0 123 в обыкновенную дробь: 1. представте каждую переодическую дробь в виде обыкновенной дроби: а) 0,(128); 0,(123); 0,(945); 0,(138) б)0,0(3);…

Превращение обыкновенных дробей в десятичные

Не только целые числа, но и дроби можно записывать с помощью позиционной десятичной системы счисления, только стоящие в разных разрядах цифры умножаются не на 1, 10, 100, 1000 и т. д., а на 1/10, 1/100, 1/1000 и т. д. Десятичные дроби, в отличие от обыкновенных, легче складывать и вычитать.

Десятичная дробь

Десятичная дробь — это записанная особым образом дробь со знаменаталем 10 или 100 или 1000, 10000 и т. д. Например, обыкновенную дробь 73/100 можно записать в виде десятичной 0,73 Другой пример 73/1000 = 0,073

Периодические дроби

Десятичная дробь называется периодической, если последовательность её цифр начиная с некоторого места периодически повторяется. Эта повторяющаяся часть называется период. При записи период берут в скобки. Например:

0,11111111111… = 0,(1)

0,7272727272… = 0,(72)

7,619539539539. .. = 7,61(953)

Чистая периодическая дробь

У чистой периодической дроби период начинается сразу после запятой:

0,112112112… = 0,(112)

53,112112112… = 53,(112)

Смешанная периодическая дробь

У смешанной периодической дроби между десятичной запятой и периодом есть цифры:

0,3112112112112… = 0,3(112)

5,1753753753753… = 5,1(753)

Обращение обыкновенных дробей в десятичные

Обыкновенная дробь обращается в конечную десятичную дробь, если в знаменателе стоит произведение пятёрок и двоек.

1/5 × 5 × 5 = 1/125 = 0,008

7/2 × 2 × 5 = 7/20 = 0,35

Если в знаменателе дроби стоит не произведение двоек и пятёрок, то десятичное представление дроби — это периодическая дробь. Например

1/7 = 0,1428571428571… = 0,(142857)

Как обратить чистую периодическую дробь в обыкновенную?

Чистая периодическая десятичная дробь равна обыкновенной, у которой в числителе стоит период, а в знаменателе столько девяток, сколько цифр в периоде. Например:

0,373737… = 37/99

Это правило доказано в отдельном уроке.

Как обратить смешанную периодическую дробь в обыкновенную?

Смешанную периодическую дробь можно представить в виде суммы конечной десятичной дроби и чистой периодической, делённой на степень десяти. Например:

7,35123123123123… = 7,35(123) = 7,35 + 0,(123)/100.

Чтобы преобразовать эту сумму в обыкновенную дробь — надо представить конечную десятичную дробь в виде обыкновенной, периодическую часть в виде обыкновенной дроби, делённой на степень десяти, и сложить две полученные дроби.

735/100 + 123/99900 = 734265/99900 + 123/99900 = 734388/99900 .

← Предыдущий урок

Оглавление

Следующий урок →

Числитель и знаменатель дроби, виды дробей

Числитель и знаменатель дроби. Виды дробей. Продолжаем рассматривать дроби. Сначала небольшая оговорка – мы, рассматривая дроби и соответствующие примеры с ними, пока будем работать только с числовым её представлением. Бывают ещё и дробные буквенные выражения (с числами и без них). Впрочем, все «принципы» и правила также распространяются и на них, но о таких выражениях поговорим в будущем отдельно. Рекомендую посетить эту страницу и изучать (вспоминать) тему дробей шаг за шагом.

Самое главное понять, запомнить и осознать, что ДРОБЬ – это ЧИСЛО!!! 

Обыкновенная дробь – это число вида:

Число расположенное «сверху» (в данном случае m) называется числителем, число расположенное снизу (число n) называется знаменателем. У тех, кто только коснулся темы частенько возникает путаница – что как называется.

Вот вам приёмчик, как навсегда запомнить – где числитель, а где знаменатель. Данный приём связан со словесно-образной ассоциацией. Представьте себе банку с мутной водой.  Известно, что по мере отстоя воды чистая вода остаётся сверху, а муть (грязь) оседает, запоминаем:

ЧИСССтая вода ВВЕРХУ   (ЧИСССлитель сверху)

ГряЗЗЗНННая вода ВНИЗУ    (ЗНННаменатель внизу)

Так что, как только возникнет необходимость вспомнить, где числитель, а где знаменатель, то сразу зрительно представили банку с отстоянной водой, в которой сверху ЧИСтая вода, а снизу гряЗНая вода. Есть и другие приёмы для запоминания, если они вам помогут, то хорошо. 

Примеры обыкновенных дробей:

Что означает горизонтальная черточка между числами? Это не что иное, как знак деления. Получается, что дробь можно рассматривать как бы как пример с действием делением. Просто записано это действие вот в таком виде. То есть, верхнее число (числитель) делится на нижнее (знаменатель):

Кроме того, есть ещё форма записи – дробь может записываться и так (через косую черту):

1/9,   5/8,   45/64,   25/9,   15/13,   45/64 и так далее…

Можем записать вышеуказанные нами дроби так:

Результат деления, как известно это число.

Уяснили – ДРОБЬ ЭТО ЧИСЛО!!!

Как вы уже заметили, у обыкновенной дроби числитель может быть меньше знаменателя, может быть больше знаменателя и может быть равен ему. Тут присутствует множество важных моментов, которые понятны интуитивно, без каких-либо теоретических изысков. Например:

1. Дроби 1 и 3 можно записать как 0,5 и 0,01. Забежим немного вперёд – это десятичные дроби, о них поговорим чуть ниже.

2. Дроби 4 и 6 в результате дают целое число 45:9=5, 11:1 = 11.

3. Дробь 5 в результате даёт единицу 155:155 = 1.

Какие выводы напрашиваются сами собой? Следующие:

1. Числитель при делении на знаменатель может дать конечное число. Может и не получится, разделите столбиком 7 на 13 или 17 на 11 — никак! Делить можно бесконечно, но об этом также поговорим чуть ниже. 

2. Дробь в результате может дать целое число. Следовательно и любое целое число мы можем представить в виде дроби, вернее бесконечного ряда дробей, посмотрите, все эти дроби равны 2:

Ещё! Любое целое число мы всегда можем записать в виде дроби – само это число в числителе, единица в знаменателе:

3. Единицу мы всегда можем представить в виде дроби с любым знаменателем:

*Указанные моменты крайне важны для работы с дробями при вычислениях и преобразованиях.

Виды дробей.

А теперь о теоретическом разделении обыкновенных дробей.  Их разделяют на правильные и неправильные.

Дробь у которой числитель меньше знаменателя называется правильной. Примеры:

Дробь у которой числитель больше знаменателя или равен ему называется неправильной. Примеры:

Смешанная дробь (смешанное число).

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дробной его части. Примеры:

Смешанную дробь всегда можно представить в виде неправильной дроби и наоборот.  Идём далее!

Десятичные дроби.

Выше мы их уже затронули, это примеры (1) и (3), теперь подробнее. Вот примеры десятичных дробей:  0,3   0,89    0,001    5,345.

Дробь, знаменатель которой есть степень числа 10, например 10, 100, 1000 и так далее, называется десятичной. Записать первые три указанные дроби в виде обыкновенных дробей несложно:

Четвёртая является смешанной дробью (смешанным числом):

Десятичная дробь имеет следующую форму записи — сначала целая часть, затем разделитель целой и дробной части точка или запятая и затем дробная часть, количество цифр дробной части строго определяется размерностью дробной части: если это десятые доли, дробная часть записывается одной цифрой; если тысячные — тремя; десятитысячные — четырьмя и т. д.

Данные дроби бывают конечными и бесконечными.

Примеры конечных десятичных дробей: 0,234;  0,87;  34,00005;   5,765.

Примеры бесконечных. Например число Пи это бесконечная десятичная дробь, ещё – 0,333333333333……    0,16666666666….  и прочие.  Также результат извлечения корня из чисел 3, 5, 7 и т.д. будет являться бесконечной дробью.

Дробная часть может быть цикличная (в ней присутствует цикл), два примера выше именно такие, ещё примеры:

0,123123123123……     цикл  123

0,781781781718……   цикл  781

0,0250102501….     цикл  02501

Записать их можно как 0,(123)   0,(781)   0,(02501).

Число Пи не является цикличной дробью как и, например, корень из трёх.

Ниже в примерах, будут звучать такие слова как «переворачиваем» дробь – это означает что  числитель и знаменатель меняем местами. На самом деле у такой дроби есть название – обратная дробь. Примеры взаимно-обратных дробей:

Небольшой итог! Дроби бывают:

Обыкновенные (правильные и неправильные).

Десятичные (конечные и бесконечные).

Смешанные (смешанные числа).

На этом всё!

С уважением, Александр.

*Делитесь информацией в социальных сетях.

Мэтуэй | Популярные задачи

92-4*-1+2
92
1 Найти том сфера (5)
2 Найти площадь круг (5)
3 Найдите площадь поверхности сфера (5)
4 Найти площадь круг (7)
5 Найти площадь круг (2)
6 Найти площадь круг (4)
7 Найти площадь круг (6)
8 Найти том сфера (4)
9 Найти площадь круг (3)
10 9(1/2)
11 Найти простую факторизацию 741
12 Найти том сфера (3)
13 Оценить 3 квадратный корень из 8*3 квадратный корень из 10
14 Найти площадь круг (10)
15 Найти площадь круг (8)
16 Найдите площадь поверхности сфера (6)
17 Найти простую факторизацию 1162
18 Найти площадь круг (1)
19 Найдите окружность круг (5)
20 Найти том сфера (2)
21 Найти том сфера (6)
22 Найдите площадь поверхности сфера (4)
23 Найти том сфера (7)
24 Оценить квадратный корень из -121
25 Найти простую факторизацию 513
26 Оценка квадратный корень из 3/16* квадратный корень из 3/9
27 Найти том коробка (2)(2)(2)
28 Найдите окружность круг (6)
29 Найдите окружность круг (3)
30 Найдите площадь поверхности сфера (2)
31 Оценить 2 1/2÷22000000
32 Найдите Том коробка (5)(5)(5)
33 Найти том коробка (10)(10)(10)
34 Найдите окружность круг (4)
35 Преобразование в проценты 1,7
36 Оценить (5/6)÷(4/1)
37 Оценить 3/5+3/5
38 Оценить ф(-2) 92
40 Найти площадь круг (12)
41 Найти том коробка (3)(3)(3)
42 Найти том коробка (4)(4)(4)
45 Найти простую факторизацию 228
46 Оценить 0+0
47 Найти площадь круг (9)
48 Найдите окружность круг (8)
49 Найдите окружность круг (7)
50 Найти том сфера (10)
51 Найдите площадь поверхности сфера (10)
52 Найдите площадь поверхности сфера (7)
53 Определить, является простым или составным 5
60 Преобразование в упрощенную дробь 2 1/4
61 Найдите площадь поверхности сфера (12)
62 Найти том сфера (1)
63 Найдите окружность круг (2)
64 Найти том коробка (12)(12)(12)
65 Добавить 2+2=
66 Найдите площадь поверхности коробка (3)(3)(3)
67 Оценить корень пятой степени из 6* корень шестой из 7
68 Оценить 7/40+17/50
69 Найти простую факторизацию
1617
70 Оценить 27-(квадратный корень из 89)/32
71 Оценить 9÷4
72 Оценка 92
74 Оценить 1-(1-15/16)
75 Преобразование в упрощенную дробь 8
76 Оценка 656-521 9-2
79 Оценить
4-(6)/-5
80 Оценить 3-3*6+2
81 Найдите площадь поверхности коробка (5)(5)(5)
82 Найдите площадь поверхности сфера (8)
83 Найти площадь круг (14)
84 Преобразование в десятичное число 5 ноября
85 9-2
88 Оценить 1/2*3*9
89 Оценить 4/4-17/-4
90 Оценить 11. 02+17.19
91 Оценить 3/5+3/10
92 Оценить 4/5*3/8
93 Оценить 6/(2(2+1))
94 Упростить квадратный корень из 144
95 Преобразование в упрощенную дробь 725%
96 Преобразование в упрощенную дробь 6 1/4
97 Оценить 7/10-2/5
98 Оценить 6÷3
99 Оценить 5+4
100 Оценить квадратный корень из 12- квадратный корень из 192

Как преобразовать $0,123\\left( {123{\text{repeating}}} \\right)$ в дробь?

Ответить

Проверено

215,4 тыс. + просмотров

Подсказка: Дано десятичное число. Нам нужно преобразовать число в дробную форму. Во-первых, мы умножим термин на количество нулей, эквивалентное количеству цифр после запятой. Затем вычтите данное число из вновь сформированного числа. Затем найдите простые множители числителя и знаменателя, чтобы упростить выражение. Затем, сократив общие члены, приведите дробь к ее наименьшей форме.

Полный пошаговый ответ:
Нам дан повторяющийся номер. Запишите число $0,123\left( {123{\text{repeating}}} \right)$ в математической форме.
Пусть число равно $n$
$n = 0.\overline {123} $ ……(1)
Здесь полоса над тремя цифрами показывает, что эти цифры повторяются.
Здесь число цифр после запятой равно трем. Таким образом, мы умножим обе части уравнения (1) на $1000$
$ \Rightarrow 1000n = 0.\overline {123} \times 1000$
Упрощая уравнение, получаем:
$ \Rightarrow 1000n = 123.\overline {123} $ ……(2)
Теперь вычтем уравнение (1) из уравнения (2).
$ \Rightarrow 1000n — n = 123.\overline {123} — 0.\overline {123} $
Теперь упростим уравнение, чтобы определить значение $n$
$ \Rightarrow n\left( {1000 — 1} \right) = \left( {123 + 0.\overline {123} } \right) — 0.\overline {123} $
$ \Стрелка вправо n\left( {999} \right) = 123 + {{0.\overline {123} }} — {{0.\overline {123} }}$
Теперь разделите обе части уравнения на $999$
$ \Rightarrow \dfrac{{n\left( {999} \right)}}{{999}} = \dfrac{{123}}{{999}} $
$ \Rightarrow n = \dfrac{{123}}{{999}}$
Теперь найдите простые множители числителя и знаменателя правой части уравнения.
$ \Rightarrow n = \dfrac{{3 \times 41}}{{3 \times 333}}$
Теперь, сократив общие члены, мы получим:
$ \Rightarrow n = \dfrac{{{3} \times 41}}{{{3} \times 333}}$
$ \Rightarrow n = \dfrac{{41}}{{333}}$

Окончательный ответ: Следовательно, число в виде дроби равно $\dfrac{{41}}{{333}}$

Примечание:
 В таких типах вопросов учащиеся в основном не понимают о том, как ее решить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *