1 | Найти число нейтронов | H | |
2 | Найти массу одного моля | H_2O | |
3 | Баланс | H_2(SO_4)+K(OH)→K_2(SO_4)+H(OH) | |
4 | Найти массу одного моля | H | |
5 | Найти число нейтронов | Fe | |
6 | Найти число нейтронов | Tc | |
7 | Найти конфигурацию электронов | H | |
8 | Найти число нейтронов | Ca | |
9 | Баланс | CH_4+O_2→H_2O+CO_2 | |
10 | Найти число нейтронов | C | |
11 | Найти число протонов | H | |
12 | Найти число нейтронов | O | |
13 | Найти массу одного моля | CO_2 | |
14 | Баланс | C_8H_18+O_2→CO_2+H_2O | |
15 | Найти атомную массу | H | |
16 | Определить, растворима ли смесь в воде | H_2O | |
17 | Найти конфигурацию электронов | Na | |
18 | Найти массу одного атома | H | |
19 | Найти число нейтронов | Nb | |
20 | Найти число нейтронов | Au | |
21 | Найти число нейтронов | Mn | |
22 | Найти число нейтронов | Ru | |
23 | Найти конфигурацию электронов | ||
24 | Найти массовую долю | H_2O | |
25 | Определить, растворима ли смесь в воде | NaCl | |
26 | Найти эмпирическую/простейшую формулу | H_2O | |
27 | Найти степень окисления | H_2O | |
28 | Найти конфигурацию электронов | K | |
29 | Найти конфигурацию электронов | Mg | |
30 | Найти конфигурацию электронов | Ca | |
31 | Найти число нейтронов | Rh | |
32 | Найти число нейтронов | Na | |
33 | Найти число нейтронов | Pt | |
34 | Найти число нейтронов | Be | Be |
35 | Найти число нейтронов | Cr | |
36 | Найти массу одного моля | H_2SO_4 | |
37 | Найти массу одного моля | HCl | |
38 | Найти массу одного моля | Fe | |
39 | Найти массу одного моля | C | |
40 | Найти число нейтронов | Cu | |
41 | Найти число нейтронов | S | |
42 | Найти степень окисления | H | |
43 | Баланс | CH_4+O_2→CO_2+H_2O | |
44 | Найти атомную массу | O | |
45 | Найти атомное число | H | |
46 | Найти число нейтронов | Mo | |
47 | Найти число нейтронов | Os | |
48 | Найти массу одного моля | NaOH | |
49 | Найти массу одного моля | O | |
50 | Найти конфигурацию электронов | Fe | |
51 | Найти конфигурацию электронов | C | |
52 | Найти массовую долю | NaCl | |
53 | Найти массу одного моля | ||
54 | Найти массу одного атома | Na | |
55 | Найти число нейтронов | N | |
56 | Найти число нейтронов | Li | |
57 | Найти число нейтронов | V | |
58 | Найти число протонов | N | |
59 | Упростить | H^2O | |
60 | Упростить | h*2o | |
61 | Определить, растворима ли смесь в воде | H | |
62 | Найти плотность при стандартной температуре и давлении | H_2O | |
63 | Найти степень окисления | NaCl | |
64 | Найти атомную массу | He | He |
65 | Найти атомную массу | Mg | |
66 | Найти число электронов | H | |
67 | Найти число электронов | O | |
68 | Найти число электронов | S | |
69 | Найти число нейтронов | Pd | |
70 | Найти число нейтронов | Hg | |
71 | Найти число нейтронов | B | |
72 | Найти массу одного атома | Li | |
73 | Найти эмпирическую формулу | H=12% , C=54% , N=20 | , , |
74 | Найти число протонов | Be | Be |
75 | Найти массу одного моля | Na | |
76 | Найти конфигурацию электронов | Co | |
77 | Найти конфигурацию электронов | S | |
78 | Баланс | C_2H_6+O_2→CO_2+H_2O | |
79 | Баланс | H_2+O_2→H_2O | |
80 | Найти конфигурацию электронов | P | |
81 | Найти конфигурацию электронов | Pb | |
82 | Найти конфигурацию электронов | Al | |
83 | Найти конфигурацию электронов | Ar | |
84 | Найти массу одного моля | O_2 | |
85 | Найти массу одного моля | H_2 | |
86 | Найти число нейтронов | K | |
87 | Найти число нейтронов | P | |
88 | Найти число нейтронов | Mg | |
89 | Найти число нейтронов | W | |
90 | Найти массу одного атома | C | |
91 | Упростить | na+cl | |
92 | Определить, растворима ли смесь в воде | H_2SO_4 | |
93 | Найти плотность при стандартной температуре и давлении | NaCl | |
94 | Найти степень окисления | C_6H_12O_6 | |
95 | Найти степень окисления | Na | |
96 | Определить, растворима ли смесь в воде | C_6H_12O_6 | |
97 | Найти атомную массу | Cl | |
98 | Найти атомную массу | Fe | |
99 | Найти эмпирическую/простейшую формулу | CO_2 | |
100 | Найти число нейтронов | Mt |
Периодическая таблица химических элементов Менделеева: группы, периоды, металлы и неметаллы в ПСХЭ
Периодический закон
К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.
Пытался решить эту задачу и молодой русский профессор Д.И. Менделеев. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически.
Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так:
Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.
Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов.
<<Форма демодоступа>>
Во-первых, многочисленные эксперименты позволили Менделееву сделать вывод, что атомные массы некоторых элементов ранее были вычислены неправильно, и он изменил их в соответствии со своей системой.
Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства.
Первый вариант Периодической таблицы элементов, составленной Д.И. Менделеевым.
Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий. Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших (и даже не всегда возможных в реальности) опытов — теперь стало достаточно одного взгляда в таблицу.
Существует легенда, якобы знаменитая таблица явилась Менделееву во сне. Но сам Дмитрий Иванович эту информацию не подтвердил. Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово!».
Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.
Структура Периодической системы элементов
Периодическая таблица химических элементов
На настоящий момент Периодическая таблица Менделеева содержит 118 химических элементов. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.
Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.
Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов. В кратком варианте таблицы, используемой в школьных учебниках, элементы разделены на восемь групп. Каждая из них делится на главную (A) и побочную (B) подгруппы, которые объединяют элементы со сходными химическими свойствами.
Каждый элемент обозначается одной или двумя латинскими буквами. Порядковый номер элемента (число протонов в его ядре) обычно пишется в левом верхнем углу. Также в ячейке элемента указана его относительная атомная масса (сумма масс протонов и нейтронов). Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учётом их содержания в природе. Поэтому обычно она является дробным числом.
Чтобы узнать количество нейтронов в ядре элемента, необходимо вычесть его порядковый номер из относительной атомной массы (массового числа).
Свойства Периодической системы элементов
Расположение химических элементов в таблице Менделеева позволяет сопоставлять не только их атомные массы, но и химические свойства.
Вот как они изменяются в пределах группы (сверху вниз):
- Металлические свойства усиливаются, неметаллические ослабевают.
- Увеличивается атомный радиус.
- Усиливаются основные свойства гидроксидов и кислотные свойства водородных соединений неметаллов.
В пределах периодов (слева направо) свойства элементов меняются следующим образом:
- Металлические свойства ослабевают, неметаллические усиливаются.
- Уменьшается атомный радиус.
- Возрастает электроотрицательность.
Элементы Периодической таблицы Менделеева
По положению элемента в периоде можно определить его принадлежность к металлам или неметаллам. Металлы расположены в левом нижнем углу таблицы, неметаллы — в правом верхнем углу. Между ними находятся полуметаллы. Все периоды, кроме первого, начинается щелочным металлом. Каждый период заканчивается инертным газом.
Щелочные металлы
Первая группа главная подгруппа элементов (IA) — щелочные металлы. Это серебристые вещества (кроме цезия, он золотистый), настолько мягкие, что их можно резать ножом. Поскольку на их внешнем электронном слое находится только один электрон, они очень легко вступают в реакции. Плотность щелочных металлов меньше плотности воды, поэтому они в ней не тонут, а бурно реагируют с образованием щёлочи и водорода. Реакция идёт настолько энергично, что водород может даже загореться или взорваться. Эти металлы настолько активно реагируют с кислородом в воздухе, что их приходится хранить под слоем керосина (а литий — под слоем вазелина).
Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду
CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс.Щелочноземельные металлы
Вторая группа главная подгруппа (IIА) представлена щелочноземельными металлами с двумя электронами на внешнем энергетическом уровне атома. Бериллий и магний часто не относят к щелочноземельным металлам. Они тоже имеют серебристый оттенок и легко взаимодействуют с другими элементами, хотя и не так охотно, как металлы из первой группы главной подгруппы. Температура плавления щелочноземельных металлов выше, чем у щелочных. Ионы магния и кальция обусловливают жёсткость воды.
Лантаноиды и актиноиды
В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам. У этих элементов электроны начинают заполнять третий по счёту от внешнего электронного слоя уровень. Это лантаноиды и актиноиды. Для удобства их помещают под основной таблицей.
Лантаноиды иногда называют «редкоземельными элементами», поскольку они были обнаружены в небольшом количестве в составе редких минералов и не образуют собственных руд.
Актиноиды имеют одно важное общее свойство — радиоактивность. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно.
Переходные металлы
Элементы побочных подгрупп, кроме лантаноидов и актиноидов, называют переходными металлами. Они вполне укладываются в привычные представления о металлах — твёрдые (за исключением жидкой ртути), плотные, обладают характерным блеском, хорошо проводят тепло и электричество. Валентные электроны их атомов находятся на внешнем и предвнешнем энергетических уровнях.
Неметаллы
Правый верхний угол таблицы до инертных газов занимают неметаллы. Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом (как углерод или кремний), жидком (как бром) и газообразном (как кислород и азот). Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе Периодической системы.
Подгруппа углерода
Четвёртую группу главную подгруппу (IVА) называют подгруппой углерода. Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие.
Большинство элементов подгруппы углерода — полупроводники (проводят электричество за счёт примесей, но хуже, чем металлы). Графит, германий и кремний используют при изготовлении полупроводниковых элементов (транзисторы, диоды, процессоры и так далее).
Подгруппа азота
Пятую группу главную подгруппу (VA) называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.
Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом.
Азот — основное вещество в составе атмосферы нашей планеты. Некоторые элементы подгруппы азота токсичны для человека (фосфор, мышьяк, висмут). При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений. Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот.
Подгруппа кислорода
Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы (VIA). Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные (неметаллические) свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают.
Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения.
Кислород и сера легко образуют прочные соединения с металлами — оксиды и сульфиды. В виде этих соединений металлы часто входят в состав руд.
Галогены
Седьмая группа главная подгруппа (VIIA) представлена галогенами — неметаллами с семью электронами на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены («рождающие соли») назвали так потому, что они реагируют со многими металлами с образованием солей. Например, хлор входит в состав обычной поваренной соли.
Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя (слово «фтор» переводится на русский язык как «разрушительный»). А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран.
Инертные газы
Инертные газы, расположенные в последней, восьмой группе главной подгруппе (VIIIA) — элементы с полностью заполненным внешним электронным уровнем. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными», проводя параллель с представителями высшего общества, которые брезгуют контактировать с посторонними.
У инертных газов есть удивительная способность: они светятся под действием электромагнитного излучения, поэтому используются для создания ламп. Так, неон используется для создания светящихся вывесок и реклам, а ксенон — в автомобильных фарах и фотовспышках.
Гелий обладает массой всего в два раза больше массы молекулы водорода, но, в отличие от последнего, не взрывоопасен и используется для заполнения воздушных шаров.
Структура атома
Структура атомаАтом и электромагнитное излучение
Основные Субатомные частицы | Электромагнитный Радиация |
Свет и другие формы электромагнитного излучения |
Фундаментальный субатомный Частицы
Частица | Символ | Оплата | Масса | |
электрон | и — | -1 | 0,0005486 а. е.м. | |
протон | р + | +1 | 1,007276 а.е.м. | |
нейтрон | нет или | 0 | 1.008665 аму |
Число протонов, нейтронов и электронов в атоме можно определить из набора простых правила.
- Число протонов в ядре атома равно равно атомному номеру ( Z ).
- Количество электронов в нейтральном атоме равно равно числу протонов.
- Массовое число атома ( M ) равно сумма числа протонов и нейтронов в ядро.
- Число нейтронов равно разности между массовым числом атома ( M ) и атомный номер ( Z ).
Примеры: Определим количество протонов, нейтронов, и электроны в следующих изотопах.
12 С | 13 С | 14 С | 14 Н |
Различные изотопы элемента идентифицируют, записывая массовое число атома в верхний левый угол символа элемента. 12 С, 13 C и 14 C изотопы углерода ( Z = 6) и, следовательно, содержат шесть протонов. Если атомы нейтральны, они также должны содержать шесть электронов. Единственный разница между этими изотопами в количестве нейтронов в ядре.
12 C: 6 электронов, 6 протонов и 6 нейтронов
13 C: 6 электронов, 6 протонов и 7 нейтронов
14 С: 6 электронов, 6 протонов и 8 нейтронов
Электромагнитный Радиация
Многое из того, что известно о строении электронов в атоме было получено при изучении взаимодействия между материей и различными формами электромагнитных радиация . Электромагнитное излучение имеет некоторые свойства частицы и волны.
Частицы имеют определенную массу и занимают пространство. Волны не имеют массы, но несут энергию как они путешествуют по космосу. Помимо их способности несут энергию, волны имеют четыре другие характеристики свойства: скорость, частота, длина волны и амплитуда. Частота ( v ) количество волн (или циклов) на единицу время. Частота волны указывается в единицах циклов. в секунду (с -1 ) или герц (Гц).
Идеализированный рисунок волны на рисунке ниже иллюстрирует определения амплитуды и длины волны. Длина волны ( l ) — наименьшее расстояние между повторяющимися точками на волне. Амплитуда волны — это расстояние между самой высокой (или самой низкой) точкой волны и центр тяжести волны.
Если мы измерим частоту ( v ) волны в циклах в секунду и длина волны ( l ) в метрах, Произведение этих двух чисел выражается в метрах на второй. Произведение частоты (
вл = с
Легкие и прочие Формы электромагнитного излучения
Свет — это волна с электрическими и магнитными . составные части. Следовательно, это форма электромагнитных радиация .
Видимый свет содержит узкую полосу частот и длины волн в части электромагнитного спектра которые наши глаза могут обнаружить. Он включает в себя излучение с длины волн от 400 нм (фиолетовый) до 700 нм (красный). Поскольку это волна, свет преломляется, когда попадает в стекло. призма. Когда белый свет фокусируется на призме, световые лучи с разной длиной волны изгибаются на разную величину и свет превращается в спектр цветов. Начиная со стороны спектра, где свет преломляется наименьший угол, цвета красный, оранжевый, желтый, зеленый, синий, и фиолетовый.
Как видно из следующей диаграммы, энергия переносимый светом, увеличивается по мере того, как мы переходим от красного к синему через видимый спектр.
Поскольку длина волны электромагнитного излучения может быть до 40 м или до 10 -5 нм, видимый спектр составляет лишь малую часть всего диапазона электромагнитного излучения.
Электромагнитный спектр включает радио- и телеволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолет, рентгеновские лучи, g-лучи и космические лучи, как показано на рисунке выше. Эти различные формы излучения движутся со скоростью света ( с ). Однако они различаются по своей частоте и длины волн. Произведение частоты на длина волны электромагнитного излучения всегда равна скорость света.
вл = с
В результате электромагнитное излучение то, что имеет большую длину волны, имеет низкую частоту, а излучение с высокой частотой имеет короткую длину волны.
Как рассчитать количество нейтронов?
значок-вопрос Спросите репетитораНачать бесплатную пробную версию
Массовое число равно сумме протонов и нейтронов. Это означает, что чтобы найти количество нейтронов, вы вычитаете количество протонов из массового числа. В периодической таблице атомный номер — это число протонов, а атомная масса — это массовое число.
Скачать PDF PDF Цитата страницы Цитировать Поделиться ссылкой ДелитьсяСсылайтесь на эту страницу следующим образом:
«Как рассчитать количество нейтронов?» eNotes Editorial , 22 октября 2014 г. , https://www.enotes.com/homework-help/how-do-you-calculate-number-neutrons-471910. По состоянию на 7 ноября 2022 г.
Обратите внимание, что ядро атома состоит из протонов и нейтронов. А количество частиц, присутствующих в ядре, называется массовым числом (также называемым атомной массой).
массовое число = количество протонов + количество нейтронов
Итак, чтобы определить количество нейтронов в атоме, нам нужно только вычесть количество протонов из массового числа.
Количество нейтронов = Массовое число — Число протонов
Чтобы применить эту формулу, обратитесь к атомному номеру и атомному весу элементов. Эти два вещества перечислены в Периодической таблице элементов.
Обратите внимание, что атомный номер относится к числу протонов в атоме элемента.
Итак,
# протонов = атомный номер
Атомный вес представляет собой средневзвешенное значение атомных масс всех природных изотопов элемента. Его значения в Периодической таблице представлены в десятичной форме. Таким образом, чтобы получить атомную массу, округлите атомный вес до ближайшего целого числа.
массовое число = атомный вес, округленный до ближайшего целого числа
Например, атомный номер натрия равен 11, а его атомный вес равен 22,989. Итак, натрий содержит 11 протонов, а его массовое число равно 23.
Применяя приведенную выше формулу, количество нейтронов будет:
# количество нейтронов = Массовое число — Количество протонов
# количество нейтронов = 23 — 11
# количество нейтронов = 12
Следовательно, в атоме натрия 12 нейтронов.
Утверждено редакцией eNotes
Наука
Последний ответ опубликован 17 июля 2012 г. в 14:55:17.
Каковы три части клеточной теории?
16 Ответы педагога
Наука
Последний ответ опубликован 21 июня 2018 г.