Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y=6 решениями являются пары
x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.
Уравнение имеет бесконечное множество решений.
Свойства уравнения с двумя переменными
Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.
Например: $2x+5y = 6 ⟺5y = -2x+6 \iff y = -0,4x+1,2$
Примеры
Пример 1. Из данного линейного уравнения выразите y через x и x через y:
Алгоритм: рассмотрим 3x+4y=10
1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10
2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).
Аналогично для x(y): $3x+4y = 10 \iff 3x = -4y+10 \iff x = -1 \frac{1}{3} y+3 \frac{1}{3}$
Линейное уравнение
y(x)
x(y)
а) 4x+5y = 20
$y = — \frac{4}{5} x+4$
$x=-1 \frac{1}{4} y+5$
б) 3x-2y = 11
y = 1,5x-5,5
$x = \frac{2}{3} y+3 \frac{2}{3}$
в) x+7y = 8
$ y = — \frac{x}{7}+1 \frac{1}{7}$
x = -7y+8
г) 2x-11y = 22
$y = \frac{2}{11} x-2$
x = 5,5y+11
Пример 2. Составьте линейное уравнение с двумя переменными, решением которого является пара чисел:
Алгоритм: рассмотрим (1;5)
1) составим любой двучлен вида ax+by, например 2x+3y
2) подставим данные x = 1, y = 5 в двучлен и запишем результат 2x+3y = 17 — это искомое уравнение.
Решение
Уравнение
а) (2;3)
2x+y = 7
б) (0;5)
x-7y = -35
в) (-1;1)
5x+3y = -2
г) (4;5)
x+y = 9
Пример 3. Составьте уравнение с двумя переменными, решениями которого являются две пары чисел:
а) (1;5) и (2;4)
Искомое уравнение имеет вид ax+by=c. Подставим обе пары:
$$ {\left\{ \begin{array}{c} a+5b = c \\ 2a+4b = c \end{array} \right.} \Rightarrow a+5b = 2a+4b \Rightarrow a = b $$
Пусть a = b = 1. Тогда x+y = 1+5 = 2+4 = 6
x+y = 6 — искомое уравнение.
б) (0;2) и (2;5)
Искомое уравнение имеет вид ax+by = c. Подставим обе пары:
$$ {\left\{ \begin{array}{c} 0+2b = c \\ 2a+5b = c \end{array} \right.} \Rightarrow 2b = 2a+5b \Rightarrow a = -1,5b $$
Пусть b = -2. Тогда a = 3 и уравнение:
$3x-2y = 3\cdot0-2\cdot2 = 3\cdot2-2\cdot5 = -4$
3x-2y = -4 — искомое уравнение.
Пример 4. Найдите двузначное число, которое в два раза больше суммы своих цифр.
Пусть a-цифра десятков (a = 1,2,…,9), b- цифра единиц (b = 0,1,…,9).
По условию: 10a+b = 2(a+b)
$$10a+b = 2a+2b \Rightarrow 8a = b$$
Единственное возможное решение: a = 1, b = 8
Ответ:18
Пример 5. Найдите двузначное число, которое при умножении на сумму своих цифр даёт 370.
Пусть a-цифра десятков (a = 1,2,…,9), b- цифра единиц (b = 0,1,…,9).
По условию: (10a+b)(a+b) = 370
Разложим 370 на простые множители: $370 = 2\cdot5\cdot37$
Возможные значения для суммы a+b = {2;5;10}
Рассмотрим a+b = 2. Тогда 10a+b = $\frac{370}{a+b} = \frac{370}{2} = 185 — не \quad двузначное \quad число \Rightarrow$
$a+b \neq 2$
Рассмотрим a+b = 5. Тогда 10a+b = $\frac{370}{5} = 74 \Rightarrow a = 7, b = 4, a+b \neq 5$.
Рассмотрим a+b = 10. Тогда 10a+b = $\frac{370}{10} = 37 \Rightarrow a = 3, b = 7, a+b = 10$.
Значит, искомое число 37.
Ответ: 37
Как решить систему линейных уравнений с помощью Numpy в Python: примеры
Библиотеку Numpy можно использовать для выполнения множества математических и научных операций, таких как скалярное произведение, поиск значений синуса и косинуса, преобразование Фурье и т.д.
Что такое система линейных уравнений?
Википедия определяет систему линейных уравнений как:
В математике система линейных уравнений (или линейная система) – это набор двух или более линейных уравнений, включающих один и тот же набор переменных.
Конечная цель решения системы линейных уравнений – найти значения неизвестных переменных. Вот пример системы линейных уравнений с двумя неизвестными переменными x и y:
Уравнение 1:
4x + 3y = 20 -5x + 9y = 26
Чтобы решить указанную выше систему линейных уравнений, нам нужно найти значения переменных x и y. Есть несколько способов решить такую систему, например, исключение переменных, правило Крамера, метод сокращения строк и матричное решение.
В матричном решении решаемая система линейных уравнений представлена в виде матрицы AX = B. Например, мы можем представить уравнение 1 в виде матрицы следующим образом:
A = [[ 4 3] [-5 9]] X = [[x] [y]] B = [[20] [26]]
Чтобы найти значение переменных x и y в уравнении 1, нам нужно найти значения в матрице X. Для этого мы можем взять скалярное произведение обратной матрицы A и матрицы B, как показано ниже:
X = inverse(A). B
Если вы не знакомы с тем, как найти обратную матрицу, взгляните на эту ссылку, чтобы понять, как вручную найти обратную матрицу.
Решение
Из предыдущего раздела мы знаем, что для решения системы линейных уравнений нам необходимо выполнить две операции: обращение и скалярное произведение матрицы. Библиотека Numpy от Python поддерживает обе операции. Если вы еще не установили библиотеку Numpy, вы можете сделать это с помощью следующей команды pip:
$ pip install numpy
Давайте теперь посмотрим, как решить систему линейных уравнений с помощью библиотеки Numpy.
Использование методов inv() и dot()
Сначала мы найдем матрицу, обратную матрице A, которую мы определили в предыдущем разделе.
Давайте сначала создадим матрицу A на Python. Для создания матрицы можно использовать метод массива модуля Numpy. Матрицу можно рассматривать как список списков, где каждый список представляет собой строку.
В следующем скрипте мы создаем список с именем m_list, который дополнительно содержит два списка: [4,3] и [-5,9]. Эти списки представляют собой две строки в матрице A. Чтобы создать матрицу A с помощью Numpy, m_list передается методу массива, как показано ниже:
import numpy as np m_list = [[4, 3], [-5, 9]] A = np.array(m_list)
Чтобы найти обратную матрицу, которая передается методу linalg.inv() модуля Numpy:
inv_A = np.linalg.inv(A) print(inv_A)
Следующим шагом является нахождение скалярного произведения между матрицей, обратной матрицей A и B. Важно отметить, что матричное скалярное произведение возможно только между матрицами, если их внутренние размеры равны, т.е. количество столбцов левой матрицы должно соответствовать количеству строк в правой матрице.
Чтобы найти точечный продукт с помощью библиотеки Numpy, используется функция linalg. dot(). Следующий скрипт находит скалярное произведение между обратной матрицей A и B, которая является решением уравнения 1.
B = np.array([20, 26]) X = np.linalg.inv(A).dot(B) print(X)
Вывод:
[2. 4.]
Здесь 2 и 4 – соответствующие значения для неизвестных x и y в уравнении 1. Чтобы убедиться, что если вы подставите 2 вместо неизвестного x и 4 вместо неизвестного y в уравнении 4x + 3y, вы увидите что результат будет 20.
Давайте теперь решим систему трех линейных уравнений, как показано ниже:
4x + 3y + 2z = 25 -2x + 2y + 3z = -10 3x -5y + 2z = -4
Вышеупомянутое уравнение можно решить с помощью библиотеки Numpy следующим образом:
Уравнение 2:
A = np.array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]]) B = np.array([25, -10, -4]) X = np.linalg.inv(A). dot(B) print(X)
В приведенном выше скрипте методы linalg.inv() и linalg.dot() связаны вместе. Переменная X содержит решение уравнения 2 и печатается следующим образом:
[ 5. 3. -2.]
Значения неизвестных x, y и z равны 5, 3 и -2 соответственно. Вы можете подставить эти значения в уравнение 2 и проверить их правильность.
resolve()
В двух предыдущих примерах мы использовали методы linalg.inv() и linalg.dot() для поиска решения системы уравнений. Однако библиотека Numpy содержит метод linalg.solve(), который можно использовать для непосредственного поиска решения системы линейных уравнений:
A = np.array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]]) B = np.array([25, -10, -4]) X2 = np.linalg.solve(A,B) print(X2)
Вывод:
[ 5. 3. -2.]
Вы можете видеть, что результат такой же, как и раньше.
Пример
Давайте посмотрим, как систему линейных уравнений можно использовать для решения реальных задач.
Предположим, продавец фруктов продал 20 манго и 10 апельсинов за один день на общую сумму 350 долларов. На следующий день он продал 17 манго и 22 апельсина за 500 долларов. Если цены на фрукты оставались неизменными в оба дня, какова была цена одного манго и одного апельсина?
Эту задачу легко решить с помощью системы двух линейных уравнений.
Допустим, цена одного манго равна x, а цена апельсина – y. Вышеупомянутую проблему можно преобразовать так:
20x + 10y = 350 17x + 22y = 500
Решение для указанной выше системы уравнений показано здесь:
A = np.array([[20, 10], [17, 22]]) B = np.array([350, 500]) X = np.linalg.solve(A,B) print(X)
И вот результат:
[10. 15.]
Выходные данные показывают, что цена одного манго составляет 10 долларов, а цена одного апельсина – 15 долларов.
Решение многошаговых линейных уравнений | Purplemath
Add/SubtractTimes/DivideParenthesesZero/No/All Sol’n
Purplemath
На двух предыдущих страницах мы рассмотрели решение одношаговых линейных уравнений; то есть уравнения, требующие одного сложения или вычитания или требующие одного умножения или деления. Однако для решения большинства линейных уравнений требуется более одного шага. Какие шаги следует использовать и в каком порядке?
Для многошаговых линейных уравнений мы будем использовать те же шаги, что и раньше; единственная разница в том, что мы не закончим после одного шага. Нам все равно придется сделать как минимум еще один шаг. В каком порядке следует выполнять эти шаги? Что ж, это будет варьироваться в зависимости от уравнения, но есть некоторые общие рекомендации, которые могут оказаться полезными.
Содержание продолжается ниже
MathHelp.com
Решение многошаговых уравнений
Решите 7
x + 2 = −54
Переменная находится в левой части уравнения.
В настоящее время оно умножается на семь, а затем к нему прибавляется двойка. Мне нужно отменить «умножить на семь» и «плюс два».Нет правила о том, какую операцию «отмены» я должен выполнить в первую очередь. Однако, если я сначала разделю на 7, я обязательно создам дроби. Лично я предпочитаю избегать дробей, если это возможно, поэтому я почти всегда делаю плюс/минус перед каждым разом/делением. Возможно, мне все равно придется иметь дело с дробями, но, по крайней мере, я могу отложить их ближе к концу моей работы.
Начав с «плюс два», я вычту два из каждой части уравнения. Только тогда я разделю на семь. Моя работа выглядит так:
7x + 2 = -54
-2 -2
————
7x = -56
—
7 7
x = -8
Выполнив сначала плюс/минус, я избежал дробей. Как видите, в ответе нет дробей, поэтому я сделал себе одолжение, выполнив деление в последнюю очередь. Мое решение:
x = −8
Форматирование вашей домашней работы и демонстрация вашей работы способом, который я сделал выше, по моему опыту, является довольно универсально приемлемым.
Решить −5
x − 7 = 108
В этом уравнении переменная (в левой части) умножается на минус пять, а затем из нее вычитается семь. В надежде (как всегда!) избежать дробей, я сначала добавлю семь к любой части уравнения. Только тогда я разделю на минус пять. Моя работа выглядит так:
-5x — 7 = 108
+7 +7
-5x = 115
— —
-5 -5
x = -23
Я аккуратно показал свою работу. Теперь я четко перепишу свое решение в конце своей работы:
x = −23
Решить 3
x — 9 = 33
Переменная (в левой части уравнения) умножается на три, а затем из нее вычитается девятка. Я позабочусь сначала о девятке, а потом о троих:
3x — 9 = 33
+9 +9
————
3x = 42
— —
3 3
x = 14
В этом случае, опять же, в моем решении нет дробей:
x = 14
Решить 5
х + 7 х = 72
В этом уравнении в левой части есть два члена, которые содержат переменные. Итак, мой первый шаг — объединить эти «подобные термины» слева. Тогда я могу решить:
5 х + 7 х = 12 х
Итак, теперь мое уравнение: ступенчатое уравнение. Я решу делением на двенадцать:
12x = 72
— —
12 12
x = 6
Мой ответ:
x = 6
Решить 4
х — 6 = 6 х
В этом уравнении у меня есть члены с переменными по обе стороны уравнения. Чтобы решить, мне нужно получить все эти переменные члены на одной стороне уравнения.
Нет правила, говорящего, какой из двух членов я должен переместить, 4 x или 6 x . Однако по опыту я узнал, что, чтобы избежать отрицательных коэффициентов в моих переменных, я должен переместить x член с меньшим коэффициентом. Это означает, что в данном случае я вычту 4 x из левой части в правую:
4x — 6 = 6x
-4x -4x
————-
-6 = 2x
Теперь у меня есть одношаговое уравнение, которое я решу путем деления на два:
-6 = 2x
— —
2 2
-3 = x
Мое решение:
x = −3
В приведенном выше упражнении переменная (в моей работе) оказалась в правой части уравнения. Это совершенно нормально. Переменная не «требуется» оказаться в левой части уравнения; мы просто привыкли видеть его там. Таким образом, результат «−3 = x » вполне приемлем и означает то же самое, что и « x = −3».
Однако (внимание!), я слышал, что некоторые преподаватели настаивают на том, чтобы переменная располагалась в левой части уравнения в финальном ответе . (Нет, я это не выдумываю.) Таким образом, несмотря на то, что «−3 = x » вполне допустимо в работе, эти инструкторы сочтут это «неправильным», если вы оставите ответ таким. Если у вас есть какие-либо сомнения относительно настроек форматирования вашего преподавателя, спросите сейчас.
В этом уравнении у меня есть переменные по обе стороны уравнения, а также случайные числа по обе стороны. Мне нужно получить переменные термины с одной стороны и свободные числа с другой стороны. Поскольку я хотел бы избежать отрицательных коэффициентов для моих переменных, я буду перемещать меньшее из двух условий; а именно -4 x , который в настоящее время находится справа. Чтобы получить свободные числа на стороне, противоположной переменным терминам, я буду перемещать -1, которая в настоящее время находится в левой части. Для выполнения этих шагов не существует определенного «правильного» порядка; поскольку они оба связаны с добавлением, люди обычно делают их вместе за один шаг. Сначала я сделаю переменные члены, а затем свободные числа:
8x — 1 = 23 — 4x
+4x +4x
——————
12х — 1 = 23
+1 +1
————
12x = 24
На данный момент у меня есть одношаговое уравнение, для решения которого требуется одно деление:
12x = 24
— —
12 12
x = 2
Тогда мой ответ:
x = 2
Если бы в приведенном выше примере я сделал первые два шага за один раз, это выглядело бы так:
8х — 1 = 23 — 4х
+4x +1 +1 +4x
——————
12х = 24
— —
12 12
x = 2
Возможно, когда вы только начинаете, лучше делать каждый шаг отдельно. Но как только вы освоитесь с процессом (и надежно получите правильные значения), не стесняйтесь начинать комбинировать некоторые шаги.
Это уравнение запутанно! Прежде чем я смогу решить, мне нужно объединить одинаковые члены с обеих сторон уравнения:
5 + 4 х — 7 = 4 х — 2 — х
(5 — 7) + 4 х = (4 х — 1 х ) — 1 х ) — 1 904 — 90 0
3 = 3 x − 2
Теперь, когда я упростил каждую часть уравнения, я могу заняться его решением.
-2 + 4х = 3х — 2
-3x -3x
——————
-2 + 1x = -2
+2 +2
——————
1x = 0
Я добавил (обычно не указанную) 1 к переменному члену в правой части исходного уравнения, чтобы помочь мне следить за тем, что я делаю; это не «необходимо». И это не ожидается в окончательном ответе, который правильно сформулирован как:
x = 0
Вполне нормально, что x имеет нулевое значение. Ноль является допустимым решением. Не говорите, что это уравнение «не имеет решения»; у него действительно есть решение, это решение x = 0.
Это уравнение решается так же, как и все другие линейные уравнения, которые я решал. Просто выглядит на хуже из-за десятичных знаков. Но это легко исправить!
Каким бы ни было наибольшее количество знаков после запятой в любом из коэффициентов, я могу умножить с обеих сторон на «1», за которым следует это количество нулей. В этом случае все десятичные дроби имеют один десятичный разряд, поэтому я умножу на 10:
10(0,2 x + 0,9) = 10(0,3 − 0,1 x )
10 (0,2 x ) + 10 (0,9) = 10 (0,3) — 10 (0,1 x )
2 x + 9 = 3 — 1 x
Теперь я можно решить как обычно:
2x + 9 = 3 — 1x
+1x +1x
——————
3x + 9 = 3
-9 -9
————
3x = -6
— —
3 3
x = -2
То, что в исходном уравнении были десятичные разряды, не означает, что я застрял с ними. Отложите этот трюк на потом; это пригодится.
x = −2
Между прочим, если бы коэффициент с наибольшим количеством знаков после запятой имел два знаков после запятой, то я бы умножил обе части уравнения на 100; для трех знаков после запятой я бы умножил на 1000; и так далее.
К черту! Фракции! Но, как и с десятичными знаками в предыдущем упражнении, мне не нужно зацикливаться на дробях. В этом случае я буду умножать, чтобы «очистить» знаменатели, что даст мне более красивое уравнение для решения.
Чтобы упростить вычисления для уравнений с дробями, я сначала умножу обе части на общий знаменатель различных дробей. У этого уравнения общий знаменатель равен 12, поэтому я умножу все на 12 (или, при умножении на дробь, умножу на
12/1):
Теперь с этим уравнением работать намного удобнее. Я продолжу свое решение, вычитая меньшие 2 x с обеих сторон:
3x + 12 = 2x + 6
-2x -2x
——————
1x + 12 = 6
-12 -12
——————
1x = -6
Я уберу 1 из переменной, когда напишу свой окончательный ответ:
x = -6
Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в решении многошагового линейного уравнения. Попробуйте введенное упражнение или введите свое собственное упражнение. Затем нажмите кнопку, чтобы сравнить свой ответ с ответом Mathway. (Или пропустите виджет и продолжите урок.)
Пожалуйста, примите куки-файлы настроек, чтобы включить этот виджет.
(Нажав «Нажмите, чтобы просмотреть шаги» на экране ответов виджета, вы перейдете на сайт Mathway для платного обновления.)
URL: https://www.purplemath.com/modules/solvelin3 .htm
Стр. 1 Стр. 2 Стр. 4 Стр. решение уравнений. В системе линейных уравнений каждому уравнению соответствует прямая линия, и нужно найти точку, в которой две линии пересекаются.
Пример
Решите следующую систему линейных уравнений:
$$\left\{\begin{matrix} y=2x+4\\ y=3x+2\\ \end{matrix}\right .$$
Поскольку мы ищем точку пересечения, мы можем изобразить уравнения:
Здесь мы видим, что прямые пересекаются друг с другом в точке x = 2, y = 8. Это наше решение и мы можем назвать это графическим решением задачи.
Но как найти решение, если линии никогда не пересекаются? Нельзя, система уравнений не имеет решения.
Правильный ответ можно также получить с помощью метода исключения (также называемого методом сложения или методом линейной комбинации) или методом подстановки.
При использовании метода подстановки мы используем тот факт, что если два выражения y и x имеют одинаковое значение x=y, то x может заменить y или наоборот в другом выражении без изменения значения выражения.
Пример
Решить системы уравнений методом подстановки
$$\left\{\begin{matrix} y=2x+4\\ y=3x+2\\ \end{matrix}\right.$$
Заменим y в верхнем уравнении выражением для второго уравнения:
$$\begin{array}{lcl} 2x+4 & = & 3x+2\\ 4-2 & = & 3x-2x\\ 2 & = & x\\ \end{array }$$
Чтобы определить значение y , мы можем подставить наше значение x в любое из уравнений. Выбираем первое уравнение:
$$y=2x+4$$
Подставляем x=2 и получаем
$$y=2\cdot 2+4=8$$
Таким образом, мы пришли к точно такому же ответу, как и в графическом решении.
Метод исключения требует от нас добавления или вычитания уравнений, чтобы исключить либо x , либо y , часто нельзя приступить к сложению напрямую, не умножив сначала первое или второе уравнение на некоторое значение.
Пример
$$2x-2y=8$$
$$x+y=1$$
Теперь мы хотим сложить два уравнения, но это не приведет ни к одному из x или y исключаются. Следовательно, мы должны умножить второе уравнение на 2 с обеих сторон и получить:
$$2x-2y=8$$
$$2x+2y=2$$
Теперь попробуем сложить нашу систему уравнений. Начнем с x -термов слева, затем y -термов и, наконец, с чисел справа:
$$(2x+2x)+(-2y+2y)=8+ 2$$
Члены y теперь исключены, и теперь у нас есть уравнение только с одной переменной:
$$4x=10$$
$$x=\frac{10}{4}=2,5$$
После этого для определения y -значения подставляем x =2,5 в одну уравнений.