Эквивалентное сопротивление цепи как найти: Как найти эквивалентное сопротивление цепи формула

Содержание

Как найти эквивалентное сопротивление цепи формула

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Рис. 1.4

Рис. 1.5

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением R

экв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

,

и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I = I1 + I2 + I3, т.е. ,

откуда следует, что

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R

1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

.

В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

.

Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

.

Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

.

Рис. 1.10

Рис. 1.11

В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12

Рис. 1.13

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Рис. 1.4

Рис. 1.5

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением R

экв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

,

и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I = I1 + I2 + I3, т.е. ,

откуда следует, что

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R

1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

.

В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

.

Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

.

Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

.

Рис. 1.10

Рис. 1.11

В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением R

экв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12

Рис. 1.13

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.

Расчёт электрических схем, содержащих несколько сопротивлений (резисторов), при нахождении силы тока в цепи, напряжения или мощности, производится с использованием метода свёртывания. Метод заключается в том, чтобы найти эквивалентное сопротивление выделенных участков цепи. Основная задача – замена резисторов, имеющих различное подключение относительно друг друга, на эквивалент (Rэкв.).

Определение эквивалентного сопротивления

При рассмотрении схем любых электрических или электронных устройств можно увидеть, что такие компоненты, как резисторы, имеют разные типы соединений между собой. Чтобы определить эквивалентное соединение, необходимо рассматривать два элемента, включенных в определённом порядке. Несмотря на то, что на чертеже их может быть несколько десятков, и соединены они по-разному, есть только два типа включения их друг с другом: последовательное и параллельное. Остальные конфигурации – это лишь их вариации.

Последовательное соединение элементов

Подобное включение подразумевает комбинацию деталей в прямой последовательности. Выход одного сопротивления подключается к входу другого. При этом отсутствуют какие-либо ответвления на участке. Величина тока, который проходит через все соединённые последовательно компоненты, будет одна и та же.

Внимание! Снижение потенциала на каждом резистивном элементе в сумме даст полное напряжение, приложенное к последовательной цепи.

В случае постоянного тока формула закона Ома для отрезка цепи имеет вид:

Сила тока зависит от приложенного напряжения и оказанного ему сопротивления. Если выразить R, его формула:

Параметры последовательной цепи, включающей n соединённых друг с другом элементов, имеют свои особенности.

Проходящий по цепи ток везде одинаковый:

Прикладываемое напряжение является суммой напряжений на каждом резисторе:

Следовательно, рассчитать можно общее:

Rэкв.= U1/I + U2/I + … +Un/I) = R1 + R2 + … +Rn.

Важно! Последовательная цепь, имеющая в своём составе N резисторов равного номинала, имеет эквивалентное сопротивление Rэкв. = N*R.

Параллельное соединение

Когда условные выходы деталей имеют общий контакт в одной точке (узле) схемы, а условные входы так же объединены во второй, говорят о параллельном соединении. Узел на чертеже обозначается графической точкой. Это место, где происходят разветвления цепей в схемах. Такой вариант подключения резисторов обеспечивает одинаковое падение напряжения U для всех параллельных элементов. Ток в этой позиции будет равен сумме токов, идущих по каждому компоненту.

Когда в параллельное подключение входит n резистивных элементов, то разность потенциалов, ток и общее сопротивление будут иметь следующие выражения:

  • общий ток: I = I1 + I2 + … + In;
  • общее напряжение: U = U1 = U2 = … = Un;
  • Rобщ. = Rэкв. = U/I1 + U/I2 + …+ U/In) = 1/R1 + 1/R2 +…+ 1/Rn.

Величину, обратно пропорциональную сопротивлению 1/R, называют проводимостью.

Если n равных по номиналу сопротивлений включить параллельно, то Rэкв. = (R*R)/n*R = R/n. Формула подходит и для индуктивных сопротивлений проволочных катушек и ёмкостных сопротивлений конденсаторов.

Расчёт при смешанном соединении устройств

Произвести расчет сопротивления цепи, когда она разветвлена и наполнена разными видами резистивных соединений, просто не получится. Затрудняет решение задачи множество участков, где детали подключены друг другу в разных комбинациях. В таких обстоятельствах желательно выполнять ряд преобразований, добиваясь упрощения схемы вводом отдельных эквивалентных элементов. Выявляют при этом подходящие контуры последовательных и параллельных присоединений.

Например, выискав некоторое количество последовательных подключений резисторов, заменяют их на один эквивалентный компонент. Определив элементы, соединённые последовательно, также рисуют вместо него эквивалент. Вновь начинают искать подобные простые соединения.

Метод называют «методом свёртывания». Схему упрощают до тех пор, пока в ней не останется одно Rэкв.

Важно! Метод эквивалентных преобразований применяется тогда, когда питание рассматриваемого участка цепи осуществляется от одного источника электрического тока, а также при определении Rэкв. в замкнутом контуре с одной ЭДС.

Такой относительный способ определения Rэкв используют и для изучения зависимости токов в некоторой цепи от значения R нагрузки. Это метод эквивалентного генератора, при котором сложный двухполюсник, являющийся активным, представляют эквивалентным генератором. При этом считают, что ЭДС его соответствует Uх.х. (холостого хода) на зажимах, R внутреннее соответствует R входному двухполюсника пассивного на тех же зажимах. Для такого определения источники тока разъединяют, а канал ЭДС закорачивают.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

Требуется рассчитать токи на всех резистивных элементах.

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD:

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Стоит заметить! Ток, протекающий через R4 и R5, по своему значению равен току на отрезке, не имеющем разветвления.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Видео

Расчет сопротивления цепи

Расчет сопротивления цепи необходим при решении различных задач по электротехнике. Суть заключается в приведении сложной разветвленной электрической цепи к цепи с единственным эквивалентным сопротивлением, которую называют простой электрической цепью. 

Пример 1

 

Цепь в данном примере состоит из двух последовательно соединенных сопротивлений, следовательно, их общее сопротивление будет равно сумме их сопротивлений. Подробнее о видах соединений тут.

Допустим, что R1=10 Ом R2=20 Ом, тогда 

Пример 2

 

Два сопротивления соединены параллельно, значит при сворачивании схемы, общее сопротивление будет равно (значения R1,R2 такие же как и в примере 1) 

Можно заметить, что при параллельном соединении общее сопротивление меньше, чем при последовательном в несколько раз. 

Пример 3

 

В данном примере ситуация аналогична примеру 2, за тем лишь исключением, что сопротивлений три. Тогда общее сопротивление будет равно (R1,R2 прежние, R3=105 Ом) 

 

Пример 4

 

Чтобы рассчитать общее сопротивление смешанного соединения проводников, необходимо для начала найти общее сопротивление резисторов R1 и R2 соединенных параллельно, а затем общее сопротивление, как сумму R12 и R3 соединенных последовательно. 

 Пример 5

Данная электрическая цепь сложнее, чем предыдущие, но как можно увидеть, она также состоит из последовательно или параллельно соединенных сопротивлений, которые можно постепенно сворачивать, приводя цепь к единственному эквивалентному сопротивлению R.

R4=20 Ом, R5=40 Ом, R6=15 Ом 

Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.  

  • Просмотров: 58500
  • Формула эквивалентного сопротивления резисторов: расчет

    Чтобы лучше понять электродинамику и физику, самостоятельно выполнять простейшие работы в доме, нужно знать, какова формула эквивалентного сопротивления и что обозначает это понятие. Об этом и другом далее в статье.

    Что такое эквивалентное сопротивление резисторов

    Точного понятия в физике не существует. Его можно вывести через ряд других терминов и формулировку закона Ома. В результате получится, что эквивалентное сопротивление резисторов — это суммарное препятствие взаимозаменяемых пассивных элементов электрической сети, чтобы заряд проходил в проводник.

    Сопротивляемость резисторов

    К сведению! Один показатель дает на выходе значение сопротивляемости без воздействия на него ряда посторонних моментов.

    Подробное объяснение эквивалентному сопротивлению

    Как определить эквивалентное сопротивление

    Если в электрической сети находится несколько резистивных источников, то, чтобы подсчитать силу тока, напряжения и мощность, следует использовать один взаимозаменяемый физический показатель сопротивления электрической цепи.

    Любой показатель последовательного или параллельного подключения возможно преобразовать, используя эквивалентный резистор и один источник электродвижущей силы. Сопротивляемость в данном случае будет равна сумме всех препятствий пассивных устройств заряду электрической сети. Электродвижущая сила взаимозаменяемого источника будет равна сумме всех источников, которые входят в цепь.

    Формула определения показателя

    Обратите внимание! Сворачиванием цепи, используя преобразования последовательно подключенных или параллельных проводниковых приборов, можно по максимуму сделать проще дальнейший расчет в любой схеме. Исключением будут выступать цепи, которые содержат сопротивляемость по схеме в виде звезды и треугольника.

    Параллельное и последовательное соединение элементов

    В разделе электротехники присутствует несколько вариантов того, как подключить детали в электрическую цепь. Есть параллельное и попеременное подсоединения. Их объединяет смешанная схема, которая представлена ниже.

    Последовательное подключение — это когда все источники соединяются друг с другом последовательно. Получаемая цепь не обладает никакими разветвлениями. Сила тока в данном случае проходит через каждый источник. Она постоянная, общее напряжение одинаковое.

    В случае препятствия резисторов заряду при последовательном подключении получится, что сопротивляемость будет равна сумме всех взаимозаменяемых пассивных элементов цепи. Рассчитывая параметры электротехнической схемы, не нужно применять частные параметры устройств. Их можно заменить одним значением, которое равно их суммарному показателю.

    Обратите внимание! Польза взаимозаменяемости компонентов заключается в возможности замены нескольких пассивных элементов электрической сети одним.

    Соединение элементов

    Параллельное подключение — это такое подсоединение источников, в котором входы всех устройств находятся в одних местах, а выходы — в других. Этими местами служат узлы.

    В случае эквивалентного препятствия заряду при параллельном соединении определить его можно благодаря закону Ома с преобразованием формулировки подсчета. Так, сделать необходимый расчет можно, основываясь на следующей формуле: R · R / N·R = R / N.

    Если это соединение нескольких индуктивных катушек, то их индуктивный показатель сопротивляемости будет рассчитываться по той же формуле, что для резисторных устройств.

    Важно! В случае с параллельным подключением общий показатель будет меньше любого показателя резистора. При последовательном подсоединении все наоборот.

    Как правильно рассчитать при смешанном соединении устройств

    Смешанным подключением устройств называется такой тип, при котором часть взаимозаменяемых компонентов подключается последовательно, а часть — параллельно. При смешанном подсоединении устройств определить эквивалентный показатель сопротивляемости несложно. Достаточно использовать следующую формулу: (R1 + R2) R3 / (R1 + R2 + R3) + R4.

    Это соединение используется, чтобы изменить сопротивляемость в пусковых реостатах, питающихся от постоянного тока. Для подсчета используются специальные онлайн-сервисы. Это помогает быстрее вычислить, упростить и ускорить расчеты электротехнических параметров.

    Формула расчета при смешанном соединении устройств

    В результате, чтобы рассчитать эквивалентное сопротивление цепи, необходимо вспомнить про закон Ома и обязательно пользоваться указанными формулами выше. Только при смешенном типе соединения желательно вести подсчеты в онлайн-калькуляторах, так как есть риск допустить ошибку в расчетах.

    Эквивалентное сопротивление резисторов определить эквивалентное

    Расчет реальной электрической цепи в идеальном виде невозможен по причине отсутствия математических методик учета индивидуальных параметров каждого составляющего элемента. Это естественно, так как любая деталь имеет свои паразитные характеристики, которые нереально учесть при расчетах. Для устранения этой проблемы было введено понятие эквивалентной замены. При этом в расчет принимается только одна определяющая характеристика элемента. Так, например, эквивалентное сопротивление резисторов в электрической схеме, отображает только величину сопротивления без влияния на него сторонних факторов.

    В электротехнике существует два основных варианта включения деталей в электрической цепи – это последовательное и параллельное соединение. Объединяющей для них является смешанная схема, которая по сути может быть разбита на участки с вышеприведенными характеристиками.

    Рассмотрим эквивалентное соединение резисторов в каждом отдельном случае.

    Эквивалентное сопротивление при последовательно соединенных резисторов

    При данном типе размещения резисторов в цепи условная схема будет соответствовать рис. 1.

    Рисунок 1

    Для того чтобы определить эквивалентное сопротивление резисторов необходимо вспомнить закон Ома. Для последовательного соединения он гласит что общее, а в нашем случае эквивалентное сопротивление, соответствует следующему уравнению:

    Rэкв= R1+R2+R3+RN-1+RN

    Рассмотрим пример последовательного соединения трех резисторов, сопротивление которых равно 10, 20 и 30 Ом, соответственно. Согласно выше приведенной формуле общее сопротивление всех этих резисторов на данном участке цепи будет равно 60 Ом. Таким образом, при расчетах параметров электрической схемы нет надобности использовать индивидуальные характеристики отдельных элементов. Их можно просто заменить одним значением эквивалентным их сумме.

    Кроме теории, данное суммирование значений сопротивлений элементов, имеет и практическое применение – в случае необходимости всегда можно заменить несколько резисторов одним. Также имеет место и обратное утверждение – при отсутствии деталей с требуемой характеристикой ее можно заменить на несколько других, эквивалентное сопротивление которых будет соответствовать требуемому значению.  Все это справедливо и для параллельного соединения резисторов, только с некоторыми особенности.

    Эквивалентное сопротивление при параллельном соединении резисторов

    Общая схема при данном включении резисторов в цепь соответствует рис. 2.


    Рисунок 2

    Определить эквивалентное сопротивление параллельно соединенных резисторов позволяет закон Ома согласно которому, в данном варианте, справедливо равенство:

    1/R экв =1/R1+1/R2+1/R3+1/R N-1+1/RN

    Возвращаясь к нашему примеру с резисторами 10, 20 и 30 Ом. Можно определить эквивалентное сопротивление для данного случая, преобразуя уравнение и получаем следующую формулу:

    R экв = R1 х R2 х R3 / (R1 x R2) + (R1 x R3) + (R2 x R3) = 5,45 Ом

    Важный момент: При параллельном включении резисторов в цепь эквивалентное сопротивление будет всегда меньше наименьшего значения отдельного элемента. При последовательном соединении R экв обязательно больше самого большого параметра.

    Эквивалентное сопротивление при смешанном соединении резисторов

    Определение эквивалентного сопротивления при смешанном соединении резисторов не представляет особых сложностей. Для этого достаточно разбить существующую цепочку на логические составляющие – блоки. Т.е. максимально упростить схему, приведя ее в соответствие с характеристиками свойственных тому или иному типу соединения. На рис. 3 приведена типичная схема упрощения, которая получила название метод свертывания цепи.

    Рисунок 3

    Данная схема позволяет наглядно понять, как можно определить эквивалентное сопротивление резисторов при смешанном соединении. Обращаем внимание, что начинать процесс упрощения можно в произвольном порядке. Так, например, объединение резисторов R1 и R2 не обязательно должно быть первым шагом. Можно совершенно смело на первом этапе найти R экв сумме сопротивлений последовательно включенных в цепь резисторов R4 и R5.  Определение эквивалентного сопротивления для резисторов необходимо осуществлять в зависимости от типа соединения.

    В заключение вернемся к самому понятию эквивалентной замены резисторов. В рассмотренных нами случаях речь шла об идеальном варианте. То есть в расчет принимается только величина сопротивления при нулевых значениях остальных характеристик. Также обращаем внимание, что при составлении эквивалентной схемы любых элементов электрической цепи, не только резисторов, можно вводить дополнительные переменные, которые будут влиять на конечные итоги.

    Эквивалентное сопротивление

    Определение эквивалентного сопротивления. Разница в методике определения эквивалентного сопротивления в цепях с последовательным и параллельным соединением элементов. Расчёт при смешанном соединении устройств. Физические формулы, примеры вычислений.

    Определение эквивалентного сопротивления

    При рассмотрении схем любых электрических или электронных устройств можно увидеть, что такие компоненты, как резисторы, имеют разные типы соединений между собой. Чтобы определить эквивалентное соединение, необходимо рассматривать два элемента, включенных в определённом порядке. Несмотря на то, что на чертеже их может быть несколько десятков, и соединены они по-разному, есть только два типа включения их друг с другом: последовательное и параллельное. Остальные конфигурации – это лишь их вариации.

    Что такое эквивалентное сопротивление резисторов

    Точного понятия в физике не существует. Его можно вывести через ряд других терминов и формулировку закона Ома. В результате получится, что эквивалентное сопротивление резисторов — это суммарное препятствие взаимозаменяемых пассивных элементов электрической сети, чтобы заряд проходил в проводник.

    Сопротивляемость резисторов

    К сведению! Один показатель дает на выходе значение сопротивляемости без воздействия на него ряда посторонних моментов.

    Подробное объяснение эквивалентному сопротивлению

    Пример 1

     

    Цепь в данном примере состоит из двух последовательно соединенных сопротивлений, следовательно, их общее сопротивление будет равно сумме их сопротивлений. Подробнее о видах соединений тут.

    Допустим, что R1=10 Ом R2=20 Ом, тогда 

    Формула сопротивления

    Формула ёмкостного сопротивления выводится следующим образом:

    • Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
    • Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.

    Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление.

    Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

    Последовательное соединение элементов

    Подобное включение подразумевает комбинацию деталей в прямой последовательности. Выход одного сопротивления подключается к входу другого. При этом отсутствуют какие-либо ответвления на участке. Величина тока, который проходит через все соединённые последовательно компоненты, будет одна и та же.

    Внимание! Снижение потенциала на каждом резистивном элементе в сумме даст полное напряжение, приложенное к последовательной цепи.

    Последовательное включение резисторов

    В случае постоянного тока формула закона Ома для отрезка цепи имеет вид:

    I = U/R.

    Сила тока зависит от приложенного напряжения и оказанного ему сопротивления. Если выразить R, его формула:

    R = U/I.

    Параметры последовательной цепи, включающей n соединённых друг с другом элементов, имеют свои особенности.

    Проходящий по цепи ток везде одинаковый:

    I = I1= I2= … = In.

    Прикладываемое напряжение является суммой напряжений на каждом резисторе:

    U = U1 + U2+ … + Un.

    Следовательно, рассчитать можно общее:

    Rэкв.= U1/I + U2/I + … +Un/I) = R1 + R2 + … +Rn.

    Важно! Последовательная цепь, имеющая в своём составе N резисторов равного номинала, имеет эквивалентное сопротивление Rэкв. = N*R.

    Как определить эквивалентное сопротивление

    Если в электрической сети находится несколько резистивных источников, то, чтобы подсчитать силу тока, напряжения и мощность, следует использовать один взаимозаменяемый физический показатель сопротивления электрической цепи.

    Любой показатель последовательного или параллельного подключения возможно преобразовать, используя эквивалентный резистор и один источник электродвижущей силы. Сопротивляемость в данном случае будет равна сумме всех препятствий пассивных устройств заряду электрической сети. Электродвижущая сила взаимозаменяемого источника будет равна сумме всех источников, которые входят в цепь.

    Формула определения показателя

    Обратите внимание! Сворачиванием цепи, используя преобразования последовательно подключенных или параллельных проводниковых приборов, можно по максимуму сделать проще дальнейший расчет в любой схеме. Исключением будут выступать цепи, которые содержат сопротивляемость по схеме в виде звезды и треугольника.

    Как по вах определить сопротивление цепи

    В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями.

    В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения. Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат. Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока. Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.1), а полупроводниковые диоды — несимметричные характеристики (рис. 5.2).

    Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики (рис. 5.3)

    .

    Дифференциальное или динамическое сопротивление нелинейного элемента — это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.

    Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики (рис. 5.4).

    .

    При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются. Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.

    5.2. Графический метод расчета нелинейных цепей постоянного тока

    Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.5). ВАХ 1 и ВАХ 2 приведены на рис. 5.6.

    К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2:

    (5.1)

    По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I’ и меньше I’ ) можно построить ВАХ всей цепи (рис. 5.6, кривая 3).

    При параллельном соединении двух нелинейных элементов (рис. 5.7) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.8), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения находим ординату аг точки для результирующей кривой 3. (аг = ав + аб)

    Далее задаваясь произвольным значением напряжения больше и меньше U’, можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.

    Как правильно рассчитать при смешанном соединении устройств

    Смешанным подключением устройств называется такой тип, при котором часть взаимозаменяемых компонентов подключается последовательно, а часть — параллельно. При смешанном подсоединении устройств определить эквивалентный показатель сопротивляемости несложно. Достаточно использовать следующую формулу: (R1 + R2) R3 / (R1 + R2 + R3) + R4.

    Это соединение используется, чтобы изменить сопротивляемость в пусковых реостатах, питающихся от постоянного тока. Для подсчета используются специальные онлайн-сервисы. Это помогает быстрее вычислить, упростить и ускорить расчеты электротехнических параметров.

    Формула расчета при смешанном соединении устройств

    В результате, чтобы рассчитать эквивалентное сопротивление цепи, необходимо вспомнить про закон Ома и обязательно пользоваться указанными формулами выше. Только при смешенном типе соединения желательно вести подсчеты в онлайн-калькуляторах, так как есть риск допустить ошибку в расчетах.

    Если известна мощность и напряжение

    Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

    P=UI

    После несложных мы получаем формулу для вычислений

    I=P/U

    Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

    Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

    Р1 = Р2/η

    Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

    Находим полную мощность с учетом cosФ (он также указывается на шильдике):

    S = P1/cosφ

    Определяем потребляемый ток по формуле:

    Iном = S/(1,73·U)

    Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

    1.4. Способы соединения сопротивлений и расчет эквивалентного сопротивления электрической цепи

    Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

    Электрическая цепь с последовательным соединением элементов

    Рис. 1.4

    Рис. 1.5

    Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

    На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

    U = U1 + U2 + U3 или IRэкв = IR1 + IR2 + IR3,

    откуда следует

    (1.5)

    Rэкв = R1 + R2 + R3.

    Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

    ,

    и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

    Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

    Электрическая цепь с параллельным соединением элементов

    Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

    Рис. 1.6

    В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

    I = I1 + I2 + I3, т.е. ,

    откуда следует, что

    (1.6)

    .

    В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

    (1.7)

    .

    Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

    gэкв = g1 + g2 + g3.

    По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

    Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

    U = IRэкв = I1R1 = I2R2 = I3R3.

    Отсюда следует, что

    ,

    т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

    По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

    Электрическая цепь со смешанным соединением элементов

    Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

    Рис. 1.7

    Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

    .

    В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

    Рис. 1.8

    На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

    .

    Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

    Рис. 1.9

    На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

    .

    Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

    Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

    .

    Рис. 1.10

    Рис. 1.11

    В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

    Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

    В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

    Рис. 1.12

    Рис. 1.13

    В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

    (1.8)

    ; ; .

    Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

    (1.9)

    ; ; .

    После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

    .

    Параллельное соединение резисторов | Электротехника

    Параллельное соединение резисторов. При параллельном соединении резисторов нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а). Заменяя

    Рис. 26. Схемы параллельного соединения приемников

    лампы резисторами с сопротивлениями R1, R2, R3, получим схему, показанную на рис. 26, б.
    При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

    I1=U/R1; I2=U/R2; I3=U/R3.

    Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или

    I = U / R1 + U / R2 + U / R3 = U (1/R1 + 1/R2 + 1/R3) = U / Rэк (23)

    Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой

    1/Rэк = 1/R1 + 1/R2 + 1/R3 (24)

    Вводя в формулу (24) вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

    Gэк = G1+ G2 +G3 (25)

    Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.
    Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях

    I1 : I2 : I3 = 1/R1 : 1/R2 : 1/R3 = G1 + G2 + G3 (26)

    В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.
    Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи

    Rэк=R1R2/(R1+R2)

    при трех параллельно включенных резисторах

    Rэк=R1R2R3/(R1R2+R2R3+R1R3)

    При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.

    Rэк = R1 / n (27)

    Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

    I1 = I / n (28)

    При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными. Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.
    На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

    10.3: Последовательные и параллельные резисторы

    Цели обучения

    К концу раздела вы сможете:

    • Определите термин эквивалентное сопротивление
    • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
    • Вычислить эквивалентное сопротивление резисторов, включенных параллельно

    В статье «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где \ (V = IR \). В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

    Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (Рисунок \ (\ PageIndex {1} \)).В последовательной схеме выходной ток первого резистора течет на вход второго резистора; следовательно, ток в каждом резисторе одинаков. В параллельной схеме все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными, в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

    Рисунок \ (\ PageIndex {1} \): (a) При последовательном соединении резисторов ток одинаков в каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое. Резисторы

    серии

    Считается, что резисторы

    включены последовательно, если ток течет через резисторы последовательно. Рассмотрим рисунок \ (\ PageIndex {2} \), на котором показаны три последовательно включенных резистора с приложенным напряжением, равным \ (V_ {ab} \).Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

    Рисунок \ (\ PageIndex {2} \): (a) Три резистора, подключенные последовательно к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    На рисунке \ (\ PageIndex {2} \) ток, идущий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии при прохождении тока через каждый резистор. Согласно закону Ома, падение потенциала \ (V \) на резисторе при протекании через него тока рассчитывается с использованием уравнения \ (V = IR \), где \ (I \) - ток в амперах (\ (A \)), а \ (R \) - сопротивление в Ом \ ((\ Omega) \).N V_i = 0. \]

    Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе. Для рисунка \ (\ PageIndex {2} \) сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

    \ [\ begin {align *} V - V_1 - V_2 - V_3 & = 0, \\ [4pt] V & = V_1 + V_2 + V_3, \\ [4pt] & = IR_1 + IR_2 + IR_3, \ end { выровнять *} \]

    Решение для \ (I \)

    \ [\ begin {align *} I & = \ frac {V} {R_1 + R_2 + R_3} \\ [4pt] & = \ frac {V} {R_ {S}}.\ end {align *} \]

    Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления (\ (R_ {S} \)), которое представляет собой просто сумму сопротивлений отдельных резисторов.

    Эквивалентное сопротивление в последовательной цепи

    Любое количество резисторов может быть подключено последовательно. Если \ (N \) резисторы соединены последовательно, эквивалентное сопротивление равно

    . N R_i.\ label {серия эквивалентных сопротивлений} \]

    Одним из результатов включения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

    Пример \ (\ PageIndex {1} \): эквивалентное сопротивление, ток и мощность в последовательной цепи

    Батарея с напряжением на клеммах 9 В подключена к цепи, состоящей из четырех последовательно соединенных резисторов \ (20 \, \ Omega \) и одного \ (10 ​​\, \ Omega \) (Рисунок \ (\ PageIndex {3 } \)).Предположим, что батарея имеет незначительное внутреннее сопротивление.

    1. Рассчитайте эквивалентное сопротивление цепи.
    2. Рассчитайте ток через каждый резистор.
    3. Рассчитайте падение потенциала на каждом резисторе.
    4. Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.
    Рисунок \ (\ PageIndex {3} \): Простая последовательная схема с пятью резисторами.

    Стратегия

    В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.2R \), а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, подаваемая батареей, можно найти с помощью \ (P = I \ epsilon \).

    Решение

    1. Эквивалентное сопротивление - это алгебраическая сумма сопротивлений (уравнение \ ref {ряд эквивалентных сопротивлений}): \ [\ begin {align *} R_ {S} & = R_1 + R_2 + R_3 + R_4 + R_5 \\ [4pt ] & = 20 \, \ Омега + 20 \, \ Омега + 20 \, \ Омега + 20 \, \ Омега + 10 \, \ Омега = 90 \, \ Омега.2 (10 \, \ Omega) = 0,1 \, W, \ nonumber \] \ [P_ {рассеивается} = 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,1 \, W = 0,9 \, W, \ nonumber \] \ [P_ {источник} = I \ epsilon = (0,1 \, A) (9 \, V) = 0,9 \, W. \ nonumber \]

    Значение

    Есть несколько причин, по которым мы могли бы использовать несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи. Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов.Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

    Упражнение \ (\ PageIndex {1} \)

    Некоторые гирлянды миниатюрных праздничных огней закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи. «Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серии по девять луковиц.Если перегорает слишком много лампочек, в конечном итоге открываются шунты. Что вызывает это?

    Ответ

    Эквивалентное сопротивление девяти последовательно соединенных лампочек составляет 9 R . Ток равен \ (I = V / 9 \, R \). Если одна лампочка перегорит, эквивалентное сопротивление составит 8 R , и напряжение не изменится, но ток возрастет \ ((I = V / 8 \, R \). Чем больше лампочек перегорят, ток станет равным. В конце концов, ток становится слишком большим, что приводит к сгоранию шунта.№ Р_и. \]

  • Одинаковый ток протекает последовательно через каждый резистор.
  • Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.
  • Параллельные резисторы

    На рисунке \ (\ PageIndex {4} \) показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома \ (I = V / R \), где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

    Рисунок \ (\ PageIndex {4} \): Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    Ток, протекающий от источника напряжения на рисунке \ (\ PageIndex {4} \), зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в переход или узел, где цепь разделяется, протекая через резисторы \ (R_1 \) и \ (R_2 \). По мере того, как заряды идут от аккумулятора, некоторые проходят через резистор \ (R_1 \), а некоторые - через резистор \ (R_2 \).Сумма токов, протекающих в переходе, должна быть равна сумме токов, текущих из перехода:

    \ [\ sum I_ {in} = \ sum I_ {out}. {- 1}.{-1}. \ label {10.3} \]

    Это соотношение приводит к эквивалентному сопротивлению \ (R_ {P} \), которое меньше наименьшего из отдельных сопротивлений. Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

    Пример \ (\ PageIndex {2} \): Анализ параллельной цепи

    Три резистора \ (R_1 = 1,00 \, \ Omega \), \ (R_2 = 2,00 \, \ Omega \) и \ (R_3 = 2,00 \, \ Omega \) подключены параллельно.Параллельное соединение подключается к источнику напряжения \ (V = 3,00 \, V \).

    1. Какое эквивалентное сопротивление?
    2. Найдите ток, подаваемый источником в параллельную цепь.
    3. Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.
    4. Рассчитайте мощность, рассеиваемую каждым резистором.
    5. Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия

    (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью уравнения \ ref {10.3}. (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)

    (b) Ток, подаваемый источником, можно найти из закона Ома, заменив \ (R_ {P} \) на полное сопротивление \ (I = \ frac {V} {R_ {P}} \).

    (c) Отдельные токи легко вычислить по закону Ома \ (\ left (I_i = \ frac {V_i} {R_i} \ right) \), поскольку каждый резистор получает полное напряжение.{-1} = 0,50 \, \ Omega. \ Nonumber \] Общее сопротивление с правильным количеством значащих цифр равно \ (R_ {eq} = 0,50 \, \ Omega \). Как и предполагалось, \ (R_ {P} \) меньше наименьшего индивидуального сопротивления.

  • Полный ток можно найти из закона Ома, заменив полное сопротивление \ (R_ {P} \). Это дает \ [I = \ frac {V} {R_ {P}} = \ frac {3.00 \, V} {0.50 \, \ Omega} = 6.00 \, A. \ nonumber \] Текущий I для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.
  • Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом, \ [I_1 = \ frac {V} {R_1} = \ frac {3.00 \, V} {1.00 \, \ Omega} = 3.00 \, A. \ nonumber \] Аналогично, \ [I_2 = \ frac {V } {R_2} = \ frac {3.00 \, V} {2.00 \, \ Omega} = 1.50 \, A \ nonumber \] и \ [I_3 = \ frac {V} {R_3} = \ frac {3.00 \, V } {2.00 \, \ Omega} = 1.50 \, A. \ nonumber \] Полный ток - это сумма отдельных токов: \ [I_1 + I_2 + I_3 = 6.2} {2.00 \, \ Omega} = 4.50 \, W. \ nonumber \]
  • Общую мощность также можно рассчитать несколькими способами. Выбор \ (P = IV \) и ввод общей текущей доходности \ [P = IV = (6.00 \, A) (3.00 \, V) = 18.00 \, W. \ nonumber \]
  • Значение

    Общая мощность, рассеиваемая резисторами, также 18,00 Вт:

    \ [P_1 + P_2 + P_3 = 9,00 \, W + 4,50 \, W + 4,50 \, W = 18,00 \, W. \ nonumber \]

    Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой источником.

    Упражнение \ (\ PageIndex {2A} \)

    Рассмотрим одну и ту же разность потенциалов \ ((V = 3,00 \, V) \), приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно подключенными резисторами, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

    Решение

    Эквивалент последовательной схемы будет \ (R_ {eq} = 1.00 \, \ Omega + 2.00 \, \ Omega + 2.00 \, \ Omega = 5.00 \, \ Omega \), что выше эквивалентного сопротивления параллельной цепи \ (R_ {eq} = 0.50 \, \ Omega \ ). Эквивалентный резистор любого количества резисторов всегда выше, чем эквивалентное сопротивление тех же резисторов, соединенных параллельно. Ток через последовательную цепь будет равен \ (I = \ frac {3.00 \, V} {5.00 \, \ Omega} = 0.60 \, A \), что меньше суммы токов, проходящих через каждый резистор в параллельная цепь, \ (I = 6.00 \, А \). Это неудивительно, поскольку эквивалентное сопротивление последовательной цепи выше. Ток при последовательном соединении любого количества резисторов всегда будет ниже, чем ток при параллельном соединении тех же резисторов, поскольку эквивалентное сопротивление последовательной цепи будет выше, чем параллельной цепи. Мощность, рассеиваемая последовательно включенными резисторами, будет равна \ (P = 1,800 \, Вт \), что ниже мощности, рассеиваемой в параллельной цепи \ (P = 18.00 \, Вт \).

    Упражнение \ (\ PageIndex {2B} \)

    Как бы вы использовали реку и два водопада, чтобы смоделировать параллельную конфигурацию двух резисторов? Как разрушается эта аналогия?

    Решение

    Река, текущая горизонтально с постоянной скоростью, разделяется на две части и течет через два водопада. Молекулы воды аналогичны электронам в параллельных цепях. Количество молекул воды, которые текут в реке и падает, должно быть равно количеству молекул, которые текут над каждым водопадом, точно так же, как сумма тока через каждый резистор должна быть равна току, текущему в параллельном контуре.Молекулы воды в реке обладают энергией благодаря своему движению и высоте. Потенциальная энергия молекул воды в реке постоянна из-за их одинаковой высоты. Это аналогично постоянному изменению напряжения в параллельной цепи. Напряжение - это потенциальная энергия на каждом резисторе.

    При рассмотрении энергии аналогия быстро разрушается. В водопаде потенциальная энергия преобразуется в кинетическую энергию молекул воды. В случае прохождения электронов через резистор падение потенциала преобразуется в тепло и свет, а не в кинетическую энергию электронов.

    Суммируем основные характеристики резисторов параллельно:

    1. Эквивалентное сопротивление находится по формуле \ ref {10.3} и меньше любого отдельного сопротивления в комбинации.
    2. Падение потенциала на каждом параллельном резисторе одинаковое.
    3. Параллельные резисторы не получают суммарный ток каждый; они делят это. Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

    В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Как вы помните, из раздела о емкости мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. Таблица \ (\ PageIndex {1} \) суммирует уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.

    Таблица \ (\ PageIndex {1} \): сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях
    Комбинация серий Параллельная комбинация
    Эквивалентная емкость \ [\ frac {1} {C_ {S}} = \ frac {1} {C_1} + \ frac {1} {C_2} + \ frac {1} {C_3} +.N R_i \ nonumber \] \ [\ frac {1} {R_ {P}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ frac {1} {R_3} +. . . \ nonumber \]

    Сочетания последовательного и параллельного

    Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения. Такие комбинации обычны, особенно если учесть сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинации последовательного и параллельного соединения можно уменьшить до одного эквивалентного сопротивления, используя метод, показанный на рисунке \ (\ PageIndex {5} \).Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс более трудоемкий, чем трудный. Здесь мы отмечаем эквивалентное сопротивление как \ (R_ {eq} \).

    Рисунок \ (\ PageIndex {5} \): (а) Исходная схема из четырех резисторов. (b) Шаг 1: резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, и эквивалентное сопротивление равно \ (R_ {34} = 10 \, \ Omega \). (c) Шаг 2: сокращенная схема показывает, что резисторы \ (R_2 \) и \ (R_ {34} \) включены параллельно, с эквивалентным сопротивлением \ (R_ {234} = 5 \, \ Omega \).(d) Шаг 3: сокращенная схема показывает, что \ (R_1 \) и \ (R_ {234} \) включены последовательно с эквивалентным сопротивлением \ (R_ {1234} = 12 \, \ Omega \), которое является эквивалентное сопротивление \ (R_ {eq} \). (e) Уменьшенная схема с источником напряжения \ (V = 24 \, V \) с эквивалентным сопротивлением \ (R_ {eq} = 12 \, \ Omega \). Это приводит к току \ (I = 2 \, A \) от источника напряжения.

    Обратите внимание, что резисторы \ (R_3 \) и \ (R_4 \) включены последовательно. Их можно объединить в одно эквивалентное сопротивление.Один из методов отслеживания процесса - включить резисторы в индексы. {- 1} = 5 \, \ Omega.\ nonumber \]

    Этот шаг процесса сокращает схему до двух резисторов, показанных на рисунке \ (\ PageIndex {5d} \). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

    \ [R_ {eq} = R_ {1234} = R_1 + R_ {234} = 7 \, \ Omega + 5 \ Omega = 12 \, \ Omega. \ nonumber \]

    Основная цель этого анализа схемы достигнута, и теперь схема сводится к одному резистору и одному источнику напряжения.

    Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен \ (I = \ frac {V} {R_ {eq}} = \ frac {24 \, V} {12 \, \ Omega} = 2 \, A \). Этот ток проходит через резистор \ (R_1 \) и обозначается как \ (I_1 \). Падение потенциала на \ (R_1 \) можно найти с помощью закона Ома:

    \ [V_1 = I_1R_1 = (2 \, A) (7 \, \ Omega) = 14 \, V. \ nonumber \]

    Глядя на рисунок \ (\ PageIndex {5c} \), это оставляет \ (24 \, V - 14 \, V = 10 \, V \) отбрасывать в параллельной комбинации \ (R_2 \) и \ ( R_ {34} \).Ток через \ (R_2 \) можно найти по закону Ома:

    \ [I_2 = \ frac {V_2} {R_2} = \ frac {10 \, V} {10 \, \ Omega} = 1 \, A. \ nonumber \]

    Резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, поэтому токи \ (I_3 \) и \ (I_4 \) равны

    .

    \ [I_3 = I_4 = I - I_2 = 2 \, A - 1 \, A = 1 \, A. \ nonumber \]

    Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах. Потенциальные капли равны \ (V_3 = I_3R_3 = 6 \, V \) и \ (V_4 = I_4R_4 = 4 \, V \).2 (4 \, \ Omega) = 4 \, W, \\ [4pt] P_ {рассеивается} & = P_1 + P_2 + P_3 + P_4 = 48 \, W. \ end {align *} \]

    Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, составляет

    \ [\ begin {align *} P_s & = IV \\ [4pt] & = (2 \, A) (24 \, V) = 48 \, W \ end {align *} \]

    Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

    Пример \ (\ PageIndex {3} \): объединение последовательных и параллельных цепей

    На рисунке \ (\ PageIndex {6} \) показаны резисторы, подключенные последовательно и параллельно.Мы можем считать \ (R_1 \) сопротивлением проводов, ведущих к \ (R_2 \) и \ (R_3 \).

    1. Найдите эквивалентное сопротивление цепи.
    2. Какое падение потенциала \ (V_1 \) на резисторе \ (R_1 \)?
    3. Найдите ток \ (I_2 \) через резистор \ (R_2 \).
    4. Какую мощность рассеивает \ (R_2 \)?
    Рисунок \ (\ PageIndex {6} \): Эти три резистора подключены к источнику напряжения так, чтобы \ (R_2 \) и \ (R_3 \) были параллельны друг другу, и эта комбинация была последовательно с \ (R_1 \).

    Стратегия

    (a) Чтобы найти эквивалентное сопротивление, сначала найдите эквивалентное сопротивление параллельного соединения \ (R_2 \) и \ (R_3 \). Затем используйте этот результат, чтобы найти эквивалентное сопротивление последовательного соединения с \ (R_1 \).

    (b) Ток через \ (R_1 \) можно найти с помощью закона Ома и приложенного напряжения. Ток через \ (R_1 \) равен току от батареи. Падение потенциала \ (V_1 \) на резисторе \ (R_1 \) (которое представляет собой сопротивление в соединительных проводах) можно найти с помощью закона Ома.{-1} = 5.10 \, \ Omega. \ Nonumber \] Общее сопротивление этой комбинации является промежуточным между значениями чистой серии и чисто параллельной (\ (20.0 \, \ Omega \) и \ (0.804 \, \ Omega \) ), соответственно).

  • Ток через \ (R_1 \) равен току, обеспечиваемому батареей: \ [I_1 = I = \ frac {V} {R_ {eq}} = \ frac {12.0 \, V} {5.10 \, \ Omega} = 2.35 \, A. \ nonumber \] Напряжение на \ (R_1 \) равно \ [V_1 = I_1R_1 = (2.35 \, A) (1 \, \ Omega) = 2.35 \, V. \ nonumber \] Напряжение, приложенное к \ (R_2 \) и \ (R_3 \), меньше напряжения, подаваемого батареей, на величину \ (V_1 \).Когда сопротивление провода велико, это может существенно повлиять на работу устройств, представленных \ (R_2 \) и \ (R_3 \).
  • Чтобы найти ток через \ (R_2 \), мы должны сначала найти приложенное к нему напряжение. Напряжение на двух параллельных резисторах одинаковое: \ [V_2 = V_3 = V - V_1 = 12.0 \, V - 2.35 \, V = 9.65 \, V. \ nonumber \] Теперь мы можем найти ток \ (I_2 \) через сопротивление \ (R_2 \) по закону Ома: \ [I_2 = \ frac {V_2} {R_2} = \ frac {9.65 \, V} {6.00 \, \ Omega} = 1.2 (6.00 \, \ Omega) = 15.5 \, W. \ nonumber \]
  • Значение

    Анализ сложных схем часто можно упростить, сведя схему к источнику напряжения и эквивалентному сопротивлению. Даже если вся схема не может быть сведена к одному источнику напряжения и одному эквивалентному сопротивлению, части схемы могут быть уменьшены, что значительно упрощает анализ.

    Упражнение \ (\ PageIndex {3} \)

    Рассмотрите электрические цепи в вашем доме.Приведите по крайней мере два примера схем, которые должны использовать комбинацию последовательных и параллельных схем для эффективной работы.

    Решение

    Все цепи верхнего освещения параллельны и подключены к основному питанию, поэтому при перегорании одной лампочки все верхнее освещение не гаснет. У каждого верхнего света будет по крайней мере один переключатель, включенный последовательно с источником света, так что вы можете включать и выключать его.

    В холодильнике есть компрессор и лампа, которая загорается при открытии дверцы.Обычно у холодильника есть только один шнур для подключения к стене. Цепь, содержащая компрессор, и цепь, содержащая цепь освещения, параллельны, но есть переключатель, включенный последовательно со светом. Термостат управляет переключателем, который включен последовательно с компрессором, чтобы контролировать температуру холодильника.

    Практическое применение

    Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение IR в проводах также может быть значительным и может проявляться из-за тепла, выделяемого в шнуре.

    Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    Что происходит в этих сильноточных ситуациях, показано на рисунке \ (\ PageIndex {7} \). Устройство, обозначенное символом \ (R_3 \), имеет очень низкое сопротивление, поэтому при его включении протекает большой ток. Этот увеличенный ток вызывает большее падение IR в проводах, обозначенных \ (R_1 \), уменьшая напряжение на лампочке (которое равно \ (R_2 \)), которое затем заметно гаснет.

    Рисунок \ (\ PageIndex {7} \): Почему свет тускнеет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение IR в проводах и снижает напряжение на свету.

    Стратегия решения проблем: последовательные и параллельные резисторы

    1. Нарисуйте четкую принципиальную схему, пометив все резисторы и источники напряжения. Этот шаг включает список известных значений проблемы, поскольку они отмечены на вашей принципиальной схеме.
    2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
    3. Определите, подключены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно.Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные. Есть один список для серий, а другой - для параллелей.
    5. Проверьте, являются ли ответы разумными и последовательными.

    Пример \ (\ PageIndex {4} \): объединение последовательных и параллельных цепей

    Два резистора, соединенных последовательно \ ((R_1, \, R_2) \), соединены с двумя резисторами, включенными параллельно \ ((R_3, \, R_4) \).Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление 10,00 Ом. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление. Через резистор \ (R_1 \) проходит ток 2,00 А. Какое напряжение подается от источника напряжения?

    Стратегия

    Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

    Решение

    Рисунок \ (\ PageIndex {8} \): Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.
    1. Нарисуйте четкую принципиальную схему (рисунок \ (\ PageIndex {8} \)).
    2. Неизвестно напряжение аккумулятора. Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
    3. В этой схеме мы уже знаем, что резисторы \ (R_1 \) и \ (R_2 \) включены последовательно, а резисторы \ (R_3 \) и \ (R_4 \) включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов \ (R_3 \) и \ (R_4 \) последовательно с последовательной конфигурацией резисторов \ (R_1 \) и \ (R_2 \).{-1} = 5,00 \, \ Омега. \ nonumber \] Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление схемы равно \ (R_ {eq} = R_1 + R_2 + R_ {34} = (25.00 \, \ Omega \). поэтому напряжение, подаваемое батареей, равно \ (V = IR_ {eq} = 2.00 \, A (25.00 \, \ Omega) = 50.00 \, V \).
    4. Один из способов проверить соответствие ваших результатов - это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами. Мощность, обеспечиваемая аккумулятором, равна \ (P_ {batt} = IV = 100.2R_4 \\ [4pt] & = 40.00 \, W + 40.00 \, W + 10.00 \, W + 10.00 \, W = 100. \, W. \ end {align *} \]

      Поскольку мощность, рассеиваемая резисторами, равна мощности, обеспечиваемой батареей, наше решение кажется последовательным.

      Значение

      Если проблема имеет комбинацию последовательного и параллельного соединения, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При нахождении \ (R_ {eq} \) для параллельного соединения необходимо с осторожностью относиться к обратному. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.

      Авторы и авторство

      • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами.Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

      Учебное пособие по физике: Комбинированные схемы

      Ранее в Уроке 4 упоминалось, что существует два разных способа соединения двух или более электрических устройств в цепь. Они могут быть соединены посредством последовательного или параллельного соединения. Когда все устройства в цепи соединены последовательным соединением, эта схема называется последовательной схемой.Когда все устройства в цепи соединены параллельными соединениями, тогда схема называется параллельной цепью. Третий тип схемы предполагает двойное использование последовательного и параллельного соединений в схеме; такие схемы называются составными схемами или комбинированными схемами. Схема, изображенная справа, является примером использования как последовательного, так и параллельного соединения в одной и той же цепи. В этом случае лампочки A и B подключаются параллельно, а лампочки C и D подключаются последовательно.Это пример комбинированной схемы .

      При анализе комбинированных цепей критически важно иметь твердое представление о концепциях, которые относятся как к последовательным цепям, так и к параллельным цепям. Поскольку оба типа соединений используются в комбинированных схемах, концепции, связанные с обоими типами схем, применяются к соответствующим частям схемы. Основные понятия, связанные с последовательными и параллельными цепями, представлены в таблице ниже.

      Цепи серии
      • Ток одинаков на всех резисторах; этот ток равен току в батарее.
      • Сумма падений напряжения на отдельных резисторах равна номинальному напряжению батареи.
      • Общее сопротивление набора резисторов равно сумме отдельных значений сопротивлений,
      R до = R 1 + R 2 + R 3 +...
      Параллельные схемы
      • Падение напряжения одинаково на каждой параллельной ветви.
      • Сумма тока в каждой отдельной ветви равна току вне ветвей.
      • Эквивалентное или полное сопротивление набора резисторов определяется уравнением 1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 ...

      Каждое из приведенных выше понятий имеет математическое выражение.Комбинирование математических выражений вышеуказанных понятий с уравнением закона Ома (ΔV = I • R) позволяет провести полный анализ комбинированной схемы.

      Анализ комбинированных схем

      Основная стратегия анализа комбинированных схем включает использование значения эквивалентного сопротивления для параллельных ветвей для преобразования комбинированной схемы в последовательную. После преобразования в последовательную схему анализ можно проводить обычным образом.Ранее в Уроке 4 описывался метод определения эквивалентного параллельного сопротивления, затем общее или эквивалентное сопротивление этих ветвей равно сопротивлению одной ветви, деленному на количество ветвей.

      Этот метод соответствует формуле

      1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 + ...

      , где R 1 , R 2 и R 3 - значения сопротивления отдельных резисторов, подключенных параллельно.Если два или более резистора, находящихся в параллельных ветвях, не имеют равного сопротивления, необходимо использовать приведенную выше формулу. Пример этого метода был представлен в предыдущем разделе Урока 4.

      Применяя свое понимание эквивалентного сопротивления параллельных ветвей к комбинированной цепи, комбинированную схему можно преобразовать в последовательную. Затем понимание эквивалентного сопротивления последовательной цепи можно использовать для определения общего сопротивления цепи.Рассмотрим следующие диаграммы ниже. Схема A представляет собой комбинированную схему с резисторами R 2 и R 3 , размещенными в параллельных ветвях. Два параллельных резистора 4 Ом эквивалентны сопротивлению 2 Ом. Таким образом, две ветви можно заменить одним резистором с сопротивлением 2 Ом. Это показано на диаграмме B. Теперь, когда все резисторы включены последовательно, можно использовать формулу для общего сопротивления последовательных резисторов для определения общего сопротивления этой цепи: Формула для последовательного сопротивления составляет

      . R to = R 1 + R 2 + R 3 +...

      Итак, на схеме B полное сопротивление цепи составляет 10 Ом.

      После определения общего сопротивления цепи анализ продолжается с использованием закона Ома и значений напряжения и сопротивления для определения значений тока в различных местах. Весь метод проиллюстрирован ниже на двух примерах.

      Пример 1:

      Первый пример - самый простой - резисторы, включенные параллельно, имеют одинаковое сопротивление.Цель анализа - определить ток и падение напряжения на каждом резисторе.

      Как обсуждалось выше, первым шагом является упрощение схемы путем замены двух параллельных резисторов одним резистором с эквивалентным сопротивлением. Два последовательно подключенных резистора 8 Ом эквивалентны одному резистору 4 Ом. Таким образом, два резистора ответвления (R 2 и R 3 ) можно заменить одним резистором с сопротивлением 4 Ом. Этот резистор 4 Ом включен последовательно с R 1 и R 4 .Таким образом, общее сопротивление составляет

      . R до = R 1 + 4 Ом + R 4 = 5 Ом + 4 Ом + 6 Ом

      R до = 15 Ом

      Теперь уравнение закона Ома (ΔV = I • R) можно использовать для определения полного тока в цепи. При этом необходимо использовать общее сопротивление и общее напряжение (или напряжение батареи).

      I tot = ΔV tot / R tot = (60 В) / (15 Ом)

      I до = 4 А

      Расчет тока 4 А представляет собой ток в месте расположения батареи.Тем не менее, резисторы R 1 и R 4 включены последовательно, и ток в последовательно соединенных резисторах везде одинаков. Таким образом,

      I до = I 1 = I 4 = 4 А

      Для параллельных ветвей сумма тока в каждой отдельной ветви равна току вне ветвей. Таким образом, I 2 + I 3 должно равняться 4 ампер. Существует бесконечное количество возможных значений I 2 и I 3 , которые удовлетворяют этому уравнению.Поскольку значения сопротивления равны, значения тока в этих двух резисторах также равны. Следовательно, ток в резисторах 2 и 3 равен 2 А.

      I 2 = I 3 = 2 А

      Теперь, когда известен ток в каждом отдельном месте резистора, можно использовать уравнение закона Ома (ΔV = I • R) для определения падения напряжения на каждом резисторе. Эти расчеты показаны ниже.

      ΔV 1 = I 1 • R 1 = (4 А) • (5 Ом)
      ΔV 1 = 20 В

      ΔV 2 = I 2 • R 2 = (2 А) • (8 Ом)

      ΔV 2 = 16 В

      ΔV 3 = I 3 • R 3 = (2 А) • (8 Ом)

      ΔV 3 = 16 В

      ΔV 4 = I 4 • R 4 = (4 А) • (6 Ом)

      ΔV 4 = 24 В

      На этом анализ завершен, и его результаты представлены на диаграмме ниже.

      Пример 2:

      Второй пример - более сложный случай - резисторы, включенные параллельно, имеют другое сопротивление. Цель анализа та же - определить ток и падение напряжения на каждом резисторе.

      Как обсуждалось выше, первым шагом является упрощение схемы путем замены двух параллельных резисторов одним резистором с эквивалентным сопротивлением.Эквивалентное сопротивление резистора 4 Ом и 12 Ом, включенного параллельно, можно определить, используя обычную формулу для эквивалентного сопротивления параллельных ветвей:

      1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 ...

      1 / R экв. = 1 / (4 Ом) + 1 / (12 Ом)

      1 / R экв. = 0,333 Ом -1

      R экв = 1 / (0,333 Ом -1 )

      R экв = 3.00 Ом

      На основании этого расчета можно сказать, что два резистора ответвления (R 2 и R 3 ) можно заменить одним резистором с сопротивлением 3 Ом. Этот резистор 3 Ом включен последовательно с R 1 и R 4 . Таким образом, общее сопротивление составляет

      . R до = R 1 + 3 Ом + R 4 = 5 Ом + 3 Ом + 8 Ом

      R до = 16 Ом

      Теперь уравнение закона Ома (ΔV = I • R) можно использовать для определения полного тока в цепи.При этом необходимо использовать общее сопротивление и общее напряжение (или напряжение батареи).

      I tot = ΔV tot / R tot = (24 В) / (16 Ом)

      I до = 1,5 А

      Расчет тока 1,5 А представляет собой ток в месте расположения батареи. Тем не менее, резисторы R 1 и R 4 включены последовательно, и ток в последовательно соединенных резисторах везде одинаков.Таким образом,

      I до = I 1 = I 4 = 1,5 А

      Для параллельных ветвей сумма тока в каждой отдельной ветви равна току вне ветвей. Таким образом, I 2 + I 3 должно быть равно 1,5 А. Существует бесконечное множество значений I 2 и I 3 , которые удовлетворяют этому уравнению. В предыдущем примере два параллельно включенных резистора имели одинаковое сопротивление; таким образом, ток распределялся поровну между двумя ветвями.В этом примере неравный ток в двух резисторах усложняет анализ. Ветвь с наименьшим сопротивлением будет иметь наибольший ток. Для определения силы тока потребуется использовать уравнение закона Ома. Но для его использования сначала необходимо знать падение напряжения на ветвях. Таким образом, направление решения в этом примере будет немного отличаться от более простого случая, проиллюстрированного в предыдущем примере.

      Чтобы определить падение напряжения на параллельных ветвях, сначала необходимо определить падение напряжения на двух последовательно соединенных резисторах (R 1 и R 4 ).Уравнение закона Ома (ΔV = I • R) можно использовать для определения падения напряжения на каждом резисторе. Эти расчеты показаны ниже.

      ΔV 1 = I 1 • R 1 = (1,5 А) • (5 Ом)
      ΔV 1 = 7,5 В

      ΔV 4 = I 4 • R 4 = (1,5 А) • (8 Ом)

      ΔV 4 = 12 В

      Эта схема питается от источника 24 В.Таким образом, совокупное падение напряжения заряда, проходящего по контуру цепи, составляет 24 вольта. Будет падение 19,5 В (7,5 В + 12 В) в результате прохождения через два последовательно соединенных резистора (R 1 и R 4 ). Падение напряжения на ответвлениях должно составлять 4,5 В, чтобы компенсировать разницу между общим значением 24 В и падением 19,5 В на R 1 и R 4 . Таким образом,

      ΔV 2 = V 3 = 4,5 В

      Зная падение напряжения на параллельно соединенных резисторах (R 1 и R 4 ), можно использовать уравнение закона Ома (ΔV = I • R) для определения тока в двух ветвях.

      I 2 = ΔV 2 / R 2 = (4,5 В) / (4 Ом)
      I 2 = 1,125 А

      I 3 = ΔV 3 / R 3 = (4,5 В) / (12 Ом)

      I 3 = 0,375 А

      На этом анализ завершен, и его результаты представлены на диаграмме ниже.

      Разработка стратегии

      Два приведенных выше примера иллюстрируют эффективную концептуально-ориентированную стратегию анализа комбинированных схем.Подход требовал твердого понимания концепций последовательностей и параллелей, обсуждавшихся ранее. Такие анализы часто проводятся, чтобы решить физическую проблему для указанного неизвестного. В таких ситуациях неизвестное обычно меняется от проблемы к проблеме. В одной задаче значения резистора могут быть заданы, а ток во всех ветвях неизвестен. В другой задаче могут быть указаны ток в батарее и несколько значений резистора, и неизвестная величина становится сопротивлением одного из резисторов.Очевидно, что разные проблемные ситуации потребуют небольших изменений в подходах. Тем не менее, каждый подход к решению проблем будет использовать те же принципы, что и при подходе к двум приведенным выше примерам проблем.

      Начинающему студенту предлагаются следующие предложения по решению задач комбинированной схемы:

      • Если схематическая диаграмма не предоставлена, найдите время, чтобы построить ее. Используйте условные обозначения, такие как те, что показаны в примере выше.
      • При приближении к проблеме, связанной с комбинированной схемой, найдите время, чтобы организовать себя, записав известные значения и приравняв их к символу, например I - , I 1 , R 3 , ΔV 2 и т. Д. Схема организации, использованная в двух приведенных выше примерах, является эффективной отправной точкой.
      • Знать и использовать соответствующие формулы для эквивалентного сопротивления последовательно соединенных и параллельно соединенных резисторов. Использование неправильных формул гарантирует неудачу.
      • Преобразуйте комбинированную схему в строго последовательную, заменив (по вашему мнению) параллельную секцию одним резистором, имеющим значение сопротивления, равное эквивалентному сопротивлению параллельной секции.
      • Используйте уравнение закона Ома (ΔV = I • R) часто и надлежащим образом. Большинство ответов будет определено с использованием этого уравнения. При его использовании важно подставлять в уравнение соответствующие значения. Например, при вычислении I 2 важно подставить в уравнение значения ΔV 2 и R 2 .

      Для дальнейшей практики анализа комбинированных схем рассмотрите возможность анализа проблем в разделе «Проверьте свое понимание» ниже.

      Мы хотели бы предложить ... Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать - это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока.Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, расположить и подключить их так, как вам нужно. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


      Проверьте свое понимание

      1. Комбинированная схема показана на схеме справа. Используйте диаграмму, чтобы ответить на следующие вопросы.

      а. Ток в точке A равен _____ (больше, равен, меньше) ток в точке B.

      г. Ток в точке B равен _____ (больше, равен, меньше) ток в точке E.

      г. Ток в точке G равен _____ (больше, равен, меньше) ток в точке F.

      г. Ток в точке E равен _____ (больше, равен, меньше) току в точке G.

      e. Ток в точке B равен _____ (больше, равен, меньше) ток в точке F.

      ф. Ток в точке A равен _____ (больше, равен, меньше) току в точке L.

      г. Ток в точке H равен _____ (больше, равен, меньше) ток в точке I.

      2. Рассмотрим комбинированную схему на схеме справа. Используйте диаграмму, чтобы ответить на следующие вопросы. (Предположим, что падение напряжения в самих проводах пренебрежимо мало.)

      а. Разность электрических потенциалов (падение напряжения) между точками B и C составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками J и K.

      г. Разность электрических потенциалов (падение напряжения) между точками B и K составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

      г. Разность электрических потенциалов (падение напряжения) между точками E и F составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками G и H.

      г. Разность электрических потенциалов (падение напряжения) между точками E и F составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

      e. Разность электрических потенциалов (падение напряжения) между точками J и K составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

      ф. Разность электрических потенциалов между точками L и A составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками B и K.


      3.Используйте концепцию эквивалентного сопротивления, чтобы определить неизвестное сопротивление идентифицированного резистора, которое сделало бы схемы эквивалентными.




      4. Проанализируйте следующую схему и определите значения общего сопротивления, общего тока, а также тока и падения напряжения на каждом отдельном резисторе.


      5. Обращаясь к диаграмме в вопросе №4, определите ...

      а. ... номинальная мощность резистора 4.

      г. ... скорость, с которой энергия потребляется резистором 3.

      Резисторы в комбинации последовательно и параллельно

      В предыдущих руководствах мы узнали, как соединить отдельные резисторы вместе, чтобы сформировать либо сеть последовательных резисторов, либо параллельную сеть резисторов, и мы использовали закон Ома, чтобы найти различные протекающие токи и напряжения на каждой комбинации резисторов.

      Но что, если мы хотим соединить различные резисторы вместе в «ОБЕИХ» параллельных и последовательных комбинациях в одной и той же цепи для создания более сложных резистивных цепей, как мы рассчитаем объединенное или полное сопротивление цепи, токи и напряжения для этих резистивных комбинаций.

      Цепи резисторов

      , которые объединяют последовательно и параллельные цепи резисторов, обычно известны как комбинация резисторов или смешанные цепи резисторов. Метод расчета эквивалентного сопротивления цепи такой же, как и для любой отдельной последовательной или параллельной цепи, и, надеюсь, теперь мы знаем, что последовательно подключенные резисторы несут точно такой же ток и что резисторы, подключенные параллельно, имеют точно такое же напряжение на них.

      Например, в следующей схеме вычислите полный ток (I T ), снимаемый с источника питания 12 В.

      На первый взгляд это может показаться сложной задачей, но если мы присмотримся немного ближе, мы увидим, что два резистора, R 2 и R 3 , фактически оба соединены вместе в комбинацию «СЕРИЯ», поэтому мы можем добавить их вместе, чтобы получить эквивалентное сопротивление, такое же, как мы делали в руководстве по последовательным резисторам. Таким образом, результирующее сопротивление для этой комбинации будет:

      .

      R 2 + R 3 = 8 Ом + 4 Ом = 12 Ом

      Таким образом, мы можем заменить оба резистора R 2 и R 3 , указанные выше, на один резистор с сопротивлением 12 Ом

      Итак, наша схема теперь имеет единственный резистор R A в «ПАРАЛЛЕЛЬНО» с резистором R 4 .Используя наши резисторы в параллельном уравнении, мы можем уменьшить эту параллельную комбинацию до одного эквивалентного резистора R (комбинация) , используя следующую формулу для двух параллельно соединенных резисторов.

      Резистивная цепь теперь выглядит примерно так:

      Мы можем видеть, что два оставшихся сопротивления, R 1 и R (гребенчатый) , соединены вместе в комбинации «ПОСЛЕДОВАТЕЛЬНОСТЬ», и снова их можно сложить вместе (резисторы, включенные последовательно), так что общее сопротивление цепи между точками Следовательно, A и B даются как:

      R (ab) = R comb + R 1 = 6 Ом + 6 Ом = 12 Ом

      Таким образом, можно использовать один резистор всего 12 Ом для замены четырех исходных резисторов, соединенных вместе в исходной схеме, приведенной выше.

      Используя закон Ома, значение тока (I), протекающего по цепи, рассчитывается как:

      Тогда мы видим, что любую сложную резистивную цепь, состоящую из нескольких резисторов, можно свести к простой одиночной схеме с одним эквивалентным резистором, заменив все резисторы, соединенные вместе последовательно или параллельно, используя шаги, описанные выше.

      Мы можем сделать еще один шаг вперед, используя закон Ома, чтобы найти два тока ответвления, I 1 и I 2 , как показано.

      В (R1) = I * R 1 = 1 * 6 = 6 вольт

      В (RA) = В R4 = (12 - В R1 ) = 6 В

      Таким образом:

      I 1 = 6 В ÷ R A = 6 ÷ 12 = 0,5 A или 500 мА

      I 2 = 6 В ÷ R 4 = 6 ÷ 12 = 0,5 А или 500 мА

      Поскольку значения сопротивления двух ветвей одинаковы при 12 Ом, два тока ответвления I 1 и I 2 также равны при 0.5 А (или 500 мА) каждый. Таким образом, общий ток питания I T составляет: 0,5 + 0,5 = 1,0 ампера, как рассчитано выше.

      Иногда проще со сложными комбинациями резисторов и резистивными цепями нарисовать или перерисовать новую схему после того, как эти изменения были внесены, поскольку это помогает в качестве наглядного пособия по математике. Затем продолжайте заменять любые последовательные или параллельные комбинации, пока не будет найдено одно эквивалентное сопротивление, R EQ . Давайте попробуем еще одну более сложную схему комбинации резисторов.

      Последовательные и параллельные резисторы Пример №2

      Найдите эквивалентное сопротивление R EQ для следующей схемы комбинации резисторов.

      Опять же, на первый взгляд эта резисторная лестничная схема может показаться сложной задачей, но, как и раньше, это просто комбинация последовательно соединенных и параллельных резисторов. Начиная с правой стороны и используя упрощенное уравнение для двух параллельных резисторов, мы можем найти эквивалентное сопротивление комбинации R 8 - R 10 и назвать его R A .

      R A включен последовательно с R 7 , поэтому общее сопротивление будет R A + R 7 = 4 + 8 = 12 Ом, как показано.

      Это значение сопротивления в 12 Ом теперь параллельно с R 6 и может быть рассчитано как R B .

      R B последовательно с R 5 , поэтому общее сопротивление будет R B + R 5 = 4 + 4 = 8 Ом, как показано.

      Это значение сопротивления 8 Ом теперь параллельно с R 4 и может быть рассчитано как R C , как показано.

      R C последовательно с R 3 , поэтому общее сопротивление будет R C + R 3 = 8 Ом, как показано.

      Это значение сопротивления 8 Ом теперь параллельно с R 2 , из которого мы можем рассчитать R D как:

      R D последовательно с R 1 , поэтому общее сопротивление будет R D + R 1 = 4 + 6 = 10 Ом, как показано.

      Тогда сложная комбинационная резистивная цепь, описанная выше, состоящая из десяти отдельных резисторов, соединенных вместе последовательно и параллельных комбинаций, может быть заменена одним единственным эквивалентным сопротивлением (R EQ ) величиной 10 Ом.

      При решении любой схемы комбинационного резистора, состоящей из резисторов, включенных последовательно и параллельно, первый шаг, который нам нужно сделать, - это определить простые последовательные и параллельные ветви резисторов и заменить их эквивалентными резисторами.

      Этот шаг позволит нам упростить схему и поможет преобразовать сложную комбинационную резистивную схему в единое эквивалентное сопротивление, помня, что последовательные цепи являются делителями напряжения, а параллельные цепи - делителями тока.

      Однако расчеты более сложных цепей аттенюаторов с Т-образной площадкой и резистивных мостов, которые не могут быть сведены к простой параллельной или последовательной схеме с использованием эквивалентных сопротивлений, требуют другого подхода. Эти более сложные схемы должны быть решены с использованием закона тока Кирхгофа и закона напряжения Кирхгофа, которые будут рассмотрены в другом руководстве.

      В следующем уроке о резисторах мы рассмотрим электрическую разность потенциалов (напряжение) в двух точках, включая резистор.

      Сопротивление

      параллельно - параллельно подключенные резисторы

      В отличие от предыдущей схемы последовательного резистора, в параллельной резисторной сети ток схемы может проходить по нескольким путям, поскольку существует несколько путей для тока.Тогда параллельные цепи классифицируются как делители тока.

      Поскольку существует несколько путей прохождения тока питания, ток может быть неодинаковым во всех ответвлениях параллельной сети. Однако падение напряжения на всех резисторах в параллельной резистивной сети одинаково. Тогда резисторы в параллельном соединении имеют общее напряжение на них, и это верно для всех параллельно соединенных элементов.

      Таким образом, мы можем определить параллельную резистивную цепь как такую, в которой резисторы подключены к одним и тем же двум точкам (или узлам), и идентифицируется по тому факту, что у нее более одного пути тока, подключенного к общему источнику напряжения.Затем в нашем примере с параллельным резистором ниже напряжение на резисторе R 1 равно напряжению на резисторе R 2 , которое равно напряжению на резисторе R 3 и которое равно напряжению питания. Следовательно, для параллельной сети резисторов это определяется как:

      В следующих резисторах, включенных в параллельную цепь, резисторы R 1 , R 2 и R 3 подключены вместе параллельно между двумя точками A и B, как показано.

      Цепь параллельного резистора

      В предыдущей схеме последовательных резисторов мы видели, что полное сопротивление цепи R T равно сумме всех отдельных резисторов, сложенных вместе. Для резисторов, включенных параллельно, сопротивление эквивалентной цепи R T рассчитывается иначе.

      Здесь обратные (1 / R) значения отдельных сопротивлений складываются вместе вместо самих сопротивлений с обратной алгебраической суммой, дающей эквивалентное сопротивление, как показано.

      Уравнение параллельного резистора

      Тогда величина, обратная эквивалентному сопротивлению двух или более резисторов, соединенных параллельно, является алгебраической суммой обратных величин отдельных сопротивлений.

      Если два параллельных сопротивления или импеданса равны и имеют одинаковое значение, то полное или эквивалентное сопротивление R T равно половине значения одного резистора. Это равно R / 2 и для трех одинаковых резисторов, включенных параллельно, R / 3 и т. Д.

      Обратите внимание, что эквивалентное сопротивление всегда меньше наименьшего резистора в параллельной сети, поэтому общее сопротивление R T всегда будет уменьшаться по мере добавления дополнительных параллельных резисторов.

      Параллельное сопротивление дает нам значение, известное как Проводимость , символ G с единицами проводимости Siemens , символ S . Электропроводность является обратной или обратной величине сопротивления (G = 1 / R). Чтобы преобразовать проводимость обратно в значение сопротивления, нам нужно взять обратную проводимость, что даст нам общее сопротивление, R T резисторов, включенных параллельно.

      Теперь мы знаем, что резисторы, подключенные между одними и теми же двумя точками, считаются параллельными.Но параллельная резистивная цепь может принимать множество форм, отличных от очевидной, приведенной выше, и вот несколько примеров того, как резисторы могут быть соединены вместе параллельно.

      Различные параллельные резистивные сети

      Пять резистивных цепей выше могут отличаться друг от друга, но все они расположены как резисторы параллельно , и поэтому применяются те же условия и уравнения.

      Резисторы

      в параллели Пример №1

      Найдите полное сопротивление R T следующих резисторов, включенных в параллельную сеть.

      Общее сопротивление R T на двух клеммах A и B рассчитывается как:

      Этот метод взаимного расчета может использоваться для расчета любого количества отдельных сопротивлений, соединенных вместе в одной параллельной сети.

      Если, однако, есть только два отдельных резистора, подключенных параллельно, мы можем использовать гораздо более простую и быструю формулу, чтобы найти полное или эквивалентное значение сопротивления, R T , и немного сократить взаимные математические вычисления.

      Этот гораздо более быстрый метод вычисления двух параллельно включенных резисторов, имеющих равные или неодинаковые значения, выражается как:

      Резисторы

      в параллели Пример №2

      Рассмотрим следующую схему, в которой только два резистора включены в параллельную комбинацию.

      Используя приведенную выше формулу для двух параллельно соединенных резисторов, мы можем рассчитать полное сопротивление цепи R T как:

      Один важный момент, который следует помнить о резисторах, включенных параллельно, заключается в том, что полное сопротивление цепи (R T ) любых двух резисторов, соединенных вместе, параллельно, всегда будет на МЕНЬШЕ , чем значение наименьшего резистора в этой комбинации.

      В нашем примере выше значение комбинации было рассчитано как: R T = 15 кОм, где значение наименьшего резистора составляет 22 кОм, что намного больше. Другими словами, эквивалентное сопротивление параллельной сети всегда будет меньше, чем у наименьшего отдельного резистора в комбинации.

      Кроме того, если R 1 равно значению R 2 , то есть 1 = R 2 , общее сопротивление сети будет ровно половиной значения одного из резисторы, R / 2.

      Аналогично, если три или более резистора, каждый с одинаковым номиналом, подключены параллельно, то эквивалентное сопротивление будет равно R / n, где R - номинал резистора, а n - количество отдельных сопротивлений в комбинации.

      Например, шесть резисторов 100 Ом соединены параллельно. Таким образом, эквивалентное сопротивление будет: R T = R / n = 100/6 = 16,7 Ом. Но учтите, что это работает ТОЛЬКО для эквивалентных резисторов. То есть резисторы имеют одинаковое значение.

      Токи в параллельной цепи резистора

      Полный ток I T , входящий в параллельную резистивную цепь, представляет собой сумму всех отдельных токов, протекающих во всех параллельных ветвях. Но величина тока, протекающего через каждую параллельную ветвь, не обязательно может быть одинаковой, поскольку значение сопротивления каждой ветви определяет величину тока, протекающего в этой ветви.

      Например, хотя параллельная комбинация имеет одинаковое напряжение на ней, сопротивления могут быть разными, поэтому ток, протекающий через каждый резистор, определенно будет отличаться, как определено законом Ома.

      Рассмотрим два резистора, включенных параллельно выше. Ток, протекающий через каждый из резисторов (I R1 и I R2 ), соединенных параллельно, не обязательно имеет одинаковое значение, так как он зависит от значения сопротивления резистора. Однако мы знаем, что ток, который входит в цепь в точке A, должен также выходить из цепи в точке B.

      В Законе Кирхгофа по току говорится, что: « полный ток, выходящий из цепи, равен току, входящему в цепь - ток не теряется ».Таким образом, полный ток, протекающий в цепи, определяется как:

      I T = I R1 + I R2

      Используя закон Ома , мы можем вычислить ток, протекающий через каждый параллельный резистор, показанный в Примере №2 выше, как:

      Ток, протекающий через резистор R 1 , определяется как:

      I R1 = В S ÷ R 1 = 12 В ÷ 22 кОм = 0,545 мА или 545 мкА

      Ток, протекающий через резистор R 2 , определяется как:

      I R2 = В S ÷ R 2 = 12 В ÷ 47 кОм = 0.255 мА или 255 мкА

      , что дает нам полный ток I T , протекающий по цепи как:

      I T = 0,545 мА + 0,255 мА = 0,8 мА или 800 мкА

      , и это также можно проверить напрямую с помощью закона Ома:

      I T = V S ÷ R T = 12 ÷ 15 кОм = 0,8 мА или 800 мкА (то же самое)

      Уравнение для расчета полного тока, протекающего в параллельной цепи резистора, который представляет собой сумму всех отдельных токов, сложенных вместе, дается как:

      I всего = I 1 + I 2 + I 3 ….. + I

      Тогда параллельные резистивные сети можно также рассматривать как «делители тока», потому что ток питания разделяется или делится между различными параллельными ветвями. Таким образом, схема параллельного резистора, имеющая N резистивных цепей, будет иметь N разных путей тока, сохраняя при этом общее напряжение на себе. Параллельные резисторы также можно менять местами без изменения общего сопротивления или общего тока цепи.

      Резисторы

      в параллели Пример №3

      Рассчитайте отдельные токи ответвления и общий ток, потребляемый от источника питания для следующего набора резисторов, соединенных вместе в параллельной комбинации.

      Поскольку напряжение питания является общим для всех резисторов в параллельной цепи, мы можем использовать закон Ома для расчета тока отдельной ветви следующим образом.

      Тогда общий ток цепи I T , протекающий в параллельную комбинацию резисторов, будет:

      Это полное значение тока цепи в 5 ампер также можно найти и проверить, найдя эквивалентное сопротивление цепи R T параллельной ветви и разделив его на напряжение питания V S следующим образом.

      Сопротивление эквивалентной цепи:

      Тогда ток в цепи будет:

      Резисторы

      в параллельном соединении

      Итак, подведем итоги. Когда два или более резистора соединены так, что оба их вывода соответственно подключены к каждому выводу другого резистора или резисторов, они говорят, что они соединены вместе параллельно. Напряжение на каждом резисторе в параллельной комбинации точно такое же, но токи, протекающие через них, не такие же, поскольку это определяется их значением сопротивления и законом Ома.Тогда параллельные цепи являются делителями тока.

      Эквивалентное или полное сопротивление R T параллельной комбинации определяется путем взаимного сложения, и общее значение сопротивления всегда будет меньше, чем наименьший отдельный резистор в комбинации. Параллельные цепи резисторов можно менять местами в одной и той же комбинации без изменения общего сопротивления или общего тока цепи. Резисторы, соединенные вместе в параллельную цепь, будут продолжать работать, даже если один резистор может быть разомкнут.

      До сих пор мы видели цепи резисторов, соединенных последовательно или параллельно. В следующем руководстве по резисторам мы рассмотрим соединение резисторов вместе как в последовательной, так и в параллельной комбинации, в то же время создавая смешанную или комбинационную схему резисторов.

      Как найти эквивалентное сопротивление - Видео и стенограмма урока

      Расчет эквивалентного сопротивления

      Способ расчета эквивалентного сопротивления зависит от того, работаем ли мы с последовательной или параллельной цепью.Последовательная схема - это такая схема, в которой все компоненты соединены в один непрерывный контур. Параллельная схема - это та, в которой компоненты соединены в отдельных ответвлениях. Метод, который мы используем для расчета эквивалентного сопротивления, различается для каждого типа цепи.

      Для последовательной цепи мы просто складываем сопротивления каждого компонента. Однако в параллельной цепи обратная величина общего сопротивления равна сумме обратных сопротивлений каждой ветви.

      Давайте рассмотрим пример каждого типа.

      Примеры уравнений

      Допустим, у вас есть последовательная цепь, содержащая резистор, лампочку и батарею. Резистор имеет сопротивление 6 Ом, а лампочка - 3 Ом. Какое эквивалентное сопротивление цепи?

      Простой: 6 + 3 = 9 Ом

      Пример серии

      Но теперь, если мы соединим эти два компонента в параллельную схему, наши вычисления станут немного сложнее.Мы можем сказать, что величина, обратная величине общего сопротивления, равна единице больше шести, плюс единице больше трех.

      Теперь нам нужно построить алгебраическую перестановку, чтобы найти полное сопротивление. Мы делаем это, принимая взаимность обеих сторон. Это говорит нам о том, что полное сопротивление равно обратной величине 1/3 + 1/6, которая равна обратной величине 3/6, которая совпадает с 1/2. Когда вы берете обратную дробь, вы просто переворачиваете дробь. Это дает нам общее сопротивление 2 на 1, что составляет 2 Ом.Таким образом, полное сопротивление составляет 2 Ом.

      Резюме урока

      Термин сопротивление относится к способу измерения того, насколько компонент схемы сопротивляется потоку электричества или тока, проходящего через него. Большее сопротивление означает, что по цепи протекает меньший ток. Эквивалентное сопротивление - это другой способ обозначения «общего» сопротивления, которое мы вычисляем по-разному для последовательных и параллельных цепей.

      В последовательной цепи различные компоненты соединены в один непрерывный контур. В параллельной схеме отдельные ветви соединяют компоненты. При расчете общего сопротивления в последовательных цепях мы складываем измерения сопротивления для каждого компонента. При вычислении общего сопротивления в параллельной цепи мы складываем значения, обратные сопротивлениям, найденным в каждой ветви. Итак, чтобы найти эквивалентное сопротивление параллельной цепи, мы должны провести некоторую алгебру.

      Что такое эквивалентная схема и как она используется?

      При анализе электрических цепей, в том числе для асинхронных двигателей переменного тока и двигателей постоянного тока, если схема содержит два или более одинаковых пассивных элемента (например, резисторы) и подключена исключительно последовательно или исключительно параллельно, цепь может быть нарисована с более простым представлением, содержащим источник напряжения и один эквивалентный пассивный элемент. Эта упрощенная версия сохраняет электрические характеристики исходной схемы и называется эквивалентной схемой .


      Пассивные элементы - это элементы, которые рассеивают, накапливают или выделяют энергию в виде напряжения или тока. Примерами пассивных элементов являются резисторы , конденсаторы и катушки (также известные как индукторы).

      Активные элементы вырабатывают или вырабатывают энергию в виде напряжения или тока. Они включают полупроводниковые компоненты, такие как диоды, транзисторы (полевые транзисторы, или полевые транзисторы, и полевые транзисторы металл-оксид-полупроводник, или полевые МОП-транзисторы).


      Правила комбинирования резисторов для создания эквивалентной схемы основаны на законе Ома вместе с законами Кирхгофа для контуров.

      Первый из законов Кирхгофа, именуемый Текущий закон Кирхгофа (KCL), гласит, что величина тока, протекающего в любой узел (переход) в замкнутой цепи, равна величине тока, вытекающего из этого узла , таким образом обеспечение сохранения заряда в замкнутом контуре.

      Второй закон Кирхгофа, известный как Закон напряжения Кирхгофа (KVL), гласит, что для замкнутой цепи алгебраическая сумма всех напряжений вокруг цепи равна нулю. Закон напряжения Кирхгофа обеспечивает сохранение энергии в замкнутой цепи.


      Определение эквивалентного сопротивления для последовательных цепей

      Для цепи, соединенной последовательно, закон Кирхгофа по напряжению, KVL, говорит нам, что напряжение в цепи будет равно нулю. Это означает, что сумма падений напряжения на каждом резисторе будет равна напряжению питания. Для последовательной цепи с тремя резисторами напряжение питания, В с , равно сумме напряжений на трех резисторах (В R1 , В R2 и В R3 ):

      Мы знаем из действующего закона Кирхгофа, KCL, что заряд, текущий в любой узел, равен заряду, вытекающему из этого узла.Последовательные цепи имеют только один узел (переход), поэтому ток одинаков во всех точках цепи. Это означает, что через каждый резистор протекает одинаковый ток. Используя закон Ома, V = IR, чтобы выразить напряжение на каждом резисторе, мы можем переписать уравнение выше:

      Теперь мы видим, что эквивалентное сопротивление - это просто сумма всех сопротивлений в последовательной цепи.

      А напряжение теперь можно записать через эквивалентное сопротивление.

      Пример ниже показывает последовательную схему с тремя резисторами.

      Для этой цепи эквивалентное сопротивление:

      Таким образом, эквивалентная схема будет иметь один эквивалентный резистор сопротивлением 10 Ом (R экв. ).

      Мы можем проверить нашу эквивалентную схему, рассчитав напряжение на эквивалентном резисторе и убедившись, что оно равно напряжению питания:


      Определение эквивалентного сопротивления для параллельных цепей

      Для цепей, соединенных параллельно, мы можем рассматривать каждую петлю как отдельную цепь, соединенную последовательно.Закон Кирхгофа, KVL, говорит нам, что в каждом отдельном контуре (последовательной цепи) падение напряжения на резисторе равно напряжению питания. Для параллельной схемы с тремя резисторами падение напряжения на каждом резисторе равно напряжению питания.

      Согласно действующему закону Кирхгофа, KCL, ток делится в каждом узле или соединении, так что:

      Выражение силы тока как напряжения, деленного на сопротивление (В / R), согласно закону Ома:

      Переставляя по напряжению, получаем:

      Теперь эквивалентное сопротивление можно определить как:

      или:

      Другими словами, для параллельной цепи эквивалентное сопротивление находится путем сложения обратных величин отдельных значений сопротивления, а затем взятия обратной величины от общего значения.

      В этой параллельной цепи с тремя резисторами эквивалентное сопротивление составляет:

      Опять же, мы можем проверить нашу эквивалентную схему, убедившись, что напряжение на эквивалентном резисторе равно напряжению питания:


      Законы Кирхгофа применимы к последовательным схемам: Для схемы, соединенной последовательно, напряжение, протекающее по цепи, делится между пассивными элементами, но ток через каждый пассивный элемент одинаков.

      Законы Кирхгофа применимы к параллельным цепям: Для цепи, подключенной параллельно, напряжение, протекающее по цепи, одинаково для каждого пассивного элемента, но ток делится между пассивными элементами.


      резисторов последовательно и параллельно

      Резисторы

      серии

      Общее сопротивление в цепи с последовательно включенными резисторами равно сумме отдельных сопротивлений.

      Цели обучения

      Рассчитайте общее сопротивление в цепи с последовательно включенными резисторами

      Основные выводы

      Ключевые моменты
      • Одинаковый ток протекает последовательно через каждый резистор.
      • Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.
      • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: [латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N} [/ latex].
      Ключевые термины
      • серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
      • сопротивление : Противодействие прохождению электрического тока через этот элемент.

      Обзор

      В большинстве схем имеется более одного компонента, называемого резистором, который ограничивает поток заряда в цепи. Мера этого предела для потока заряда называется сопротивлением. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение.Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

      Цепи серии : Краткое введение в анализ последовательных и последовательных цепей, включая закон Кирхгофа по току (KCL) и закон Кирхгофа по напряжению (KVL).

      Резисторы

      серии

      Резисторы включены последовательно всякий раз, когда заряд или ток должны проходить через компоненты последовательно.

      Резисторы в серии : Эти четыре резистора соединены последовательно, потому что, если бы ток подавался на один конец, он бы протекал через каждый резистор последовательно до конца.

      показывает резисторы, последовательно подключенные к источнику напряжения. Общее сопротивление в цепи равно сумме отдельных сопротивлений, поскольку ток должен проходить через каждый резистор последовательно через цепь.

      Резисторы, включенные последовательно : три резистора, подключенные последовательно к батарее (слева), и эквивалентное одиночное или последовательное сопротивление (справа).

      Использование закона Ома для расчета изменений напряжения в резисторах серии

      Согласно закону Ома падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR, где I - ток в амперах (A), а R - сопротивление в омах (Ω). .

      Таким образом, падение напряжения на R 1 равно V 1 = IR 1 , на R 2 равно V 2 = IR 2 , а на R 3 равно V 3 = IR 3 .Сумма напряжений будет равна: V = V 1 + V 2 + V 3 , исходя из сохранения энергии и заряда. Если подставить значения отдельных напряжений, получим:

      [латекс] \ text {V} = \ text {IR} _1 + \ text {IR} _2 + \ text {IR} _3 [/ latex]

      или

      [латекс] \ text {V} = \ text {I} (\ text {R} _1 + \ text {R} _2 + \ text {R} _3) [/ латекс]

      Это означает, что полное сопротивление в серии равно сумме отдельных сопротивлений. Следовательно, для каждой цепи с Н количество резисторов, подключенных последовательно:

      [латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N }.[/ латекс]

      Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а последовательно соединенные сопротивления просто складываются.

      Поскольку напряжение и сопротивление имеют обратную зависимость, отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Об этом свидетельствует пример, когда две лампочки соединены в последовательную цепь с аккумулятором. В простой схеме, состоящей из одной батареи 1,5 В и одной лампочки, падение напряжения на лампе будет равно 1.5V через него. Однако, если бы две лампочки были соединены последовательно с одной и той же батареей, на каждой из них было бы падение напряжения 1,5 В / 2 или 0,75 В. Это будет очевидно по яркости света: каждая из двух последовательно соединенных лампочек будет в два раза слабее, чем одиночная лампочка. Следовательно, резисторы, соединенные последовательно, потребляют такое же количество энергии, как и один резистор, но эта энергия распределяется между резисторами в зависимости от их сопротивлений.

      Параллельные резисторы

      Общее сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.

      Цели обучения

      Рассчитайте общее сопротивление в цепи с параллельно включенными резисторами

      Основные выводы

      Ключевые моменты
      • Общее сопротивление в параллельной цепи меньше наименьшего из отдельных сопротивлений.
      • Каждый резистор, включенный параллельно, имеет то же напряжение, что и приложенный к нему источник (напряжение в параллельной цепи постоянно).
      • Параллельные резисторы не получают суммарный ток каждый; они делят его (ток зависит от номинала каждого резистора и общего количества резисторов в цепи).
      Ключевые термины
      • сопротивление : Противодействие прохождению электрического тока через этот элемент.
      • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.

      Обзор

      Резисторы в цепи могут быть включены последовательно или параллельно. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

      Parallel Circuits : Краткий обзор анализа параллельных цепей с использованием таблиц VIRP для студентов-физиков средней школы.

      Параллельные резисторы

      Резисторы включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника.

      Параллельное соединение резисторов : Параллельное соединение резисторов.

      Каждый резистор потребляет такой же ток, как если бы он был единственным резистором, подключенным к источнику напряжения. Это верно для схем в доме или квартире. Каждая розетка, подключенная к устройству («резистор»), может работать независимо, и ток не должен проходить через каждое устройство последовательно.

      Резисторы закона и параллели Ома

      На каждый резистор в цепи подается полное напряжение. Согласно закону Ома токи, протекающие через отдельные резисторы, равны [латекс] \ text {I} _1 = \ frac {\ text {V}} {\ text {R} _1} [/ latex], [latex] \ text {I} _2 = \ frac {\ text {V}} {\ text {R} _2} [/ latex] и [latex] \ text {I} _3 = \ frac {\ text {V}} {\ text {R} _3} [/ латекс].Сохранение заряда подразумевает, что полный ток является суммой этих токов:

      Параллельные резисторы : три резистора, подключенные параллельно батарее, и эквивалентное одиночное или параллельное сопротивление.

      [латекс] \ text {I} = \ text {I} _1 + \ text {I} _2 + \ text {I} _3. [/ Latex]

      Подстановка выражений для отдельных токов дает:

      [латекс] \ text {I} = \ frac {\ text {V}} {\ text {R} _1} + \ frac {\ text {V}} {\ text {R} _2} + \ frac {\ текст {V}} {\ text {R} _3} [/ latex]

      или

      [латекс] \ text {I} = \ text {V} (\ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} + \ frac {1} { \ text {R} _3}) [/ latex]

      Это означает, что полное сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.Следовательно, для каждой схемы с числом [latex] \ text {n} [/ latex] или резисторов, подключенных параллельно,

      [латекс] \ text {R} _ {\ text {n} \; (\ text {parallel})} = \ frac {1} {\ text {R} _1} + \ frac {1} {\ text { R} _2} + \ frac {1} {\ text {R} _3}… + \ frac {1} {\ text {R} _ \ text {n}}. [/ Latex]

      Это соотношение приводит к общему сопротивлению, которое меньше наименьшего из отдельных сопротивлений. Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

      Каждый резистор, включенный параллельно, имеет такое же полное напряжение источника, как и источник, но делит общий ток между ними. Примером может служить соединение двух лампочек в параллельную цепь с аккумулятором на 1,5 В. В последовательной цепи две лампочки будут вдвое менее тусклыми при подключении к одному источнику батареи. Однако, если бы две лампочки были подключены параллельно, они были бы столь же яркими, как если бы они были подключены к батарее по отдельности. Поскольку к обеим лампочкам подается одинаковое полное напряжение, батарея также разряжается быстрее, поскольку она по существу обеспечивает полную энергию обеими лампочками.В последовательной цепи батарея будет работать столько же, сколько и с одной лампочкой, только тогда яркость будет разделена между лампочками.

      Комбинированные схемы

      Комбинированная цепь может быть разбита на аналогичные части, работающие последовательно или параллельно.

      Цели обучения

      Описать расположение резисторов в комбинированной цепи и его практическое значение

      Основные выводы

      Ключевые моменты
      • Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного.
      • Различные части комбинированной схемы могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление.
      • Сопротивление в проводах снижает ток и мощность, подаваемые на резистор. Если сопротивление в проводах относительно велико, как в изношенном (или очень длинном) удлинительном шнуре, то эти потери могут быть значительными и влиять на выходную мощность в устройствах.
      Ключевые термины
      • серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
      • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
      • Комбинированная схема : электрическая цепь, содержащая несколько резисторов, соединенных как последовательным, так и параллельным соединением.

      Комбинированные схемы

      Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Это часто встречается, особенно если учитывать сопротивление проводов.В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

      Комбинированная цепь может быть разбита на аналогичные части, которые являются последовательными или параллельными, как показано на схеме. На рисунке общее сопротивление может быть вычислено путем соединения трех резисторов друг с другом последовательно или параллельно. R 1 и R 2 соединены параллельно по отношению друг к другу, поэтому мы знаем, что для этого подмножества сопротивление, обратное сопротивлению, будет равно:

      Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

      Комбинированные схемы : Два параллельных резистора, включенных последовательно, с одним резистором.

      [латекс] \ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} [/ latex] или [латекс] \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} [/ latex]

      R 3 соединены последовательно с как R 1 , так и R 2 , поэтому сопротивление будет рассчитываться как:

      [латекс] \ text {R} = \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} + \ text {R} _3 [/ latex ]

      Сложные комбинированные схемы

      Для более сложных комбинированных схем различные части могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление, как показано на.На этом рисунке комбинация из семи резисторов была идентифицирована как включенные последовательно или параллельно. На исходном изображении две обведенные кружком секции показывают резисторы, включенные параллельно.

      Сокращение комбинированной схемы : Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.

      Уменьшение этих параллельных резисторов до одного значения R позволяет нам визуализировать схему в более упрощенном виде.На верхнем правом изображении мы видим, что обведенная кружком часть содержит два последовательно соединенных резистора. Мы можем дополнительно уменьшить это до другого значения R, добавив их. Следующий шаг показывает, что два обведенных резистора включены параллельно. Уменьшение тех ярких моментов, что последние два соединены последовательно и, таким образом, могут быть уменьшены до одного значения сопротивления для всей цепи.

      Одним из практических следствий комбинированной схемы является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Комбинированная цепь может быть преобразована в последовательную цепь на основе понимания эквивалентного сопротивления параллельных ветвей комбинированной цепи. Последовательная цепь может использоваться для определения общего сопротивления цепи. По сути, сопротивление провода является последовательным с резистором. Таким образом, увеличивается общее сопротивление и уменьшается ток. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение ИК-излучения в проводах также может быть значительным.

      Зарядка аккумулятора: последовательные и параллельные ЭДС

      При последовательном включении источников напряжения их ЭДС и внутренние сопротивления складываются; параллельно они остаются прежними.

      Цели обучения

      Сравнить сопротивления и электродвижущие силы для источников напряжения, подключенных с одинаковой и противоположной полярностью, последовательно и параллельно

      Основные выводы

      Ключевые моменты
      • ЭДС, соединенные последовательно с одинаковой полярностью, являются аддитивными и приводят к более высокой общей ЭДС.
      • Две ЭДС, соединенные последовательно с противоположной полярностью, имеют общую ЭДС, равную разнице между ними, и могут использоваться для зарядки источника более низкого напряжения.
      • Два источника напряжения с идентичными ЭДС, соединенные параллельно, имеют чистую ЭДС, эквивалентную одному источнику ЭДС, однако чистое внутреннее сопротивление меньше и, следовательно, дает более высокий ток.
      Ключевые термины
      • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
      • электродвижущая сила : (ЭДС) - напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
      • серия : ряд элементов, которые следуют одно за другим или соединяются одно за другим.

      Когда используется более одного источника напряжения, они могут быть подключены последовательно или параллельно, аналогично резисторам в цепи.Когда источники напряжения включены последовательно в одном направлении, их внутренние сопротивления складываются, а их электродвижущая сила или ЭДС складываются алгебраически. Эти типы источников напряжения распространены в фонариках, игрушках и других приборах. Обычно ячейки включены последовательно, чтобы обеспечить большую суммарную ЭДС.

      Фонарик и лампочка : Последовательное соединение двух источников напряжения в одном направлении. Эта схема представляет собой фонарик с двумя последовательно включенными ячейками (источниками напряжения) и одной лампочкой (сопротивление нагрузки).

      Батарея - это соединение нескольких гальванических элементов. Однако недостатком такого последовательного соединения ячеек является то, что их внутреннее сопротивление увеличивается. Иногда это может быть проблематично. Например, если вы поместите в машину две батареи на 6 В вместо обычной батареи на 12 В, вы должны добавить как ЭДС, так и внутреннее сопротивление каждой батареи. Таким образом, у вас будет такая же ЭДС 12 В, хотя внутреннее сопротивление тогда будет удвоено, что вызовет у вас проблемы, когда вы захотите запустить двигатель.

      Но, если ячейки противостоят друг другу - например, когда одна вставляется в прибор задом наперед, - общая ЭДС меньше, так как это алгебраическая сумма отдельных ЭДС. Когда он перевернут, он создает ЭДС, которая противодействует другой, и приводит к разнице между двумя источниками напряжения.

      Зарядное устройство : представляет два источника напряжения, соединенных последовательно с противоположными ЭДС. Ток течет в направлении большей ЭДС и ограничивается суммой внутренних сопротивлений.(Обратите внимание, что каждая ЭДС представлена ​​на рисунке буквой E.) Зарядное устройство, подключенное к аккумулятору, является примером такого подключения. Зарядное устройство должно иметь большую ЭДС, чем батарея, чтобы через него протекал обратный ток.

      Когда два источника напряжения с одинаковыми ЭДС соединены параллельно и также подключены к сопротивлению нагрузки, общая ЭДС равна индивидуальным ЭДС. Но общее внутреннее сопротивление уменьшается, поскольку внутренние сопротивления параллельны. Таким образом, параллельное соединение может производить больший ток.

      Две идентичные ЭДС : Два источника напряжения с одинаковыми ЭДС (каждый помечен буквой E), подключенные параллельно, создают одинаковую ЭДС, но имеют меньшее общее внутреннее сопротивление, чем отдельные источники. Параллельные комбинации часто используются для подачи большего тока.

      ЭДС и напряжение на клеммах

      Выходное напряжение или напряжение на клеммах источника напряжения, такого как батарея, зависит от его электродвижущей силы и внутреннего сопротивления.

      Цели обучения

      Выразите взаимосвязь между электродвижущей силой и напряжением на клеммах в форме уравнения

      Основные выводы

      Ключевые моменты
      • Электродвижущая сила (ЭДС) - это разность потенциалов источника при отсутствии тока.
      • Напряжение на клеммах - это выходное напряжение устройства, измеренное на его клеммах.
      • Напряжение на клеммах рассчитывается по формуле V = ЭДС - Ir.
      Ключевые термины
      • электродвижущая сила : (ЭДС) - напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
      • напряжение на клеммах : выходное напряжение устройства, измеренное на его клеммах.
      • разность потенциалов : разница в потенциальной энергии между двумя точками в электрическом поле; разница в заряде между двумя точками в электрической цепи; Напряжение.

      Когда вы забываете выключить автомобильные фары, они постепенно тускнеют по мере разрядки аккумулятора. Почему они просто не мигают, когда батарея разряжена? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных или перегруженных батарей заключается в том, что все источники напряжения состоят из двух основных частей - источника электрической энергии и внутреннего сопротивления.

      Электродвижущая сила

      Все источники напряжения создают разность потенциалов и могут подавать ток, если подключены к сопротивлению. В небольшом масштабе разность потенциалов создает электрическое поле, которое воздействует на заряды, вызывая ток. Мы называем эту разность потенциалов электродвижущей силой (сокращенно ЭДС). ЭДС - это вообще не сила; это особый тип разности потенциалов источника при отсутствии тока. Единицы измерения ЭДС - вольты.

      Электродвижущая сила напрямую связана с источником разности потенциалов, например с конкретной комбинацией химических веществ в батарее.Однако при протекании тока ЭДС отличается от выходного напряжения устройства. Напряжение на выводах батареи, например, меньше, чем ЭДС, когда батарея подает ток, и оно падает дальше, когда батарея разряжается или разряжается. Однако, если выходное напряжение устройства можно измерить без потребления тока, то выходное напряжение будет равно ЭДС (даже для сильно разряженной батареи).

      Напряжение на клеммах

      представляет схематическое изображение источника напряжения.Выходное напряжение устройства измеряется на его выводах и называется напряжением на выводах В . Напряжение на клеммах определяется уравнением:

      Схематическое изображение источника напряжения : Любой источник напряжения (в данном случае углеродно-цинковый сухой элемент) имеет ЭДС, связанную с источником разности потенциалов, и внутреннее сопротивление r, связанное с его конструкцией. (Обратите внимание, что сценарий E означает ЭДС.) Также показаны выходные клеммы, на которых измеряется напряжение на клеммах V.Поскольку V = ЭДС-Ir, напряжение на клеммах равно ЭДС, только если ток не течет.

      [латекс] \ text {V} = \ text {emf} - \ text {Ir} [/ latex],

      где r - внутреннее сопротивление, а I - ток, протекающий во время измерения.

      I является положительным, если ток течет от положительного вывода. Чем больше ток, тем меньше напряжение на клеммах. Точно так же верно, что чем больше внутреннее сопротивление, тем меньше напряжение на клеммах.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *