Понятие степень в математике: Таблица степеней 🆕

Содержание

определения, обозначение, примеры, степень с отрицательным показателем

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так: an, а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до 84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8+8+8+8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n».  Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем прочесть «8 в 12-й степени», «8 в степени 12» или «12-я степень 8-ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7(72), то мы можем сказать «7 в квадрате» или «квадрат числа 7». Аналогично третья степень читается так: 53 – это «куб числа 5» или «5 в кубе».  (156). Но мы будем использовать обозначение anкак более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n-ное число раз.  Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

Что такое степени с целым показателем

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство am:an=am−n будет верно при условиях: m и n – натуральные числа, m <n, a≠0.

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: an:an=an−n=a0

Но при этом an:an=1 — частное равных чисел an и a. Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: am·an=am+n .      

Если n у нас равен 0, то am·a0=am (такое равенство также доказывает нам, что a0=1). Но если а также равно нулю, наше равенство приобретает вид 0m·00=0m, Оно будет верным при любом натуральном значении n, и неважно при этом, чему именно равно значение степени 00, то есть оно может быть равно любому числу, и на верность равенства это не повлияет.

Следовательно, запись вида 00 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a0=1 сходится со свойством степени (am)n=am·n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.     

Пример 2

Разберем пример с конкретными числами: Так, 50  — единица, (33,3)0=1, -4590=1, а значение 00не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: am·an=am+n.

Введем условие: m=−n, тогда a не должно быть равно нулю. Из этого следует, что a−n·an=a−n+n=a0=1. Выходит, что an и 

a−n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь   1an.

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1an. Таким образом, a-n=1an при условии a≠0  и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3-2=132, (-4.2)-5=1(-4.2)5, 1137-1=111371

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z​​ – это: az=az, eсли z-целое положительное число1,  z=0 и a≠0,    (при z=0 и a=0 получается 00,     значения выражения 00 не определяется) 1az,  если z — целое отрицательное число и a≠0        (если z — целое отрицательное число и a=0         получается 0z, его значение не определяется)   

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m/n, где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем amn.  Для того, чтобы свойство степени в степени выполнялось, равенство amnn=amn·n=am должно быть верным.

Учитывая определение корня n-ной степени и что amnn=am, мы можем принять условие amn=amn, если amn имеет смысл при данных значениях m, n и a.

Приведенные выше свойства степени с целым показателем будут верными при условии amn=amn.

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m/n – это корень n-ой степени из числа a в степени m. Это справедливо в том случае, если при данных значениях m, n и a выражение amn сохраняет смысл.

Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.

1. Мы можем ограничить значение основания степени: возьмем a, которое при положительных значениях m будет больше или равно 0, а для отрицательных – строго меньше (поскольку при m≤0 мы получаем

0m, а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m/n для некоторого положительного числа a есть корень n-ной степени из a, возведенного в степень m. В виде формулы это можно изобразить так:

amn=amn

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m/n можно выразить как

0mn=0mn=0 при условии целого положительного m и натурального n.

При отрицательном отношении mn<0 степень не определяется, т. е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение  amn иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m. Так, верны записи (-5)23, (-1,2)57, -12-84, в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень  amn с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a, в показателе которой стоит сократимая обыкновенная дробь, считается степенью a, в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись am·kn·k, то мы можем свести ее к amn и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то  amn имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m·kn·k степень можно заменить на  amn.

Степень числа a с несократимым дробным показателем m/n – можно выразить в виде amn в следующих случаях: — для любых действительных a, целых положительных значений m и нечетных натуральных значений n. Пример: 253=253, (-5,1)27=(-5,1)-27, 0519=0519.

— для любых отличных от нуля действительных a, целых отрицательных значений m и нечетных значений n, например, 2-53=2-53, (-5,1)-27=(-5,1)-27

— для любых неотрицательных a, целых положительных значений m и четных n, например, 214=214, (5,1)32=(5,1)3, 0718=0718.

— для любых положительных a, целых отрицательных m и четных n, например, 2-14=2-14, (5,1)-32=(5,1)-3, .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: -2116, -21232, 0-25.

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6/10=3/5. Тогда должно быть верным (-1)610=-135, но -1610=(-1)610=110=11010=1, а (-1)35=(-1)35=-15=-155=-1.

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m/n определяется как 0mn=0mn=0. В случае отрицательных a запись amn не имеет смысла. Степень нуля для положительных дробных показателей m/n определяется как 0mn=0mn=0, для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 51,7, 325-237.

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

 51,7=51710=5710325-237=325-177=325-177   

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a0, a1, a2, …. Например, возьмем значение a=1,67175331…,тогда

a0=1,6, a1=1,67, a2=1,671, …,a0=1,67, a1=1,6717, a2=1,671753, …

 и так далее (при этом сами приближения являются рациональными числами).

Последовательности приближений мы можем поставить в соответствие последовательность степеней aa0, aa1, aa2, . … Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a=3,  тогда aa0=31,67, aa1=31,6717, aa2=31,671753, … и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем  a. В итоге : степень с иррациональным показателем вида 31,67175331.. можно свести к числу 6,27.

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как aa. Его значение – это предел последовательности aa0, aa1, aa2, …, где a0, a1, a2, … являются последовательными десятичными приближениями иррационального числа a. Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0a=0 Так, 06=0,02133=0. А для отрицательных этого сделать нельзя, поскольку, например, значение 0-5, 0-2π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 12, 15в2 и 1-5 будут равны 1.

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

Степень с натуральным показателем

Используй поиск, чтобы найти научные материалы и собрать список литературы

База статей справочника включает в себя статьи написанные экспертами Автор24, статьи из научных журналов и примеры студенческих работ из различных вузов страны

Содержание статьи

1. Определение степени с натуральным показателем

2. Свойства степени с натуральным показателем

3. Примеры задач на использование свойств степени с натуральным показателем

Определение степени с натуральным показателем

Определение

Степенью действительного числа $a$ с натуральным показателем $n$ называется число, равное произведению $n$ множителей, каждый из которых равняется числу $a$.

$a$ — основание степени. 2\]

Сообщество экспертов Автор24

Автор этой статьи Дата последнего обновления статьи: 03.02.2022

Выполнение любых типов работ по математике

Решение задач по комбинаторике на заказ Решение задачи Коши онлайн Математика для заочников Контрольная работа на тему числовые неравенства и их свойства Контрольная работа на тему умножение и деление рациональных чисел Контрольная работа на тему действия с рациональными числами Дипломная работа на тему числа Курсовая работа на тему дифференциальные уравнения Контрольная работа на тему приближенные вычисления Решение задач с инвариантами

Подбор готовых материалов по теме

Дипломные работы Курсовые работы Выпускные квалификационные работы Рефераты Сочинения Доклады Эссе Отчеты по практике Решения задач Контрольные работы

История возникновения степени числа

История возникновения степени числа

История возникновения степени числа

Сложение, вычитание, умножение и деление идут первыми в списке арифметических действий. У математиков не сразу сложилось представление о возведении в степень как о самостоятельной операции, хотя в самых древних математических текстах Древнего Египта и Междуречья встречаются задачи на вычисление степеней.

В своей знаменитой «Арифметике» Диофант Александрийский описывает первые натуральные степени чисел так:

«Все числа… состоят из некоторого количества единиц; ясно, что они продолжаются, увеличиваясь до бесконечности. …среди них находятся: квадраты, получающиеся от умножения некоторого числа самого на себя; это же число называется стороной квадрата, затем кубы, получающиеся от умножения квадратов на их сторону, далее квадрато-квадраты — от умножения квадратов самих на себя, далее квадрато-кубы, получающиеся от умножения квадрата на куб его стороны, далее кубо-кубы — от умножения кубов самих на себя».

Немецкие математики Средневековья стремились ввести единое обозначение и сократить число символов. Книга Михеля Штифеля «Полная арифметика» (1544 г. ) сыграла в этом значительную роль.

«Сумма знаний…» Луки Пачоли была одним из первых опубликованных сочинений. Но математики продолжали искать более простую систему обозначений так как его обозначения были не удобны.

Француз, бакалавр медицины Никола Шюке (? — около 1500 г.) смело ввёл в свою символику не только нулевой, но и отрицательный показатель степени. Он писал его мелким шрифтом сверху и справа от коэффициента.

В XVI в. итальянец Раффаэле Бомбелли в своей «Алгебре» использовал ту же идею. Он обозначал неизвестное специальным символом 1, а символами 2, 3,… — его степени. Обозначения Бомбелли также оказали влияние и на символику нидерландского математика Симона Стевина (1548—1620). Он обозначал неизвестную величину кружком О, внутри которого указывал показатели степени. Стевин предложил называть степени по их показателям — четвёртой, пятой и т. Д. и отверг Диофантовы составные выражения «квадрато-квадрат», «квадрато-куб».

У Рене Декарта в его «Геометрии» (1637) мы находим современное обозначение степеней а23,. .. Любопытно, что Декарт считал, что а*а не занимает больше места, чем а2 и не пользовался этим обозначением при записи произведения двух одинаковых множителей. Немецкий ученый Лейбниц считал, что упор должен быть сделан на необходимости применения символики для всех записей произведений одинаковых множителей и применял знак а2.

Степень с натуральным показателем.


Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

an =

В выражении an :

— число а (повторяющийся множитель) называют основанием степени

— число n (показывающее сколько раз повторяется множитель) – показателем степени

Например:
25 = 2·2·2·2·2 = 32,
здесь:
2 – основание степени,
5 – показатель степени,
32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108

Каждое число больше 10 можно записать в виде: а · 10n , где 1 ≤ a

Например: 4578 = 4,578 · 103 ;

103000 = 1,03 · 105.

Свойства степени с натуральным показателем:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

a m · a n = a m + n

например: 71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 = 70.8

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

a m / a n = a m — n ,

где, m > n,
a ≠ 0

например: 133. 8 / 13 -0.2 = 13(3.8 -0.2) = 133.6

1. Макеева Климанова «Русский язык»
Ванюшкина, Юдовская, Баранов – «История Нового времени1800-1900. Всеобщая история»
«Свойства степени с целым показателем»

Действительные числа. Квадратный корень из числа
Модуль (абсолютная величина) числа. Сравнениерациональных чисел. Арифметические действия с рациональными числами. Степень с целым…
Тест алгебра. Степени. Многочлены. Алгебраические дроби
Задание Верная запись произведения 7*7*7*7*х*х*х*х в виде степени указана под цифрой…
Конспект урока по алгебре в 7 классе по теме «Свойства степени с натуральным показателем»
Сформировать умение применять свойства степени с натуральными показателями при решении задач
Задача «Квадратура круга» с. 14 Из истории вычислений числа π с.
На уроках математики и физики мы часто используем число «пи» для конкретных вычислений. А что это за число, откуда оно появилось…
Рациональные и иррациональные числа
Вспомним какие числа мы знаем натуральные, целые, рациональные, иррациональные.(опред, примеры)
Урок по теме: «Свойства степени с натуральным показателем»
Обобщить и систематизировать знания обучающихся о свойствах степени с натуральным показателем
1. История развития средств вычислительной техники

«Свойства степени с рациональным показателем»
Цель урока: Повторить определение степени с рациональным показателем и свойства

Степень числа: понятие, примеры, квадрат и куб числа

Содержание

    На этом уроке мы изучим, что такое «степень числа», как правильно записать число в степени, как решать задачи с числами в степени, а также что такое квадрат и куб числа. {4}$$[[input-1]]»,»widgets»:{«input-1»:{«type»:»input»,»answer»:»27″}},»hints»:[«Сначала посчитай действия в скобках.»,»Затем вычисли степени чисел.»,»Дальше выполни действия второй ступени.»,»Потом посчитай действия первой ступени и запиши ответ.»]}]}

    Босов Андрей Витальевич — Что такое степень числа?

    Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

    Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

    Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

    Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 46 и произносят «четыре в шестой степени».

    4 · 4 · 4 · 4 · 4 · 4 = 46

     

    Выражение 46 называют степенью числа, где:

    • 4основание степени;
    • 6показатель степени.

    В общем виде степень с основанием «a» и показателем «n» записывается с помощью выражения:

    Запомните!

    Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».

     

    Запись «an» читается так: «а в степени n» или «n-ая степень числа a».

    Исключение составляют записи:

    • a2 — её можно произносить как «а в квадрате»;
    • a3 — её можно произносить как «а в кубе».

    Конечно, выражения выше можно читать и по определению степени:

    • a2 — «а во второй степени»;
    • a3 — «а в третьей степени».

    Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0).

    Запомните!

    Степенью числа «а» с показателем n = 1 является само это число:
    a1 = a

    Любое число в нулевой степени равно единице.
    a0 = 1

    Ноль в любой натуральной степени равен нулю.
    0n = 0

    Единица в любой степени равна 1.
    1n = 1

    Выражение 00 (ноль в нулевой степени) считают лишённым смыслом.

    • (−32)0 = 1
    • 0253 = 0
    • 14 = 1

    При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

    Пример. Возвести в степень.

    53= 5 · 5 · 5 = 125
    2,52= 2,5 · 2,5 = 6,25

     

    Возведение в степень отрицательного числа

    Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

    Запомните!

    При возведении в степень положительного числа получается положительное число.

    При возведении нуля в натуральную степень получается ноль.

    При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

    Рассмотрим примеры возведения в степень отрицательных чисел.

    Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

    Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

    Запомните!

    Отрицательное число, возведённое в чётную степень, есть числоположительное.

    Отрицательное число, возведённое в нечётную степень, — числоотрицательное.

    Квадрат любого числа есть положительное число или нуль, то есть:

    a2 ≥ 0 при любом a.

    • 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
    • −5 · (−2)3 = −5 · (−8) = 40

    Обратите внимание!

    При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5)4 и −54 это разные выражения. Результаты возведения в степень данных выражений будут разные.

    Вычислить (−5)4 означает найти значение четвёртой степени отрицательного числа.

    (−5)4 = (−5) · (−5) · (−5) · (−5) = 625

    В то время как найти «−54» означает, что пример нужно решать в 2 действия:

    1. Возвести в четвёртую степень положительное число 5.
      54 = 5 · 5 · 5 · 5 = 625
    2. Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
      −54 = −625

    Пример. Вычислить: −62 − (−1)4

    −62 − (−1)4 = −37

     

    1. 62 = 6 · 6 = 36
    2. −62 = −36
    3. (−1)4 = (−1) · (−1) · (−1) · (−1) = 1
    4. −(−1)4 = −1
    5. −36 − 1 = −37

    Порядок действий в примерах со степенями

    Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

    Запомните!

    В выражениях со степенями, не содержащими скобки, сначала выполняютвовзведение в степень, затем умножение и деление, а в конце сложение и вычитание.

    Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

    Пример. Вычислить:

    Для облегчения решения примеров полезно знать и пользоваться таблицей степеней, которую вы можете бесплатно скачать на нашем сайте.

    Для проверки своих результатов вы можете воспользоваться на нашем сайте калькулятором «Возведение в степень онлайн».

    Онлайн урок: Степень числа. Квадрат и куб числа по предмету Математика 5 класс

    Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

    Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

    Таблица квадратов первых десяти натуральных чисел

    а

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    а2

    1

    4

    9

    16

    25

    36

    49

    64

    81

    100

    Таблица кубов первых десяти натуральных чисел

    а

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    а3

    1

    8

    27

    64

    125

    216

    343

    512

    729

    1000