Формула p n p: Монопропиловый эфир пропиленгликоля, формула, свойства, описание, продажа

Биполярный транзистор / Хабр

1. Основные сведения

Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.

Свое имя «TRANSferresISTOR» (дословно – «переходное сопротивление») этот полупроводниковый прибор получил в 1948 году от Уильяма Шокли. Термин «биполярный» подчеркивает тот факт, что принцип действия транзистора основан на взаимодействии с электрическим полем частиц обоих знаков —  как дырок, так и электронов.

Рис. 1. Упрощенный вид внутреннего устройства биполярного транзистора p-n-p структуры.

На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р+ область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.

Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия , что обуславливает взаимодействие переходов.

Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования –  концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает ~ 1017 – 1018 ат/см3 (этот факт обозначен символом р+).   Область базы легирована нормально – концентрация донорной примеси ND в ней составляет ~ 1013 – 1014 ат/cм3.   В этом случае эмиттерный переход получается резко несимметричным, поскольку обедненная зона располагается, в основном, в базе. Диффузия носителей становится односторонней, так как резко уменьшается встречный поток электронов из базы в эмиттер, что также уменьшает интенсивность процессов рекомбинации дырок в базе.

Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:

Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу.  Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла. 

Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.

Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:

  1. низкочастотные­ не более 3 МГц;

  2. средней частоты — от 3 МГц до 30МГц;

  3. высокочастотные- от 30 МГц до 300 МГц;

  4. сверхвысокочастотные — более 300 МГц

По мощ­ности выделяют следующем образом:

  • маломощные — не более 0,3 Вт;

  • средней мощности — от 0,3 Вт до1,5 Вт;

  • большой мощности — более 1,5 Вт.

В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные тран­зисторы, предназначенные для формирования мощных импульсов наносе­кундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.

2. Принцип действия

Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками.  Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.

Рис. 2. Иллюстрация принципа действия биполярного транзистора p-n-p структуры.

Предположим, что в начальный момент времени ключ «К» разомкнут. Эмиттерный переход закрыт, поскольку потенциальный барьер в обедненной области перехода запрещает диффузию носителей, несмотря на огромный градиент концентраций на переходе – дырок слева 1017см-3, а справа 106см-3. Это режим отсечки. Транзистор закрыт, существует только небольшой обратный тепловой ток обратно смещенного коллекторного перехода.

Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:

(2. 1)

где α – доля дырок, достигших коллектора, или коэффициент передачи тока эмиттера.  Поскольку небольшая часть дырок, инжектированных из эмиттера в базу, все же успевает рекомбинировать, то всегда α <1. При достаточно тонкой базе α может доходить до 0,99 и более. Уменьшение концентрации электронов в базе в результате рекомбинации восполняется потоком электронов от внешнего источника Uэб через внешний вывод базы. Таким образом внутренний ток рекомбинации, являющийся дырочным, полностью компенсируется электронным током через электрод базы:

(2.2)

В цепи коллектора кроме управляемого тока протекает неуправляемый дрейфовый обратный ток Iкб0, обусловленный, в основном, тепловой генерацией электронно-дырочных пар в объеме перехода. Этот ток очень мал, он не зависит от напряжения Uкб, а зависит только от температуры.   Обратный ток коллектора Iкб0 измеряется при разомкнутой цепи эмиттера, о чем говорит индекс «0» (ноль).

Полный ток, протекающий во внешней цепи коллектора, имеет дырочный характер и равен

                                         (2.3)

В нормальных условиях работы поэтому с хорошей точностью полагают, что ток во внешней цепи коллектора равен

                                               (2.4)

а ток во внешней цепи базы имеет электронный характер и равен

                                       (2.5)

Согласно первому закону Кирхгофа,

                                         (2.6)

Для удобства, формально, вводят коэффициент передачи тока базы

                                            (2. 7)

Коэффициент связан с коэффициентом соотношением

                                              (2.8)

3. Режимы работы и способы включения

Рис. 3.1. Условное обозначение на схеме биполярного транзистора p-n-p структуры и n-p-n структуры .

Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.

  • Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.

  • Режим насыщения— оба перехода открыты.

  • Режим отсечки— оба перехода закрыты.

  • Инверсный режим— эмиттерный переход закрыт, коллекторный — открыт.

В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК).  На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.

Рис. 3.2. Схемы включения транзистора слева направо: схема с ОБ, ОЭ и ОК.

В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора.  Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.

В схеме ОЭ входной цепью является цепь базы, а выходной – цепь коллектора. Напряжение Uбэ> 0 прикладывается непосредственно к эмиттерному переходу и открывает его. Напряжение Uкэ той же полярности распределяется между обоими переходами: Uкэ = Uкб + Uбэ. Для того чтобы коллекторный переход был закрыт, необходимо выполнить условие Uкб = Uкэ —  Uбэ> 0, что обеспечивается неравенством U

кэ> Uбэ> 0.

В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.

4. Статические вольт-амперные характеристики

Транзистор, как любой четырехполюсник, можно охарактеризовать четырьмя величинами — входными и выходными напряжениями и токами: Uвх = U1, Uвых = U2, Iвх = I1, Iвых = I2. Функциональные зависимости между этими постоянными величинами называются статическими характеристиками транзистора. Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых аргументов, а две оставшиеся выразить в виде функций этих независимых аргументов. Как правило, применительно к биполярному транзистору в качестве независимых аргументов выбирают входной ток и выходное напряжение.  В этом случае

                                              (4.1)

Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:

                                       (4.2)

                                     (4. 3)

Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции

                                    (4.4)

 Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.

4.1. Статические характеристики в схеме с ОБ

В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.

Входная характеристика в схеме ОБ представлена зависимостью

                                       (4. 5)

которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкб уменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым () и при прямых напряжениях .

Выходная характеристика транзистора в схеме ОБ представляет собой зависимость

                                    (4.6)

Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.

Рис. 4.1. Семейства входных (а) и выходных (б) характеристик биполярного транзистора в схеме с ОБ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид

                                             (4.7)

Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.

При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).

В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк.  Этот ток называют инверсным.  Инверсный ток резко увеличивается с ростом , в результате чего  Iк очень быстро уменьшается и, затем, меняет знак.

 

4.2. Статические характеристики в схеме с ОЭ

В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ

Рис. 4.2. Семейства входных (а) и выходных характеристик (б) биполярного транзистора в схеме с ОЭ.

Входная характеристика в схеме с ОЭ представляет собой зависимость

                                     (4.8)

что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.

Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ <Uпор, Iб = — Iкэ0, что соответствует режиму отсечки.

 При Uкэ <Uбэ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, интенсивность рекомбинации которых с дырками резко возрастает, и ток базы стремительно растет.  

Выходная характеристика в схеме с ОЭ представляет собой зависимость

                                     (4.9)

Семейство выходных характеристик показано на рис. 7.6б.  Для получения идеализированной выходной характеристики в активном режиме из соотношения (2.2), учитывая (2.6), исключим ток эмиттера. Тогда

                            (4.10)

Ток Iкэ0 называют сквозным тепловым током транзистора, причем, как видно из (4.11),

                                           (4. 11)

Семейство выходных характеристик целиком расположено в первом квадранте. Данный факт обусловлен тем, что в схеме с ОЭ напряжение Uкэ распределено между обоими переходами.  При Uкэ <Uбэ напряжение на коллекторном переходе меняет знак и становится прямым. В результате транзистор переходит в режим насыщения при Uкэ> 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.

Как видно из рис. 4.2 .б, в активном режиме кривые проходят под углом к оси абсцисс, причем этот угол увеличивается с ростом тока базы.  Такое поведение кривых обусловлено эффектом Эрли. Однако рост Iк при увеличении Uкэ выражен значительно ярче, чем в схеме с ОБ, поскольку в активном режиме эмиттерный переход приоткрыт падением напряжения на материале базы в результате протекания коллекторного тока. Это приводит к дополнительному увеличению коллекторного тока Iк с ростом напряжения Uкэ. Этим же объясняется отсутствие эквидистантности и наличие в β раз большего, чем Iкб0, сквозного теплового тока Iкэ0 (4.11). 

Биполярные транзисторы

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е.  наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3. B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ  построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Оригинал статьи

Теги:
  • Перевод
Характеристики схемы транзистора

PNP, работа, применение

В этом уроке мы попытаемся понять основы танзистора PNP. Мы плохо изучим его работу, контакты, основную схему, идентификацию терминалов, пример и несколько приложений.

Краткое описание

Введение

PNP-транзистор — это еще один тип транзистора с биполярным переходом (BJT). Структура транзистора PNP полностью отличается от транзистора NPN. Два диода с PN-переходом в структуре PNP-транзистора перевернуты по отношению к NPN-транзистору, например, два легированных полупроводниковых материала P-типа разделены тонким слоем легированного полупроводникового материала N-типа.

В транзисторе PNP основными носителями тока являются дырки, а электроны являются неосновными носителями тока. Все полярности питающего напряжения, подаваемые на PNP-транзистор, меняются местами. В PNP ток поступает к базовой клемме. Небольшой базовый ток в PNP может контролировать большой ток эмиттер-коллектор, поскольку это устройство, управляемое током.

[адсенс1]

Стрелка для транзисторов BJT всегда расположена на выводе эмиттера, а также указывает направление условного протекания тока. В PNP-транзисторе эта стрелка указывает как «указывающая внутрь», а направление тока в PNP-транзисторе полностью противоположно NPN-транзистору. Структура транзистора PNP полностью противоположна транзистору NPN. Но характеристики и работа транзистора PNP почти такие же, как у транзистора NPN с небольшими отличиями. Символ и структура транзистора PNP показаны ниже.

На приведенном выше рисунке показаны структура и условное обозначение транзистора PNP. Этот транзистор в основном состоит из 3 выводов: эмиттера (E), коллектора (C) и базы (B). Здесь, если вы наблюдаете, ток базы вытекает из базы, в отличие от транзистора NPN. Напряжение на эмиттере значительно положительно по отношению к базе и коллектору.

НАВЕРХ

Рабочий PNP-транзистор

Схема подключения PNP-транзистора к напряжению питания приведена ниже. Здесь клемма базы имеет отрицательное смещение по отношению к эмиттеру, а клемма эмиттера имеет положительное напряжение смещения по отношению как к базе, так и к коллектору из-за транзистора PNP.

[адсенс2]

Полярность и направление тока здесь обратные по сравнению с транзистором NPN. Если транзистор подключен ко всем источникам напряжения, как показано выше, то ток базы протекает через транзистор, но здесь базовое напряжение должно быть более отрицательным по отношению к эмиттеру, чтобы транзистор работал. Здесь переход база-эмиттер действует как диод. Небольшое количество тока в базе контролирует протекание большого тока через эмиттер в область коллектора. Базовое напряжение обычно составляет 0,7 В для кремниевых и 0,3 В для германиевых устройств.

Здесь базовая клемма действует как вход, а область эмиттер-коллектор действует как выход. Напряжение питания V CC подключается к клемме эмиттера, а нагрузочный резистор (R L ) подключается к клемме коллектора. Этот нагрузочный резистор (R L ) используется для ограничения максимального тока, протекающего через устройство. К клемме базы подключен еще один резистор (R B ), который используется для ограничения максимального тока, протекающего через клемму базы, а также к клемме базы приложено отрицательное напряжение. Здесь ток коллектора всегда равен вычитанию тока базы из тока эмиттера. Как и NPN-транзистор, PNP-транзистор также имеет значение коэффициента усиления по току β. Теперь давайте посмотрим на связь между токами и коэффициентом усиления по току β.

Ток коллектора (I C ) определяется по формуле .

Коэффициент усиления по постоянному току = β = выходной ток/входной ток

Здесь выходной ток — это ток коллектора, а входной ток — это базовый ток.

β = I C /I B

Из этого уравнения получаем

I B = I C /β 

I C = β I B

Также мы определяем коэффициент усиления по току как

Коэффициент усиления по току = ток коллектора/ток эмиттера (в транзисторе с общей базой) C /I E

Связь между α и β определяется формулой by,

I C = – α I E + I CBO где I СВО — ток насыщения.

С I E = -(I C + I B )

I C = -α ( -(I C + I B )) + I CBO

B )) + I . I C — α I C = α I B + I CBO

I C (1- α) = α I B + I CBO

9002 I 0 + CBO

I 0 C = 40 + 404040 + . (α/ (1- α)) I B + I CBO / (1- α)

Так как β = α / (1- α)

Теперь мы получаем уравнение для тока коллектора

I C = β I B + (1+ β) I CBO

Выходные характеристики транзистора PNP такие же, как характеристики транзистора NPN. Небольшая разница заключается в том, что характеристическая кривая PNP-транзистора поворачивается на 180 0 для расчета значений напряжения и тока обратной полярности.

Линия динамической нагрузки также существует на характеристической кривой для расчета значения Q-точки. Транзисторы PNP также используются в схемах переключения и усиления, как транзисторы NPN.

НАВЕРХ

Пример транзистора PNP

Рассмотрим транзистор PNP, который включен в цепь с напряжениями питания V B = 1,5 В, V E + 2 В 0,3 CC = 10 В и –В CC = -10 В. А также эта цепь, соединенная с резисторами R B = 200 кОм и R E = R C (или R L ) = 5 кОм. Теперь рассчитайте текущие значения коэффициента усиления (α, β) транзистора PNP.

Here

V B = 1.5V

V E = 2V

+V CC = 10V and –V CC = -10V

R B = 200kΩ

R E = R C (или R L ) = 5 кОм

Базовый ток,

I B = V B / R B = 1,5 / (200* 3 ) = 7,50 = 1,5 / (200* 3 ) = 7,5. уА.

Ток эмиттера,

I E = В E / R E = (10-2)/ (5*10 3 ) = 8/(5*10 3 ) = 1,6 мА.

Ток коллектора.

Теперь мы должны рассчитать значения α и β,

α = I C /I E = 1,59*10 -3 /1,6*10 -3 = 9 C 905

3 β = 0,905

3 3 /I B = 1,59*10 -3 /7,5*10 -6 = 212

Наконец, мы получаем значения коэффициента усиления по току рассматриваемого PNP-транзистора:

α = 0,995 и β = 212

НАВЕРХ

Согласование BJT-транзисторов

Согласование транзисторов представляет собой не что иное, как соединение транзисторов NPN и P с высокой мощностью. Эта структура также называется «согласованной парой». Транзисторы NPN и PNP называются комплементарными транзисторами. В основном эти схемы с согласованными парами используются в усилителях мощности, таких как усилители класса B. Если мы подключим комплементарные транзисторы, которые имеют одинаковые характеристики, то будет очень полезно управлять выходными каскадами в двигателях и конструкциях больших машин, непрерывно производя большую мощность.

NPN-транзистор проводит только в положительном полупериоде сигнала, а PNP-транзистор проводит только в отрицательном полупериоде сигнала, поэтому устройство работает непрерывно. Эта непрерывная работа очень полезна в силовых двигателях для производства непрерывной мощности. Дополнительные транзисторы должны иметь одинаковое значение коэффициента усиления по постоянному току (β). Эти согласованные парные схемы используются в системах управления двигателями, робототехнике и усилителях мощности.

НАВЕРХ

Идентификация PNP-транзистора

Обычно мы идентифицируем PNP-транзисторы по их структуре. У нас есть некоторые различия в структурах транзисторов NPN и PNP при сравнении. Еще одна вещь, позволяющая идентифицировать PNP-транзистор, заключается в том, что обычно PNP-транзистор находится в выключенном состоянии при положительном напряжении и во включенном состоянии, когда малый выходной ток и отрицательное напряжение на его базе относительно эмиттера. Но чтобы идентифицировать их наиболее эффективно, мы используем другой метод, вычисляя сопротивление между тремя клеммами, такими как база, эмиттер и коллектор.

У нас есть несколько стандартных значений сопротивления для идентификации транзисторов NPN и PNP. Необходимо проверить каждую пару клемм в обоих направлениях на значения сопротивления, поэтому всего требуется шесть тестов. Этот процесс очень полезен для легкой идентификации транзистора PNP. Теперь мы видим поведение работы каждой пары терминалов.

  • Клеммы эмиттер-база: Область эмиттер-база действует как диод, но проводит ток только в одном направлении.
  • Клеммы коллектор-база: Область коллектор-база также действует как диод, проводящий ток только в одном направлении.
  • Клеммы эмиттер-коллектор: Область эмиттер-коллектор выглядит как диод, но он не проводит ток ни в одном направлении.

Теперь давайте посмотрим на таблицу значений сопротивления, чтобы идентифицировать транзисторы NPN и PNP, как показано в следующей таблице.

НАВЕРХ

Транзистор PNP в качестве переключателя

Схема на приведенном выше рисунке показывает PNP-транзистор в качестве переключателя. Работа этой схемы очень проста, если входной контакт транзистора (база) подключен к земле (т.е. отрицательному напряжению), то транзистор PNP находится в состоянии «ВКЛ», теперь напряжение питания на эмиттере проходит, а выходной контакт подтягивается. к большему напряжению. Если входной контакт подключен к высокому напряжению (т.е. положительному напряжению), то транзистор выключен, поэтому выходное напряжение должно быть низким (нулем). Эта операция показывает условия переключения PNP-транзистора из-за их состояний ВКЛ и ВЫКЛ.

НАВЕРХ

Применение
  • Транзисторы PNP используются в качестве источника тока, т.е. ток течет из коллектора.
  • В качестве переключателей используются транзисторы
  • PNP.
  • Используются в усилительных цепях.
  • Транзисторы
  • PNP используются, когда нам нужно что-то отключить нажатием кнопки. то есть аварийное отключение.
  • Используется в парных цепях Дарлингтона.
  • Используется в согласованных парных цепях для обеспечения непрерывной мощности.
  • Используется в тяжелых двигателях для управления потоком тока.
  • Используется в робототехнике.

НАВЕРХ

НАЗАД – ТРАНЗИСТОР NPN

СЛЕДУЮЩИЙ – КОНФИГУРАЦИИ ТРАНЗИСТОРА

Транзистор PNP в качестве переключателя

1

1

Используя PNP-транзистор в качестве переключателя, небольшой компонент может переключать большую нагрузку за несколько секунд. миллиампер

Логические вентили и микроконтроллеры сами по себе могут управлять только небольшими нагрузками. Но иногда необходимо переключить нагрузку, для которой требуется больший ток, чем контролирующий компонент может поставить. В этом случае транзистор может использоваться в качестве переключателя для достижения требуемого усиления по току и напряжению. может быть достигнут.

При использовании PNP-транзистора микроконтроллер должен потреблять только базовый ток. В зависимости от состояния переключения путь эмиттер-коллектор PNP-транзистора становится высоким импедансом или проводящим и, таким образом, может действовать как переключатель для нагрузки.

Как транзистор заменяет переключатель и какие возможности он дает?

Если транзистор работает как переключатель, он находится в режиме ВКЛ-ВЫКЛ и может разорвать или замкнуть электрическую цепь. Как механический переключатель. Вместо что он управляется человеком, как механический переключатель, он управляется электрическим сигналом.

Путь переключения можно очень точно контролировать по времени и с высокой частотой. Вместо видимого глазом изменения сигнала могут генерироваться очень короткие импульсы. Также сигналы ШИМ и любой другой цифровой сигнал может генерироваться на нагрузке.

Рисунок 1: Механический переключатель и pnp-транзистор в качестве переключателя В режиме переключения транзистор работает в конфигурации с фиксированным смещением. Поэтому нагрузка всегда подключена к коллектору. транзистора. А так как ток вытекает из коллектора PNP-транзистора, транзистор включается направление тока перед нагрузкой, а не за нагрузкой.

Таким образом, PNP-транзистор обеспечивает ток источника, а не стока, как у NPN-транзистора.

На рис. 2 показана правильная и неправильная установка транзистора PNP и для сравнения правильное подключение транзистора NPN в качестве переключателя.

Рисунок 2: Допустимые и нерабочие схемы транзисторов в качестве переключателя


Базовая схема PNP-транзистора в качестве переключателя

В конфигурации с фиксированным смещением PNP-транзистора в качестве переключателя, в дополнение к транзистор и нагрузка базовый резистор R B нужен. Он определяет базовый ток.

Рисунок 3: Принципиальная схема транзистора pnp в качестве переключателя


База должна иметь более низкий потенциал напряжения, чем эмиттер. Схема работает в соответствии со следующей простой таблицей состояний, в зависимости от входа V: SW :

V SW = V cc = High: Транзистор high-Z
V SW = GND = Low: Transistor conducting

Tabelle 1: State Table PNP Transistor as a switch

Basic circuit with parameters

R L : Load resistor
R B : Base reistor
V EC : Emitter- collector- voltage
V EB : Base diode voltage
V RB : Base resistor voltage
V SW : Control voltage
V cc : Supply voltage
GND: Ground
I L : Ток нагрузки
I B : Базовый ток

2

Рисунок 4: Базовая схема с обозначением всех соответствующих параметров


Расчеты

Расчет значений компонентов и напряжений не представляет большой сложности. Но вам нужно из техпаспорта транзистора следующие параметры:

V CEsat Saturation voltage
I C max Max collector current
h FE Current gain factor

Tabelle 3: Benötigte Parameter aus дем Датенблатт

Расчет напряжения В

RL

Сначала вычисляется напряжение V RL , которое падает на R L , когда транзистор находится в проводящем состоянии. Для этого нужно вычесть напряжение насыщения V ECSat , падающее на транзистор, от напряжения питания V cc .

Рисунок 5: Формула для расчета напряжения V L на нагрузке


Ток нагрузки I

л

Затем вычисляется коллекторный ток, протекающий через R L при включении транзистора. Для этого разделите V RL на сопротивление нагрузки R L для получения I L .

Может ли транзистор выдерживать ток?

Теперь проверьте, выдержит ли транзистор ток нагрузки. I L должен быть меньше чем я C max и I E max из технического паспорта. Если транзистор не выдерживает ток, следует заменить другой транзистор. должен быть выбран.

Рисунок 6: Формула для расчета тока нагрузки I L


Базовый резистор R

B

Для определения базового сопротивления R B сначала рассчитайте необходимое базовый ток I B . Поскольку транзистор в режиме постоянного тока является усилитель тока с фиксированным коэффициентом усиления h ФЭ требуется базовый ток, который больше, чем I L , разделенный на h FE . Чтобы заставить транзистор перейти в сильное насыщение и достичь быстрое время переключения, базовый ток должен быть в 4-10 раз выше, чем у I FE .

Рисунок 7: Формула для расчета тока базы I B


Напряжение на базовом резисторе проводящего PNP-транзистора V EB меньше напряжения питания В куб.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *