, что проводится некоторый опыт, об условиях которого можно сделать n исключающих друг друга предположений (гипотез):

{ H1, H2, ¼, Hn}, HiÇ Hj=Æ при i¹j. (3.1)

Каждая гипотеза осуществляется случайным образом и представляет собой некоторыесобытия, вероятности которых известны:

. (3.2)

Рассматривается некоторое событие A, которое может появиться только совместно с одной из гипотез (3.2). Заданы условные вероятности события A при каждой из гипотез:

(3.3)

Требуется найти вероятность события A. Для этого представим событие A как сумму n несовместных событий

A = (AÇH1)È(AÇH2) È… È(AÇHn). (3.4)

По правилу сложения вероятностей .

По правилу умножения вероятностей P(HiÇA)=P(Hi)×P(A/Hi). Тогда полная вероятность события A:

, (3.5)

т.е. полная вероятность события A вычисляется как сумма произведений вероятности каждой гипотезы на условную вероятность события при этой гипотезе.

Формула (3.5) называется формулой полной вероятности. Она применяется в тех случая, когда опыт со случайным исходом распадается на два этапа: на первом “разыгрываются” условия опыта, а на втором – его результаты.

 

9) 10Формула Байеса.

Следствием правила умножения, и формулы полной вероятности является теорема гипотез или формула Байеса.

По условиям опыта известно, что гипотезы несовместны, образуют полную группу событий:

Ø при и .

Вероятности гипотез до опыта (так называемые «априорные вероятности») известны и равны

;

Предположим, что опыт произведен и в результате появилось событие A. Спрашивается, как нужно пересмотреть вероятность гипотез с учетом этого факта, или, другими словами, какова вероятность того, что наступлению события A предшествовала гипотеза (послеопытные вероятности называются апостериорными):

.

Вероятность наступления события A совместно с гипотезой Hk определяется с использованием теоремы умножения вероятностей:

P(AÇHk)=P(Hk)×P(A/Hk)=P(A)×P(Hk/A). (3.6)

Таким образом, можно записать:

P (Hk/A) =P (Hk) ×P (A/Hk)/P (A). (3.7)

С использованием формулы полной вероятности

. (3.8)

Формула (3.8) называется формулой Байеса. Она позволяет пересчитывать вероятности гипотез в свете новой информации, состоящей в том, что опыт дал результат А

 

Схема Бернулли)

Под схемой Бернулли понимают конечную серию повторных независимых испытаний с двумя исходами. Вероятность появления (удачи) одного исхода при одном испытании обозначают , а непоявления (неудачи) его . Я. Бернулли установил, что вероятность ровно успехов в серии из повторных независимых испытаний вычисляется по следующей формуле:

 

То значение , при котором число является максимальным из множества { }, называется наивероятнейшим, и оно удовлетворяет условию

np — q m np+ p,

Формулу Бернулли можно обобщить на случай, когда при каждом испытании происходит одно и только одно из событий с вероятностью ( . Вероятность появления раз первого события и — второго и -го находится по формуле

 

При достаточно большой серии испытаний формула Бернулли становится трудно применимой, и в этих случаях используют приближенные формулы. Одну из них можно получить из предельной теоремы Пуассона:

 

Таблица значений функции имеется в приложении 3.

 

Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

Зависимые и независимые случайные события.

Поиск Лекций

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события Bи обозначается P{A|B}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости — в виде P{B|A}≠P{B}.

Вероятность события в испытаниях Бернулли. Формула Пуассона.

Повторными независимыми испытаниями, испытаниями Бернулли или схемой Бернулли называются такие испытания, если при каждом испытании имеются только два исхода — появление события А или и вероятность этих событий остается неизменной для всех испытаний. Эта простая схема случайных испытаний имеет большое значение в теории вероятностей.

Наиболее известным примером испытаний Бернулли является опыт с последовательным бросанием правильной ( симметричной и однородной ) монеты, где событием А является выпадение, например, «герба», («решки»).

Пусть в некотором опыте вероятность события А равна P(А)=р, тогда , где р+q=1. Выполним опыт n раз, предположив, что отдельные испытания независимы, а значит исход любых из них не связан с исходами предыдущих (или последующих) испытаний. Найдем вероятность появления событий А точно k раз, скажем только в первых k испытаниях. Пусть — событие, заключающееся в том, что при n испытаниях событие А появиться точно k раз в первых испытаниях. Событие можно представить в виде

Поскольку опыты мы предположили независимыми, то

41)[стр2] Если ставить вопрос о появлении события А k-раз в n испытаниях в произвольном порядке, то событие представимо в виде

Число различных слагаемых в правой части этого равенства равно числу испытаний из n по k , поэтому вероятность событий , которую будем обозначать , равна

 

Последовательность событий образует полную группу независимых событий . Действительно, из независимости событий получаем

Распределение Пуассона

Говорят, что случайная величина Х имеет распределение Пуассона, если её возможные значения: 0,1,2,…m (бесконечное, но счетное множество значений), а соответствующие вероятности выражаются формулой: (2)

Распределение Пуассона (2) зависит от одного параметра а, который является одновременно математическим ожиданием и дисперсией свободной величины Х : ; ; .


Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

Зависимые и независимые события



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса — ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший «Салат из свеклы с чесноком»


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Начнём с независимых событий. События являются независимыми, если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях).

Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий А и В равна произведению вероятностей этих событий: Р(АВ) = Р(А) × Р(В)

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– в результате броска на 1-й монете выпадет орёл;
– в результате броска на 2-й монете выпадет орёл.

Найдём вероятность события А1А2 (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий!). Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события А1 и А2 независимы. По теореме умножения вероятностей независимых событий:

Р(А1А2) = Р(А1) × Р(А2) = × =
Аналогично:

= × = × = – вероятность того, что на 1-й монете выпадет решка и на 2-й решка;

= × = × = – вероятность того, что на 1-й монете появится орёл и на 2-ой решка;

= × = × = – вероятность того, что на 1-й монете появится решка и на 2-ой орёл.


Заметьте, что события , , , образуют полную группу и сумма их вероятностей равна единице: + + + = = 1

Теорема умножения очевидным образом распространяется и на большее количество независимых событий, так, например, если события А, В, С независимы, то вероятность их совместного наступления равна: Р(АВС ) = Р(А) × Р(В)×Р(С).

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение: вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

S1 – из 1-го ящика извлечена стандартная деталь;

S2 – из 2-го ящика извлечена стандартная деталь;

S3 – из 3-го ящика извлечена стандартная деталь.

По классическому определению: Р(S1) = = 0,8; Р(S2) = = 0,7; Р(S3) = = 0,9; – соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением S1S2 S3 .

По теореме умножения вероятностей независимых событий:

Р(S1S2 S3) = Р(S1) × Р(S2) × Р(S3) = 0,8 × 0,7 × 0,9 = 0,504 – вероятность того, что из 3-х ящиков будет извлечено по одной стандартной детали.

Ответ: вероятность того, что все детали окажутся стандартными, равна 0,504

Задача 4(для самостоятельного решения)

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ». Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий дан в конце урока.

Зависимые события. Событие Х называют зависимым, если его вероятность Р(Х) зависит от одного или большего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно дойти до ближайшего магазина:

Х – завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным Р(Х) = 1, так и невозможным Р(Х) = 0. Таким образом, событие Х является зависимым.

Другой пример, В – на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие В будет зависимым, поскольку его вероятность Р(В) будет зависеть от того, какие билеты уже вытянули однокурсники.


megapredmet.ru

Добавить комментарий

Ваш адрес email не будет опубликован.