Линейные дифференциальные уравнения первого порядка примеры решений: Линейные дифференциальные уравнения первого порядка.

Линейные дифференциальные уравнения первого порядка

Уравнение первого порядка вида a1(x)y' + a0(x)y = b(x) называется линейным дифференциальным уравнением. Если b(x) ≡ 0 то уравнение называется однородным, в противном случае — неоднородным. Для линейного дифференциального уравнения теорема существования и единственности имеет более конкретный вид.

Назначение сервиса. Онлайн калькулятор можно использовать для проверки решения однородных и неоднородных линейных дифференциальных уравнений вида y'+y=b(x).

  • Решение онлайн
  • Видеоинструкция

=

Использовать замену переменных y=u*v
Использовать метод вариации произвольной постоянной
Находить частное решение при y() = .

Для получения решения исходное выражение необходимо привести к виду: a1(x)y' + a

0(x)y = b(x). Например, для y'-exp(x)=2*y это будет y'-2*y=exp(x).

Теорема. Пусть a1(x), a0(x), b(x) непрерывны на отрезке [α,β], a1≠0 для ∀x∈[α,β]. Тогда для любой точки (x0, y0), x0∈[α,β], существует единственное решение уравнения, удовлетворяющее условию y(x0) = y0 и определенное на всем интервале [α,β].
Рассмотрим однородное линейное дифференциальное уравнение a1(x)y'+a0(x)y=0.
Разделяя переменные, получаем , или, интегрируя обе части, Последнее соотношение, с учетом обозначения exp(x) = ex, записывается в форме

Попытаемся теперь найти решение уравнения в указанном виде, в котором вместо константы C подставлена функция C(x) то есть в виде

Подставив это решение в исходное, после необходимых преобразований получаем Интегрируя последнее, имеем


где C1— некоторая новая константа. Подставляя полученное выражение для C(x), окончательно получаем решение исходного линейного уравнения
.

Описанный метод решения называется методом Лагранжа или методом вариации произвольной постоянной (см. также Метод вариации произвольной постоянной решения линейных неоднородных уравнений).

Пример. Решить уравнение y' + 2y = 4x. Рассмотрим соответствующее однородное уравнение y' + 2y = 0. Решая его, получаем y = Ce-2x. Ищем теперь решение исходного уравнения в виде y = C(x)e-2x. Подставляя y и y’ = C'(x)e-2x — 2C(x)e-2x

в исходное уравнение, имеем C'(x) = 4xe2x, откуда C(x) = 2xe2x — e2x + C1 и y(x) = (2xe2x — e2x + C1)e-2x = 2x — 1 + C1e-2x — общее решение исходного уравнения. В этом решении y1(x) = 2x-1 — движение объекта под действием силы b(x) = 4x, y2(x) = C1e-2x -собственное движение объекта.

Пример №2. Найти общее решение дифференциального уравнения первого порядка y’+3 y tan(3x)=2 cos(3x)/sin22x.
Это неоднородное уравнение. Сделаем замену переменных: y=u•v, y’ = u’v + uv’.
3u v tg(3x)+u v’+u’ v = 2cos(3x)/sin22x или u(3v tg(3x)+v’) + u’ v= 2cos(3x)/sin2

2x
Решение состоит из двух этапов:
1. u(3v tg(3x)+v’) = 0
2. u’v = 2cos(3x)/sin22x
1. Приравниваем u=0, находим решение для 3v tg(3x)+v’ = 0
Представим в виде: v’ = -3v tg(3x)

Интегирируя, получаем:

ln(v) = ln(cos(3x))
v = cos(3x)
2. Зная v, Находим u из условия: u’v = 2cos(3x)/sin22x
u’ cos(3x) = 2cos(3x)/sin22x
u’ = 2/sin22x
Интегирируя, получаем:
Из условия y=u•v, получаем:
y = u•v = (C-cos(2x)/sin(2x)) cos(3x) или y = C cos(3x)-cos(2x) ctg(3x)

Решение дифференциальных уравнений второго порядка

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Главная Справочник Дифференциальные уравнения Решение дифференциальных уравнений второго порядка

Решение простых дифференциальных уравнений второго порядка

Дифференциальные уравнения второго порядка вида

   

решаются двукратным интегрированием.

Решение линейных дифференциальных уравнений второго порядка

Рассмотрим линейное однородное дифференциальное уравнение второго порядка

   

Здесь коэффициенты – постоянные действительные числа. Решение этого уравнения будем искать в виде

   

Подставим эту функцию в уравнение (1):

   

   

Поскольку , то функция (2) будет решением линейного однородного уравнения тогда и только тогда, когда будет выполняться равенство

   

Уравнение (3) называется характеристическим уравнением линейного однородного дифференциального уравнения с постоянными коэффициентами (1). А многочлен n-й степени называется характеристическим многочленом этого уравнения.

Замечание. Корни характеристического уравнения линейного однородного дифференциального уравнения с постоянными коэффициентами могут быть как действительными, так и комплексными (простыми и кратными) числами.

Утверждение 1. Если числа – различные действительные корни характеристического уравнения (3) линейного однородного дифференциального уравнения с постоянными коэффициентами (1), то функции образуют фундаментальную систему решений этого уравнения и общее решение уравнения имеет вид:

   

Утверждение 2. Если – действительный корень характеристического уравнения кратности два, то функции – фундаментальная система решений уравнения (1), общее решение этого уравнения имеет вид:

   

Утверждение 3. Если – комплексно сопряженные корни характеристического уравнения (3), которое соответствует однородному дифференциальному уравнению второго порядка (1), то функции образуют фундаментальную систему решений этого уравнение и общее решение записывается в виде:

   

Решение линейных неоднородных ДУ второго порядка

Рассмотрим линейное неоднородное дифференциальное уравнение второго порядка

   

Коэффициенты – некоторые действительные числа, – непрерывная на отрезке функция, называемая правой частью неоднородного дифференциального уравнения (4).

Общее решение этого уравнения имеет вид

   

где – произвольные постоянные, – фундаментальная система решений соответствующего однородного уравнения (1), – частное решение неоднородного уравнения (4).

Частное решение можно найти методом подбора (или методом неопределенных коэффициентов) в случае, если правая часть уравнения есть одной из функций вида

   

или

   

Здесь – заданные многочлены степени n, – известный многочлен степени m, – некоторые действительные числа.

Метод подбора нахождения частного решения линейного неоднородного уравнения (4) с функцией вида (5), (6) в правой части состоит в том, что частное решение уравнения ищут в виде

   

– многочлен степени n с неопределенными коэффициентами, s=0 при , которое не является корнем характеристического многочлена, или s кратности , где — корень характеристического многочлена.

или

   

– многочлены степени k с неопределенными коэффициентами, s=0 ( не является корнем характеристического многочлена), или s кратности — корень характеристического многочлена.

соответственно.

Принцип суперпозиции. Если функция – решение линейного дифференциального уравнения

   

то тогда функция

   

есть решением уравнения

   

или

   

Понравился сайт? Расскажи друзьям!

Дифференциальные уравнения — DE первого порядка

Показать мобильное уведомление Показать все примечания Скрыть все примечания

Мобильное уведомление

Похоже, вы находитесь на устройстве с «узкой» шириной экрана ( т.е. вы, вероятно, на мобильном телефоне).

Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

В этой главе мы рассмотрим решение дифференциальных уравнений первого порядка. Наиболее общее дифференциальное уравнение первого порядка можно записать в виде

\[\begin{equation}\frac{{dy}}{{dt}} = f\left( {y,t} \right) \label{eq:eq1} \end{equation}\]

Как мы увидим в этой главе, общей формулы для решения \(\eqref{eq:eq1}\) не существует. Вместо этого мы рассмотрим несколько особых случаев и посмотрим, как их решить. Мы также рассмотрим некоторые аспекты теории дифференциальных уравнений первого порядка, а также некоторые приложения дифференциальных уравнений первого порядка. Ниже приведен список тем, обсуждаемых в этой главе.

Линейные уравнения. В этом разделе мы решаем линейные дифференциальные уравнения первого порядка, то есть дифференциальные уравнения в форме \(y’ + p(t) y = g(t)\). Мы даем подробный обзор процесса, используемого для решения этого типа дифференциального уравнения, а также вывод формулы, необходимой для интегрирующего коэффициента, используемого в процессе решения.

Разделимые уравнения – В этом разделе мы решаем разделимые дифференциальные уравнения первого порядка, то есть дифференциальные уравнения в форме \(N(y) y’ = M(x)\). Мы дадим вывод процесса решения этого типа дифференциального уравнения. Мы также начнем искать интервал достоверности решения дифференциального уравнения. 9{н}\). В этом разделе также будет представлена ​​идея использования подстановки для решения дифференциальных уравнений.

Подстановки. В этом разделе мы продолжим с того места, где остановился последний раздел, и рассмотрим пару других подстановок, которые можно использовать для решения некоторых дифференциальных уравнений. В частности, мы обсудим использование решений для решения дифференциальных уравнений вида \(y’ = F(\frac{y}{x})\) и \(y’ = G(ax + by)\).

Интервалы достоверности. В этом разделе мы подробно рассмотрим интервалы достоверности, а также ответим на вопрос о существовании и уникальности дифференциальных уравнений первого порядка.

Моделирование с помощью дифференциальных уравнений первого порядка. В этом разделе мы будем использовать дифференциальные уравнения первого порядка для моделирования физических ситуаций. В частности, мы рассмотрим задачи смешивания (моделирование количества вещества, растворенного в жидкости, и жидкости, которая входит и выходит), проблемы населения (моделирование населения в различных ситуациях, в которых население может войти или выйти) и падающие предметы. (моделирование скорости падающего объекта под действием силы тяжести и сопротивления воздуха).

Равновесные решения. В этом разделе мы определим равновесные решения (или точки равновесия) для автономных дифференциальных уравнений \(y’ = f(y)\).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *