2Пр формула: Площадь круга — Википедия – Длину окружности l можно вычислить по формуле l 2pr где r радиус окружности (в метрах). пользуясь этой формулой, найдите радиус окружности.

Содержание

Площадь круга — Википедия

Площадь круга с радиусом r равна πr2{\displaystyle \pi r^{2}}. Здесь символ π{\displaystyle \pi } (греческая буква «пи») обозначает отношение длины окружности к её диаметру: π≈3,14159265.{\displaystyle \pi \approx 3{,}14159265.}

  • {\displaystyle \pi \approx 3{,}14159265.}

    Сектор круга (закрашен зелёным)

  • {\displaystyle \pi \approx 3{,}14159265.}

    Сегмент круга (закрашен жёлтым)

Площадь сектора круга равна S=θr22{\displaystyle S={\frac {\theta r^{2}}{2}}}, где θ{\displaystyle \theta } — угловая величина дуги сектора в радианах[1].

Площадь сегмента круга равна S=12r2(θ−sin⁡θ){\displaystyle S={\frac {1}{2}}r^{2}(\theta -\sin \theta )}, где θ{\displaystyle \textstyle \theta } — угол в радианах[1]

Современные математики могут получить площадь круга с помощью методов интегрирования или вещественного анализа. Однако площадь круга изучалась ещё в Древней Греции. Гиппократ Хиосский (в своих попытках квадрирования гиппократовых луночек) первым сформулировал утверждение: площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение[2][3]. Однако они не установили значения коэффициента пропорциональности.

Античные математики также безуспешно пытались решить задачу «квадратуры круга», то есть построения с помощью циркуля и линейки квадрата, равновеликого по площади заданному кругу. Проблемой занимались крупнейшие античные учёные — Анаксагор, Антифон, Брисон Гераклейский, Архимед и другие; неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π{\displaystyle \pi }, которая была доказана в 1882 году Линдеманом[4].

Архимед в III веке до н. э. использовал методы евклидовой геометрии, чтобы показать в своей книге «Измерение круга[en]», что площадь круга равна площади прямоугольного треугольника, основание которого равно длине окружности, а высота равна радиусу окружности. В современных обозначениях, длина окружности равна 2πr{\displaystyle 2\pi r}, а площадь треугольника равна половине произведения основания на высоту, что даёт πr2.{\displaystyle \pi r^{2}.} Архимед уточнил значение числа π{\displaystyle \pi }:

31071<π<317{\displaystyle 3{\frac {10}{71}}<\pi <3{\frac {1}{7}}}

Для доказательства Архимед построил для круга вписанный и описанный 96-угольники и вычислил длины их сторон (см. ниже).

3{\frac {10}{71}}<\pi <3{\frac {1}{7}} Круг, развёрнутый в треугольник

Средневековые европейские математики использовали для обоснования формулы площади круга метод неделимых. Представим себе разворачивание концентричных кругов бесконечно малой толщины в отрезки, получим прямоугольный треугольник с высотой r и основанием 2πr{\displaystyle 2\pi r} (основание получается из внешней окружности круга). Вычисление площади треугольника даст площадь круга:

Площадь = 12⋅{\displaystyle {1 \over 2}\cdot } основание ⋅{\displaystyle \cdot } высота = 12⋅2πr⋅r<=πr2{\displaystyle {1 \over 2}\cdot 2\pi r\cdot r<=\pi r^{2}}.

Предельный переход[править | править код]

Площадь правильного многоугольника равна половине периметра, умноженного на апофему (высоту). При увеличении числа сторон многоугольник стремится к кругу, а апофема стремится к радиусу. Это даёт основание считать, что площадь круга равна произведению половины длины окружности на радиус[5], то есть π⋅r⋅r=πr2{\displaystyle \pi \cdot r\cdot r=\pi r^{2}}.

Доказательство Архимеда[править | править код]

Следуя Архимеду, сравним площадь круга с площадью прямоугольного треугольника, основание которого равно длине окружности, а высота равна радиусу. Если площадь круга не равна площади треугольника, она должна быть меньше или больше. Исключим оба варианта, что оставит только одну возможность — площади равны. Для доказательства будем использовать правильные многоугольники.

Не больше[править | править код]
{\displaystyle \pi \cdot r\cdot r=\pi r^{2}} Круг с вписанными квадратом и восьмиугольником. Показан зазор

Предположим, что площадь круга C больше площади треугольника T = 12cr. Пусть E означает превышение площади. Впишем[en] квадрат в окружность, чтобы все его четыре угла лежали на окружности. Между квадратом и окружностью четыре сегмента. Если общая их площадь G4 больше E, делим каждую дугу пополам, что превращает вписанный квадрат в восьмиугольник и образует восемь сегментов с меньшим общим зазором, G8. Продолжаем деление, пока общий зазор Gn не станет меньше E. Теперь площадь вписанного многоугольника Pn = C − Gn должна быть больше площади треугольника.

E=C−T>GnPn=C−Gn>C−EPn>T{\displaystyle {\begin{aligned}E&{}=C-T\\&{}>G_{n}\\P_{n}&{}=C-G_{n}\\&{}>C-E\\P_{n}&{}>T\end{aligned}}}

Но это ведёт к противоречию. Для доказательства проведём высоту из центра окружности на середину стороны многоугольника, её длина h меньше радиуса окружности. Пусть каждая сторона многоугольника имеет длину

s, сумма всех сторон составит ns, и эта величина меньше длины окружности. Площадь многоугольника состоит из n равных треугольников высоты h с основанием s, что даёт 12nhs. Но h < r и ns < c, так что площадь многоугольника должна быть меньше площади треугольника 12cr, получили противоречие.

Не меньше[править | править код]
{\begin{aligned}E&{}=C-T\\&{}>G_{n}\\P_{n}&{}=C-G_{n}\\&{}>C-E\\P_{n}&{}>T\end{aligned}} Окружность с описанным квадратом и восьмиугольником. Показан зазор

Предположим, что площадь круга меньше площади треугольника. Пусть D означает разницу площадей. Описываем квадрат вокруг окружности, так что середины сторон лежат на ней. Если суммарный зазор между квадратом и окружностью G4 больше D, срезаем углы касательными, превращая квадрат в восьмиугольник и продолжаем такие отсечения пока площадь зазора не станет меньше

D. Площадь многоугольника Pn должна быть меньше T.

D=T−C>GnPn=C+Gn<C+DPn<T{\displaystyle {\begin{aligned}D&{}=T-C\\&{}>G_{n}\\P_{n}&{}=C+G_{n}\\&{}<C+D\\P_{n}&{}<T\end{aligned}}}

Это тоже приводит к противоречию. Каждый перпендикуляр, проведённый от центра круга к середине стороны, является радиусом, т.е. имеет длину r. А поскольку сумма сторон больше длины окружности, многоугольник из n одинаковых треугольников даст площадь, большую T. Снова получили противоречие.

Таким образом, площадь круга в точности равна площади треугольника.

Доказательство перегруппировкой[править | править код]

{\begin{aligned}D&{}=T-C\\&{}>G_{n}\\P_{n}&{}=C+G_{n}\\&{}<C+D\\P_{n}&{}<T\end{aligned}} Площадь круга после перегруппировки {\begin{aligned}D&{}=T-C\\&{}>G_{n}\\P_{n}&{}=C+G_{n}\\&{}<C+D\\P_{n}&{}<T\end{aligned}}
Анимация перегруппировки

Следуя Сато Мошуну [6] и Леонардо да Винчи [7], мы можем использовать вписанные правильные многоугольники другим способом. Положим, мы вписали шестиугольник. Разрежем шестиугольник на шесть треугольников, делая сечения через центр. Два противоположных треугольника содержат общие диаметры. Сдвинем теперь треугольники, чтобы радиальные стороны стали смежными. Теперь пара треугольников образует параллелограмм, в котором стороны шестиугольника образуют две противоположные стороны длиной s. Две радиальные стороны становятся боковыми сторонами, а высота параллелограмма равна h (как в доказательстве Архимеда). Фактически, мы можем собрать все треугольники в один большой параллелограмм, располагая в ряд полученные параллелограммы (из двух треугольников). То же самое будет верно, если мы будем увеличивать число сторон. Для многоугольника с 2n сторонами параллелограмм будет иметь основание ns и высоту h. С ростом числа сторон длина основания параллелограмма увеличивается, стремясь к половине окружности, а высота стремится к радиусу. В пределе параллелограмм становится прямоугольником с шириной π

r и высотой r.

Приближения площади круга единичного радиуса перегруппировкой треугольников.
многоугольник параллелограмм
n     сторона         основание    высота    площадь
4 1,4142136 2,8284271 0,7071068 2,0000000
6 1,0000000 3,0000000 0,8660254 2,5980762
8 0,7653669 3,0614675 0,9238795 2,8284271
10 0,6180340 3,0901699 0,9510565 2,9389263
12 0,5176381 3,1058285 0,9659258 3,0000000
14 0,4450419 3,1152931 0,9749279 3,0371862
16 0,3901806 3,1214452 0,9807853 3,0614675
96 0,0654382 3,1410320 0,9994646 3,1393502
1/∞ π 1 π

Интегрирование[править | править код]

{\begin{aligned}D&{}=T-C\\&{}>G_{n}\\P_{n}&{}=C+G_{n}\\&{}<C+D\\P_{n}&{}<T\end{aligned}} Площадь круга путём интегрирования

Используя интегралы, мы можем просуммировать площадь круга, разделив его на концентрические окружности подобно луковице. Площадь бесконечно тонкого «слоя» радиуса t будет равна 2πt dt, то есть произведению длины окружности на толщину слоя. В результате получим элементарный интеграл для круга радиуса

r.

Area(r)=∫0r2πtdt=[(2π)t22]t=0r=πr2.{\displaystyle {\begin{aligned}\mathrm {Area} (r)&{}=\int _{0}^{r}2\pi t\,dt\\&{}=\left[(2\pi ){\frac {t^{2}}{2}}\right]_{t=0}^{r}\\&{}=\pi r^{2}.\end{aligned}}}

Можно разбивать круг не на кольца, а на треугольники с бесконечно малым основанием. Площадь каждого такого треугольника равна 1/2 * r * dt. Суммируя (интегрируя) все площади этих треугольников, получим формулу круга:

Area(r)=∫02πr12rdt=[12rt]t=02πr=πr2.{\displaystyle {\begin{aligned}\mathrm {Area} (r)&{}=\int _{0}^{2\pi r}{\frac {1}{2}}r\,dt\\&{}=\left[{\frac {1}{2}}rt\right]_{t=0}^{2\pi r}\\&{}=\pi r^{2}.\end{aligned}}}

Для применения формулы площади круга необходимо знать с нужной точностью значение числа π{\displaystyle \pi }. Вычисления, проведённые Архимедом, были трудоёмкими, и он остановился на многоугольнике с 96 сторонами. Более быстрый метод использует идеи Снелла (1621), позднее развитые Гюйгенсом (1654) [8].

Метод удвоения Архимеда[править | править код]

Если задан круг, пусть un будет периметром вписанного правильного n-угольника, а Un — периметром описанного правильного n-угольника. Тогда un и Un являются нижней и верхней границей длины окружности, которые становятся точнее с ростом n, а их среднее значение (un + Un)/2 становится особенно хорошей аппроксимацией длины окружности. Чтобы вычислить un и Un для больших n, Архимед вывел следующие формулы:

u2n=U2nun{\displaystyle u_{2n}={\sqrt {U_{2n}u_{n}}}}    (среднее геометрическое)
U2n=2UnunUn+un{\displaystyle U_{2n}={\frac {2U_{n}u_{n}}{U_{n}+u_{n}}}}    (среднее гармоническое).

Начав с шестиугольника, Архимед удваивал n четыре раза, дойдя до 96-угольника, который дал ему хорошую аппроксимацию длины окружности круга.

В современных обозначениях можно воспроизвести эти вычисления (и пойти дальше). Для единичной окружности вписанный шестиугольник имеет периметр u6 = 6, а описанный шестиугольник имеет периметр U6 = 4√3. Удваиваем семь раз, получаем

Удвоения Архимеда семь раз; n = 6×2k.
k    n     un   Un   (un + Un)/4
0 6 6,0000000 6,9282032 3,2320508
1 12 6,2116571 6,4307806 3,1606094
2 24 6,2652572 6,3193199 3,1461443
3 48 6,2787004 6,2921724 3,1427182
4 96 6,2820639 6,2854292 3,1418733
5 192 6,2829049 6,2837461 3,1416628
6 384 6,2831152 6,2833255 3,1416102
7 768 6,2831678 6,2832204 3,1415970

(здесь (un + Un)/2 аппроксимирует длину единичной окружности, которая равна 2π, так что (un + Un)/4 аппроксимирует π)

Последняя строка таблицы содержит 355113 — лучшее рациональное приближение, то есть не существует приближения лучшего этого со знаменателем до 113. Число 355113 является прекрасным приближением для π, нет рационального числа более близкого к π со знаменателем до 16604.[9]

Улучшение Снелла-Гюйгенса[править | править код]

Снелл предложил (а Гюйгенс доказал) более тесные границы, чем у Архимеда:

n3sin⁡πn2+cos⁡πn<π<n[2sin⁡π3n+tan⁡π3n].{\displaystyle n{\frac {3\sin {\frac {\pi }{n}}}{2+\cos {\frac {\pi }{n}}}}<\pi <n[2\sin {\frac {\pi }{3n}}+\tan {\frac {\pi }{3n}}].}

Для n = 48 формула даёт приближение лучше (около 3,14159292), чем метод Архимеда для n = 768.

Развитие формулы удваивания Архимеда[править | править код]

Круг с подобными треугольниками, описанным, вписанным и дополнительным

Пусть одна сторона вписанного правильного n-угольника имеет длину sn и пусть точки A и B — её концы. Пусть A′ — противоположная A точка на окружности, так что A′A является диаметром, а A′AB является вписанным треугольником, опирающимся на этот диаметр. По теореме Фалеса этот треугольник является прямоугольным (угол B прямой). Пусть длина A′B равна cn и эту длину будем называть дополнением sn. Тогда cn2+sn2 = (2r)2. Пусть точка C делит дугу AB пополам, и пусть C′ является противоположной C точкой окружности. Тогда длина CA равна s2n, длина C′A равна c2n, а C′CA снова является прямоугольным треугольником, опирающимся на диаметр C′C. Поскольку C делит дугу AB пополам, диаметр C′C перпендикулярен хорде AB, которую он пересекает, скажем, в точке P. Треугольник C′AP тогда прямоуголен и подобен C′CA, поскольку у них общий угол C′. Получаем, что все три соответствующие стороны находятся в одной и той же пропорции. В частности, мы имеем C′A : C′C = C′P : C′A и AP : C′A = CA : C′C. Центр окружности O делит A′A пополам, так что треугольник OAP подобен A′AB и длина OP равна половине длины A′B. В результате получаем

c2n2=(r+12cn)2rc2n=sns2n.{\displaystyle {\begin{aligned}c_{2n}^{2}&{}=\left(r+{\frac {1}{2}}c_{n}\right)2r\\c_{2n}&{}={\frac {s_{n}}{s_{2n}}}.\end{aligned}}}

В первом равенстве отрезок C′P равен сумме C′O+OP, что равно r+12cn, а отрезок C′C является диаметром и его длина равна 2r. Для единичного круга получаем знаменитую формулу удвоения Людольфа Ван Цейлена

c2n=2+cn.{\displaystyle c_{2n}={\sqrt {2+c_{n}}}.}

Если мы теперь построим правильный описанный n-угольник со стороной ″B″, параллельной AB, то OAB и OA″B″ являются подобными с отношением подобия A″B″ : AB = OC : OP. Обозначим описанную сторону Sn, тогда отношение превращается в Sn : sn = 1 : 12cn. (Мы снова используем факт, что OP равен половине A′B.) Получаем

cn=2snSn.{\displaystyle c_{n}=2{\frac {s_{n}}{S_{n}}}.}

Обозначим периметр вписанного многоугольника через un = nsn, а описанного через Un = nSn. Комбинируя равенства, получим

c2n=sns2n=2s2nS2n,{\displaystyle c_{2n}={\frac {s_{n}}{s_{2n}}}=2{\frac {s_{2n}}{S_{2n}}},}

так что

u2n2=unU2n.{\displaystyle u_{2n}^{2}=u_{n}U_{2n}.}

Получили среднее геометрическое.

Можно также вывести

2s2nS2nsns2n=2+2snSn,{\displaystyle 2{\frac {s_{2n}}{S_{2n}}}{\frac {s_{n}}{s_{2n}}}=2+2{\frac {s_{n}}{S_{n}}},}

или

2U2n=1un+1Un.{\displaystyle {\frac {2}{U_{2n}}}={\frac {1}{u_{n}}}+{\frac {1}{U_{n}}}.}

Получили среднее гармоническое.

Аппроксимация случайными бросаниями[править | править код]

{\frac {2}{U_{2n}}}={\frac {1}{u_{n}}}+{\frac {1}{U_{n}}}. Площадь единичного круга методами Монте-Карло. После 900 бросаний получаем 4×709900 = 3,15111…

Если более эффективные методы недоступны, можно прибегнуть к «бросанию дротиков». Этот метод Монте-Карло использует факт, что при случайных бросаниях точки равномерно распространяются по площади квадрата, в котором расположен круг, число попаданий в круг приближается к отношению площади круга на площадь квадрата. Следует принимать этот метод как последнюю возможность вычисления площади круга (или фигуры любой формы), поскольку для получения приемлемой точности требует огромного числа испытаний. Для получения точности 10n необходимо около 100n случайных испытаний [10].

Как мы видели, разбив диск на бесконечное число кусков мы можем из них затем собрать прямоугольник. Интересный факт был открыт относительно недавно Лацковичем [11], что мы можем разбить круг на большое, однако конечное число кусков, а затем перегруппировать их в квадрат той же площади. Сам вопрос о таком конечном разбиении носит название «Квадратура круга Тарского».

Мы можем растянуть круг до формы эллипса. Поскольку это растяжение является линейным преобразованием плокости, оно изменяет площадь, но сохраняет отношения площадей. Этот факт можно использовать для вычисления площади произвольного эллипса, отталкиваясь от площади круга.

Пусть единичный эллипс описан квадратом со стороной 2. Преобразование переводит круг в эллипс путём сжатия или растяжения горизонтального и вертикального диаметров до малой и большой оси эллипса. Квадрат становится прямоугольником, описанным вокруг эллипса. Отношение площади круга к площади квадрата равно π/4, и отношение площади эллипса к площади прямоугольника будет тоже π/4. Если a и b — длины малой и большой осей эллипса. Площадь прямоугольника будет равна ab, а тогда площадь эллипса — πab/4.

Мы можем распространить аналогичные техники и на большие размерности. Например, если мы хотим вычислить объём внутри сферы, и мы знаем формулу для площади сферы, мы можем использовать приём, аналогичный «луковичному» подходу для круга.

  1. 1 2 Справочник по элементарной математике, 2006, с. 342.
  2. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 204. — 456 с.
  3. ↑ История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I. — С. 102.
  4. Белозеров С. Е. Пять знаменитых задач древности. История и современная теория. — Ростов: изд-во Ростовского университета, 1975. — С. 144—168. — 320 с.
  5. Hill, George. Лекции по геометрии для начинающих, страница 124 (1894).
  6. ↑ Smith, Mikami, 1914.
  7. ↑ Beckmann, 1976.
  8. ↑ Gerretsen, Verdenduin, 1983.
  9. ↑ Не все лучшие рациональные приближения сводятся к непрерывным дробям!
  10. ↑ Thijsse, 2006.
  11. ↑ Laczkovich, 1990.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
  • Archimedes в переводе Томаса Хита. The Works of Archimedes. — Dover, c. 260 BCE, год публикации 2002. — С. 91–93. — ISBN 978-0-486-42084-4.
  • Petr Beckmann. A History of Pi. — St. Martin's Griffin, 1976. — ISBN 978-0-312-38185-1.
  • J. Gerretsen, P. Verdenduin. Fundamentals of Mathematics, Volume II: Geometry. — MIT Press, 1983. — С. 243–250. — ISBN 978-0-262-52094-2.
  • Serge Lang. Math! : Encounters with High School Students. — Springer-Verlag, 1985. — ISBN 978-0-387-96129-3.
  • Miklós Laczkovich. Equidecomposability and discrepancy: A solution to Tarski's circle squaring problem // Journal für die reine und angewandte Mathematik. — 1990. — Т. 404. — С. 77–117.
  • David Eugene Smith, Yoshio Mikami. A history of Japanese mathematics. — Chicago: Open Court Publishing, 1914. — С. 130–132. — ISBN 978-0-87548-170-8.
  • J. M.Thijsse. Computational Physics. — Cambridge University Press, 2006. — С. 273. — ISBN 978-0-521-57588-1.

Длину окружности l можно вычислить по формуле l 2pr где r радиус окружности (в метрах). пользуясь этой формулой, найдите радиус окружности.

Число пи не бесконечно, в вопросе закралась ошибка.

Число пи иррационально и трансцендентно.

Иррациональность числа ПИ означает, что число ПИ не может быть выражено в виде отношения m/n, где m и n целые числа. И по сути может быть представлено бесконечной непериодической десятичной дробью.

Это всё значит, что невозможно подобрать два целых числа, частное от деления которые бы в точности было равно ПИ. В древних времени ПИ приблизительно считали равным 3, потом 22/7 (Архимед), 92/29 и т.д. wikipedia.org

Мы можем бесконечно вычислять число ПИ, записывая всё новые и новые его знаки после запятой, что не делает его бесконечным. Доказательство иррациональности числа ПИ было проведено ещё в 18 веке, воспроизвести его тут не представляется возможным и нужным, можете почитать например тут lib.ru

Но в целом конечно же число это не бесконечно, оно лежит в отрезке между 3 и 4.

В этом нет никакой магии. Диагональ квадрата со стороной 1 равна корню из двух. И хоть она конечна и сторона конечна, диагональ будет иррациональным числом. Невозможно найти запись корня из двух в виде m/n где m и n целые.

Можно немного перефразировать: невозможно построить окружность, радиус и длина которой были бы целыми числами. Вы можете сколько угодно точно измерять их длины и всё время будете их уточнять, никогда не найдя точного числового значения. Чтобы понять это придется ознакомиться с теорией пределов. Визуально предел можно представить взглянув на график фукнции Y=k/X likt590.ru

Т.е. если X будет сколь угодно расти, то Y будет бесконечно стремиться к 0, но так никогда его и не достигнет.

Так устроена наша Вселенная, точнее так договорились математики)

Вообще вопрос связан и с задачей о квадратуре круга, почитайте об этом тоже, задача над которой так долго бились ученые оказалась неразрешимой из-за трансцендентности числа ПИ.

Формула длины окружности через радиус или диаметр

Окружность это замкнутая кривая линия, все точки которой, равноудалены от другой, определенной точки (центр окружности) на заданном расстоянии (радиус).
Радиус окружности - отрезок, соединяющий её центр и любую другую точку расположенную на линии окружности.
Диаметр окружности - отрезок, соединяющий две любые точки расположенные на линии окружности и проходящий через её центр. Диаметр, в два раза больше радиуса


длина окружности

r - радиус окружности

D - диаметр окружности

π ≈ 3.14

 

Формула длины окружности через радиус или диаметр, (L):

Формула длины окружности

 


Калькулятор для расчета длины окружности через радиус



Калькулятор для расчета длины окружности через диаметр


 

окружность

S - площадь круга

O - центр круга

π ≈ 3.14

 

Формула длины окружности через площадь, (L):

Формула длины окружности через площадь

 


Калькулятор для расчета длины окружности через площадь


 

Формулы для окружности и круга:

Подробности
Автор: Сергей Кондратов logo

Калькулятор круга и шара. Рассчитать радиус, диаметр, длину окружности, площадь круга и шара, объем шара онлайн.

Калькулятор круга - это сервис, специально разработанный для расчета геометрических размеров фигур онлайн. Благодаря данному сервису Вы без проблем сможете определить любой параметр фигуры, в основе которой лежит круг. Например: Вы знаете объем шара, а необходимо получить его площадь. Нет ничего проще! Выберите соответствующий параметр, введите числовое значение и нажмите кнопку рассчитать. Сервис не только выдает результаты вычислений, но и предоставляет формулы, по которым они были сделаны. При помощи нашего сервиса вы без труда рассчитаете радиус, диаметр, длину окружности (периметр круга), площадь круга и шара, объем шара.

Вычислить радиус

Задача на вычисление значения радиуса – одна из самых распространенных. Причина тому достаточно проста, ведь зная этот параметр, вы без особого труда сможете определить значение любого другого параметра круга или шара. Наш сайт построен именно на такой схеме. Вне зависимости от того, какой вы выбрали исходный параметр, первым делом вычисляется значение радиуса и на его основе строятся все последующие вычисления. Для большей точности вычислений, сайт использует число Пи с округлением до 10-го знака после запятой.

Рассчитать диаметр

Расчет диаметра – самый простой вид расчета из тех, что умеет выполнять наш калькулятор. Получить значение диаметра совсем нетрудно и вручную, для этого совсем не надо прибегать к помощи интернета. Диаметр равен значению радиуса умноженному на 2. Диаметр – важнейший параметр круга, который чрезвычайно часто используется в повседневной жизни. Уметь его правильно рассчитать и использовать должен абсолютно каждый. Воспользовавшись возможностями нашего сайта, вы вычислите диаметр с большой точностью за доли секунды.

Узнать длину окружности

Вы даже не представляете, как много вокруг нас круглых объектов и какую важную роль они играют в нашей жизни. Умение рассчитать длину окружности необходимо всем, от рядового водителя, до ведущего инженера-проектировщика. Формула для вычисления длинны окружности очень проста: D=2Pr. Расчет можно легко провести как на листке бумаги, так и при помощи данного интернет помощника. Преимущество последнего в том, что он проиллюстрирует все вычисления рисунками. И ко всему прочему, второй способ намного быстрее.

Вычислить площадь круга

Площадь круга – как и все перечисленные перечисленные в этой статье параметры является основой современной цивилизации. Уметь рассчитать и знать площадь круга полезно всем без исключения слоям населения. Трудно представить область науки и техники, в которой не надо было бы знать, площадь круга. Формула для вычисления опять же нетрудная: S=PR2. Эта формула и наш онлайн-калькулятор помогут Вам без лишних усилий узнать площадь любого круга. Наш сайт гарантирует высокую точность вычислений и их молниеносное выполнение.

Рассчитать площадь шара

Формула для расчета площади шара ничуть не сложнее формул, описанных в предыдущих пунктах. S=4Pr2. Этот нехитрый набор букв и цифр уже многие годы дает людям возможность достаточно точно вычислять площадь шара. Где это может быть применено? Да везде! Например, вы знаете, что площадь земного шара равна 510 100 000 километров квадратных. Перечислять, где может быть применено знание этой формулы перечислять бесполезно. Слишком широка область применения формулы для вычисления площади шара.

Вычислить объем шара

Для вычисления объема шара используют формулу V=4/3(Pr3). Она была использована при создании нашего онлайн сервиса. Сайт tellaboutall.ru дает возможность рассчитать объем шара за считанные секунды, если вы Вам известен любой из следующих параметров: радиус, диаметр, длинна окружности, площадь круга или площадь шара. Так же вы можете применять его для обратного вычисления, например, чтобы зная объем шара, получить значение его радиуса или диаметра. Спасибо, что кратко ознакомились с возможностями нашего калькулятора круга. Надеемся, Вам у нас понравилось, и вы уже добавили сайт в закладки.

Площадь круга - формулы, примеры расчетов

Круг – это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность.
Круг
Отрезок, который соединяет центр круга с точками его окружности, называется радиусом. В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром. Формула площади круга рассчитывается с помощью математической константы – числа π..

Это интересно: Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.

Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:

S={pi}R^2 Иконка карандаша 24x24Рассмотрим пример расчета площади круга через радиус. Пусть дана окружность с радиусом R = 4 см. Найдем площадь фигуры.
S={3,14}*4^2={3,14}*16=50,24
Площадь нашей окружности будет равна 50,24 кв. см.

Существует формула площади круга через диаметр. Она также широко применяется для вычисления необходимых параметров. Данные формулы можно использовать для нахождения площади треугольника по площади описанной окружности.

S={pi/4} d^2 Иконка карандаша 24x24Рассмотрим пример расчета площади круга через диаметр, зная его радиус. Пусть дана окружность с радиусом R = 4 см. Для начала найдем диаметр, который, как известно, в два раза больше радиуса.
d=2R
d=2*4=8
Теперь используем данные для примера расчета площади круга по приведенной выше формуле:
S={{3,14}/4 }*8^2=0,785*64=50,24
Как видим, в результате получаем тот же ответ, что и при первых расчетах.

Знания стандартных формул расчета площади круга помогут в дальнейшем легко определять площадь секторов и легко находить недостающие величины.

Мы уже знаем, что формула площади круга рассчитывается через произведение постоянной величины π на квадрат радиуса окружности. Радиус можно выразить через длину окружности и подставить выражение в формулу площади круга через длину окружности: R=l/2pi
Теперь подставим это равенство в формулу расчета площади круга и получим формулу нахождения площади круга, через длину окружности

S=pi{(l/2pi)}^2=l^2/{4pi} Иконка карандаша 24x24Рассмотрим пример расчета площади круга через длину окружности. Пусть дана окружность с длиной l = 8 см. Подставим значение в выведенную формулу:
S={8^2}/{4*3,14}=64/{12,56}=5
Итого площадь круга будет равна 5 кв. см.

Площадь круга описанного вокруг квадрата

Круг описанный вокруг квадрата
Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: d^2=2a^2 отсюда d=sqrt{2a^2}.
После того, как найдем диагональ – мы сможем рассчитать радиус: R=d/2.
И после подставим все в основную формулу площади круга описанного вокруг квадрата: S=pi{R^2}

Иконка карандаша 24x24Рассмотрим пример расчета площади круга, описанного вокруг квадрата.
Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности.
Для начала рассчитаем длину диагонали d.
d=sqrt{2*{4^2} }=sqrt{2*16}=4sqrt{2}
R={4sqrt{2}}/2=2sqrt{2}
Теперь подставляем данные в формулу
S=3,14*(2sqrt{2})^2=8*3,14=25,12

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Формула площади круга через диаметр или радиус или длину окружности.

Круг это плоская фигура, все точки которой, расположены на любом расстоянии от определенной точки (центр круга) но не больше заданной длины (радиус).
Радиус круга - отрезок, соединяющий центр окружности и любую, максимально удаленную от центра точку круга.
Диаметр круга - отрезок, соединяющий две любые точки максимально удаленные от центра круга и проходящий через этот центр. Диаметр, в два раза больше радиуса


Зная диаметр

или радиус круга или длину окружности, можно найти его площадь.

Формула площади круга, диаметр

 

r - радиус круга

D - диаметр круга

π ≈ 3.14

Формула площади круга, (S):

Формула площади круга

 

 

Решения задач

на тему: Площадь круга

 

Калькулятор для расчета площади круга через радиус

 

Калькулятор для расчета площади круга через диаметр

 

Формула площади круга через длину

 

L - длина окружности

О - центр круга

π ≈ 3.14

Формула площади круга если известна длина окружности, (S):

площадь круга через длину

 

Решения задач

на тему: Площадь круга

 

Калькулятор для расчета площади круга через длину

Подробности
Автор: Сергей Кондратов logo

Площадь круга

Площадь круга, формулы для вычисления площади при различных исходных данных, калькулятор для решения онлайн и сводная таблица с различными формулами площади круга.

Наш калькулятор поможет вам бесплатно в режиме онлайн вычислить площадь круга или проверить уже выполненные вычисления.

Таблица с формулами площади круга (в конце страницы)


1

Площадь круга через радиус

Площадь круга через радиус

... подготовка ...

r - радиус



2

Площадь круга через диаметр

Площадь круга через диаметр

... подготовка ...

D - диаметр



3

Площадь круга по длине окружности

Площадь круга по длине окружности

... подготовка ...

- длина окружности



4

Площадь круга через вписанный в круг квадрат

Площадь круга через вписанный в круг квадрат

... подготовка ...

a - сторона



5

Площадь круга вписанного в квадрат

Площадь круга вписанного в квадрат

... подготовка ...

A - сторона



6

Площадь круга описанного около произвольного треугольника

Площадь круга описанного около произвольного треугольника

Данная формула применима только, если вокруг треугольника можно описать круг, то есть все три вершины треугольника должны лежать на линии окружности. Треугольник в данном случае может быть любым.

Для вычисления площади круга, предварительно рассчитаем полупериметр треугольника  

... подготовка ...

a - сторона

b - сторона

c - сторона



7

Площадь круга описанного около равностороннего треугольника

Площадь круга описанного около равностороннего треугольника

... подготовка ...

a - сторона



8

Площадь круга описанного около равностороннего треугольника, вычисляемая по высоте треугольника

Площадь круга описанного около равностороннего треугольника, вычисляемая по высоте треугольника

... подготовка ...

h - высота



9

Площадь круга описанного около равнобедренного треугольника

Площадь круга описанного около равнобедренного треугольника

... подготовка ...

a - сторона

b - основание



10

Площадь круга описанного около прямоугольного треугольника

Площадь круга описанного около прямоугольного треугольника

... подготовка ...

a - сторона

b - сторона



11

Площадь круга вписанного в равнобедренный треугольник

Площадь круга вписанного в равнобедренный треугольник

... подготовка ...

a - сторона

b - основание



12

Площадь круга вписанного в равнобедренный треугольник, вычисляемая по боковым сторонам треугольника и углу между ними

Площадь круга вписанного в равнобедренный треугольник, вычисляемая по боковым сторонам треугольника и углу между ними

... подготовка ...

b - сторона

α - угол между сторонами



13

Площадь круга вписанного в прямоугольный треугольник

Площадь круга вписанного в прямоугольный треугольник

... подготовка ...

a - сторона

b - сторона

c - сторона



14

Площадь круга вписанного в прямоугольный треугольник, вычисляемая по стороне и углу

Площадь круга вписанного в прямоугольный треугольник, вычисляемая по стороне и углу

... подготовка ...

b - сторона

α - угол при основании



15

Площадь круга вписанного в равносторонний треугольник

Площадь круга вписанного в равносторонний треугольник

... подготовка ...

a - сторона



16

Площадь круга вписанного в равнобедренную трапецию, вычисленная по основанию трапеции и углу при основании

Площадь круга вписанного в равнобедренную трапецию, вычисленная по основанию трапеции и углу при основании

... подготовка ...

b - сторона

α - угол при основании



17

Площадь круга описанного около равнобедренной трапеции, рассчитанная по боковым сторонам трапеции, ее диагонали и основанию

Площадь круга описанного около равнобедренной трапеции, рассчитанная по боковым сторонам трапеции, ее диагонали и основанию

Для вычисления площади круга, предварительно рассчитаем полупериметр треугольника ABC   

... подготовка ...

a - сторона

c - сторона

d - диагональ



18

Площадь круга описанного около прямоугольника

Площадь круга описанного около прямоугольника

... подготовка ...

a - сторона

b - сторона



19

Площадь круга описанного около правильного многоугольника

Площадь круга описанного около правильного многоугольника

... подготовка ...

a - сторона

N - количество сторон многоугольника



20

Площадь круга описанного около правильного шестиугольника

Площадь круга описанного около правильного шестиугольника

... подготовка ...

a - сторона


Примечание:

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться нашим «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°


Таблица с формулами площади круга



Определения

Круг – это геометрическая плоская фигура, ограниченная линией состоящей из множества точек равноудаленных от одной точки – центра круга. Кривая замкнутая линия проведенная через равноудаленные точки, образует окружность.

Диаметр круга – это отрезок в виде прямой линии, проходящей через центр окружности и соединяющий две точки лежащие на окружности.

Радиус круга – это прямой отрезок соединяющий центр окружности с любой точкой лежащей на окружности.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь круга - это численная характеристика, характеризующая размер плоскости, ограниченной линией окружности. Вычислить площадь круга можно с помощью числа Пи и радиуса окружности, или с помощью других известных исходных данных.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *