⌒ — Дуга (U+2312) — Таблица символов Юникода®
Начертание символа «Дуга» в разных шрифтах
⌒Ваш браузер
Описание символа
Дуга. Разнообразные технические символы.
Связанные символы
Кодировка
Кодировка | hex | dec (bytes) | dec | binary |
---|---|---|---|---|
UTF-8 | E2 8C 92 | 226 140 146 | 14847122 | 11100010 10001100 10010010 |
UTF-16BE | 23 12 | 35 18 | 8978 | 00100011 00010010 |
UTF-16LE | 12 23 | 18 35 | 4643 | 00010010 00100011 |
UTF-32BE | 00 00 23 12 | 0 0 35 18 | 8978 | 00000000 00000000 00100011 00010010 |
UTF-32LE | 12 23 00 00 | 18 35 0 0 | 304283648 | 00010010 00100011 00000000 00000000 |
unicode-table.com
Дуга (геометрия) — это… Что такое Дуга (геометрия)?
- Дуга (геометрия)
Дуга — связное подмножество окружности.
Свойства
*Длина дуги L радиуса R с центральным углом alpha, измеренным в радианах, вычисляется по формуле: L=Ralpha
Wikimedia Foundation. 2010.
- WASD
- Улица Воздвиженка
Смотреть что такое «Дуга (геометрия)» в других словарях:
Дуга — Дуга: В математике Дуга (геометрия) участок кривой между двумя её точками. Дуга окружности кривая линия, лежащая на окружности и ограниченная двумя точками. Дуга (теория графов) Другое Дуга (география) Дуга (анатомия) Дуга (физика) Дуга… … Википедия
Геометрия — (γήμετρώ земля, μετρώ мерю). Понятия о пространстве, положении и форме принадлежат к числу первоначальных, с которыми человек был знаком уже в глубокой древности. Первые шаги в Г. были сделаны египтянами и халдеями. В Греции Г. была введена… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
АФФИННАЯ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, изучающий дифференциально геометрич. свойства кривых и поверхностей, сохраняющиеся при преобразованиях аффинной группы или ее подгрупп. Наиболее полно изучена дифференциальная геометрия эквиаффинного пространства. В эквиаффинной … Математическая энциклопедия
РИМАНОВА ГЕОМЕТРИЯ — теория риманова пространства. Р и м а н о в ы м п р о с т р а н с т в о м наз. n мерное связное дифференцируемое многообразие М п, на к ром задано дифференцируемое поле ковариантного, симметрического и положительно определенного тензора gранга 2 … Математическая энциклопедия
Сферическая геометрия — математическая дисциплина, изучающая геометрические образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрические образы, находящиеся на плоскости. Всякая плоскость, пересекающая сферу, даёт в сечении… … Большая советская энциклопедия
Хорда (геометрия) — У этого термина существуют и другие значения, см. Хорда. 1 секущая, 2 хорда … Википедия
СФЕРИЧЕСКАЯ ГЕОМЕТРИЯ — математич. дисциплина, изучающая геометрич. образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрич. образы, находящиеся на плоскости. Всякая плоскость, пересекающая сферу, дает в сечении нек рую окружность; если секущая… … Математическая энциклопедия
ГЕОДЕЗИЧЕСКАЯ ЛИНИЯ — геодезиче ская, геометрическое понятие, обобщающее понятие прямой (или отрезка прямой) евклидовой геометрии на случай пространств более общего вида. Определения Г. л. в различных пространствах зависят от того, какая из структур (метрика, линейный … Математическая энциклопедия
Декарт Рене — (Descartes) (латинизир. Картезий; Cartesius) (1596 1650), французский философ, математик, физик и физиолог. С 1629 в Нидерландах. Заложил основы аналитической геометрии, дал понятия переменной величины и функции, ввёл многие алгебраические… … Энциклопедический словарь
Жорданова кривая — Кривая или линия геометрическое понятие, определяемое в разных разделах геометрии различно. Содержание 1 Элементарная геометрия 2 Параметрические определения 3 Кривая Жордана … Википедия
dic.academic.ru
Дуга окружности. Полуокружность определение. Длина дуги окружности. Угол и дуга окружности
Дуга окружности
Что такое дуга окружности?
Дуга
Дугу окружности принято обозначать тремя точками: две точки – это концы дуги и одна произвольная промежуточная точка. Пример дуги:
На картинке представлены две дуги: ACB и ADB.
Полуокружность определение
Полуокружность определение:
Полуокружностью называют дугу окружности, если отрезок, соединяющий её концы, в нашем случае AB, есть диаметр окружности.
На картинке ACB – полуокружность:
Градусная мера дуги окружности
Рассмотрим три случая.
Первый случай
Градусной мерой дуги ACB является градусная мера центрального угла AOB:
Второй случай
Градусной мерой дуги BED является градусная мера центрального угла BOD (на рисунке выше), в данном случае это 1800, т.е. развернутый угол.
Третий случай
Градусной мерой большей дуги окружности ACB рассчитывается по формуле: 360 градусов минус величина угла AOB. Пример: пусть угол AOB = 900, тогда градусная мера дуги ACB равна 3600 — 900 = 2700.
А чему равна сумма градусных мер дуг ADB и ACB?
Градусная мера дуги ADB равна 900 по условию.
Сумма градусных мер дуг ADB и ACB равна 900 + 2700 = 3600.
Это и понятно, ведь эти две дуги охватывают всю окружность, а окружности соответсвуют 3600.
www.sbp-program.ru