Применим правила четная функция. Четность и нечетность функции
— (матем.) Функция у = f (x) называется чётной, если она не меняется, когда независимое переменное изменяет только знак, то есть, если f (x) = f (x). Если же f (x) = f (x), то функция f (x) называется нечётной. Например, у = cosx, у = x2… …
F(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия
Функция, удовлетворяющая равенству f (x) = f (x). См. Чётные и нечётные функции … Большая советская энциклопедия
F(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия
F(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия
F(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия
F(x) = x пример нечётной функции. f(x) = x2 пример чётной функции. f(x) = x3 … Википедия
Специальные функции, введённые французским математиком Э. Матье (E.
Mathieu) в 1868 при решении задач о колебании эллиптической мембраны. М. ф. применяются также при изучении распространения электромагнитных волн в эллиптическом цилиндре … Большая советская энциклопедия
Запрос «sin» перенаправляется сюда; см. также другие значения. Запрос «sec» перенаправляется сюда; см. также другие значения. Запрос «Синус» перенаправляется сюда; см. также другие значения … Википедия
. Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.
- В функцию подставьте положительные числовые значения x {\displaystyle x}
и соответствующие отрицательные числовые значения. Например, дана функция f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1}
.
Подставьте в нее следующие значения x {\displaystyle x}
:
Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.
Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.
Проверьте, имеет ли график функции какую-нибудь симметрию.
{2}}
. Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
Четная функция.
Четной называется функция, знак которой не меняется при изменении знака x .
x выполняется равенство f (–x ) = f (x ). Знак x не влияет на знак y .
График четной функции симметричен относительно оси координат (рис.1).
Примеры четной функции:
y = cos x
y = x 2
y = –x 2
y = x 4
y = x 6
y = x 2 + x
Пояснение:
Возьмем функцию y = x 2 или y = –x 2 .
При любом значении x функция положительная.
Знак x не влияет на знак y . График симметричен относительно оси координат. Это четная функция.
Нечетная функция.
Нечетной называется функция, знак которой меняется при изменении знака x .
Говоря иначе, для любого значения x выполняется равенство f (–x ) = –f (x ).
График нечетной функции симметричен относительно начала координат (рис.2).
Примеры нечетной функции:
y = sin x
y
y = –x 3
Пояснение:
Возьмем функцию y = –x 3 .
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y . Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f (–x ) = –f (x ).
График функции симметричен относительно начала координат.
Это нечетная функция.
Свойства четной и нечетной функций:
ПРИМЕЧАНИЕ:
Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.
Периодические функции.
Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями . То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.
Которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.
Определение 1.
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).
Определение 2.
Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).
Доказать, что у = х 4 — четная функция.
Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.
Аналогично можно доказать, что функции у — х 2 ,у = х 6 ,у — х 8 являются четными.
Доказать, что у = х 3 ~ нечетная функция.
Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.
Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.
Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х 3 , у = х 5 , у = х 7 — нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 — четные функции.
И вообще для любой функции вида у = х» (ниже мы специально займемся изучением этих функций), где n — натуральное число , можно сделать вывод: если n — нечетное число, то функция у = х» — нечетная; если же n — четное число, то функция у = хn — четная.
Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).
Итак, функция может быть четной, нечетной, а также ни той ни другой.
Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.
В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством.
Ответ:
\(a\in \{-\mathrm{tg}\,1;0\}\)
Задание 2 #3923
Уровень задания: Равен ЕГЭ
Найдите все значения параметра \(a\) , при каждом из которых график функции \
симметричен относительно начала координат.
Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)
\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]
Последнее уравнение должно быть выполнено для всех \(x\)
из области определения \(f(x)\)
, следовательно, \(\sin(2\pi a)=0 \Rightarrow
a=\dfrac n2, n\in\mathbb{Z}\)
.
2\)
.
1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:
Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\)
проходил через точку \(A\)
:
Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad
\left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\
&9(a+2)=-32a \end{aligned} \end{gathered}\right.
\quad\Leftrightarrow\quad
\left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\
&a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\]
Так как \(a>0\)
, то подходит \(a=\dfrac{18}{23}\)
.
2) Пусть \(a
Нужно, чтобы график \(g(x)\)
прошел через точку \(B\)
: \[\dfrac{64}9a=|a+2|\cdot \sqrt{-8} \quad\Leftrightarrow\quad
\left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\
&a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\]
Так как \(a
3) Случай, когда \(a=0\)
, не подходит, так как тогда \(f(x)=0\)
при всех \(x\)
, \(g(x)=2\sqrtx\)
и уравнение будет иметь только 1 корень.
Значит, чтобы исходное уравнение имело шесть решений, квадратное уравнение \((*)\) должно иметь два различных решения, а каждое полученное кубическое уравнение (из совокупности) должно иметь три различных решения (причем ни одно решение одного уравнения не должно совпадать с каким-либо решением второго!)
Очевидно, что если квадратное уравнение \((*)\) будет иметь одно решение, то мы никак не получим шесть решений у исходного уравнения.
Таким образом, план решения становится ясен. Давайте по пунктам выпишем условия, которые должны выполняться.
1) Чтобы уравнение \((*)\) имело два различных решения, его дискриминант должен быть положительным: \
2) Также нужно, чтобы оба корня были положительными (так как \(t>0\)
).
2+2}\cdot \ln 2\cdot 2x\)
. Ноль производной: \(x=0\)
. При \(x0\)
, при \(x>0\)
: \(g»
Функция \(f(x)\)
при \(x>0\)
является возрастающей, а при \(x
Действительно, при \(x>0\)
первый модуль раскроется положительно (\(|x|=x\)
), следовательно, вне зависимости от того, как раскроется второй модуль, \(f(x)\)
будет равно \(kx+A\)
, где \(A\)
– выражение от \(a\)
, а \(k\)
равно либо \(13-10=3\)
, либо \(13+10=23\)
. При \(x
Найдем значение \(f\)
в точке минимума: \
Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ Решая данную совокупность систем, получим ответ: \\]
Ответ:
\(a\in \{-2\}\cup\)
Введение в математику — тест 4
Введение в математику — тест 4Решение тестов Intuit
игра брюс 2048
Главная / Математика / Введение в математику / Тест 4
Упражнение 1:
Номер 1
Если X=[–2;5], Y=[0;2], то будет:Ответ:
 (1) числовой функцией 
 (2) множеством 
 (3) областью 
Номер 2
Функция y=sin(x)+cos(x) на промежутке :Ответ:
 (1) нечетная 
 (2) монотонно убывающая 
 (3) ни четна, ни нечетна, ни монотонна 
Номер 3
Соответствие – это:
Ответ:
 (1) порядок 
 (2) отображение 
 (3) множество 
Упражнение 2:
Номер 1
Функции задаются:
Ответ:
 (1) аналитически, таблично и графически 
 (2) графически и таблично 
 (3) аналитически, таблично, графически, словесно 
Номер 2
Если X=[0;3], Y=[3;0], то будет:Ответ:
 (1) числом 
 (2) отображением 
 (3) множеством 
Номер 3
В списке: y=|x|, y=1+х+x2, y=x, y=х+cos(x–90°), y=x3 число четных и нечетных функций равно, соответственно:Ответ:
 (1) 1 и 3 
 (2) 3 и 2 
 (3) 2 и 3 
Упражнение 3:
Номер 1
В списке: y=sinx, y=x2, y=x, y=cosx, y=x3 число четных и нечетных функций равно, соответственно:Ответ:
 (1) 2 и 3 
 (2) 3 и 2 
 (3) 4 и 1 
Номер 2
Функция y=sin(x/5) на промежутке :Ответ:
 (1) четная и непериодическая 
 (2) нечетная и монотонно убывающая 
 (3) нечетная и монотонно возрастающая 
Номер 3
Период функции y=tgx равен:Ответ:
 (1)  
 (2)  
 (3)  
Упражнение 4:
Номер 1
Период функции y=sinx равен:Ответ:
 (1)  
 (2)  
 (3)  
Номер 2
Верно утверждение:
Ответ:
 (1) график функции z(x)=f(x)+g(x) имеет область определения  
 (2) график z(x)=f(x)+g(x) получаем умножением отрезков у1=f(x1), у2=f(x2) 
 (3) график z(x)=f(x)–g(x) имеет область определения D(z)=D(f)  
Номер 3
В списке функций:y=10cosx, y=1+x+x3, y=x–3, y=exмонотонных на[0;1]функций всего:
Ответ:
 (1) 4 
 (2) 3 
 (3) 2 
Упражнение 5:
Номер 1
В списке функций:y=sinx, y=ctgx, y=x, y=exмонотонных на[0;1]функций всего:
Ответ:
 (1) 4 
 (2) 3 
 (3) 2 
Номер 2
Неверно утверждение
Ответ:
 (1) график у=f(x)+а получается из графика у=f(x) сдвигом вдоль оси Оу на |а| единиц 
 (2) график у=аf(x) получаем из графика у=f(x) растяжением в а раз по оси Оу (|а| > 1) 
 (3) график у=f(ax) получаем из графика у=f(x) растяжением в а раз по оси Оу (|а|<1) 
Номер 3
Верно утверждение:
Ответ:
 (1) график функции z(x)=f(x)–g(x) имеет область определения  
 (2) график z(x)=f(x)g(x) получаем умножением отрезков у1=f(x1), у2=f(x2) 
 (3) график z(x)=f(x)g(x) получаем умножением отрезков у1=f(x1), у2=f(x2) 
Главная / Математика / Введение в математику / Тест 4
3


Подставьте в нее следующие значения x {\displaystyle x}
: