Плюс минус
Плюс минусПлюс и минус — это признаки положительных и отрицательных чисел в математике. Какой результат получается при умножении и делении положительных и отрицательных чисел? Эта простая таблица наглядно показывает результаты умножения и деления двух чисел с разными знаками.
Приведенные в таблице результаты применимы как при умножении и делении целых чисел, так и при умножении и делении дробей. Для определения числовых значений результата умножения или деления воспользуйтесь таблицами умножения и деления, которые можно скачать бесплатно.
При умножении или делении двух положительных чисел в результате получается положительное число. Плюс умноженный на плюс дает плюс, плюс деленный на плюс будет плюс. Это правило математики. Произведение двух положительных чисел — число положительное, частное двух положительных чисел — положительное число.
В математике умножение или деление положительного числа на отрицательное дает в результате отрицательное число. Плюс умноженный на минус дает минус. Плюс деленный на минус будет минус. Если положительную дробь умножить или разделить на отрицательную дробь получится отрицательное число. Это число может быть целым или дробным. Произведение положительного числа на отрицательное — число отрицательное, частное положительного числа на отрицательное число — отрицательное число. Если числитель дроби положительный, а знаменатель отрицательный — дробь (или целое число) будет отрицательной.
При делении или умножении отрицательного числа на положительное в результате получается отрицательное число. Минус умноженный на плюс будет минус. Минус деленный на плюс в математике будет минус. Когда числитель дроби отрицательный, а знаменатель положительный — дробь (или целое число) будет отрицательной. Если отрицательную дробь умножить или разделить на положительную дробь получится отрицательное число. Это число может быть целым или дробным, что определяется другими правилами математики. Произведение отрицательного числа на положительное — число отрицательное, частное отрицательного числа на положительное число — отрицательное число.
Когда умножаются или делятся два отрицательных числа, результатом будет положительное число. Минус умноженный на минус дает плюс, минус деленный на минус будет плюс. Произведение двух отрицательного чисел — положительное число, частное двух отрицательного чисел — число положительное. При делении или умножении двух отрицательных чисел получается положительное число. Правила знаков в математике распространяются как на целые, так и на дробные числа. При делении двух отрицательных дробей результат будет положительным. При умножении двух отрицательных дробей результат так же будет положительным, то есть со знаком плюс.
ВОПРОС — ОТВЕТ
«Кто ввел знаки сложения и вычитания в математику?» — первое употребление слов plus (больше) и minus (меньше) как обозначения действия сложения было найдено историком математики Энестремом в итальянской алгебре четырнадцатого века. Вначале действия сложения и вычитания обозначали перввыми буквами слов «p» и «m». Современные знаки плюс «+» и минус «-» появились в Германии в последнее десятилетие пятнадцатого века в книге Видмана, которая была руководством по счету для купцов (“Behende und ubsche Rechenung auf allen Kaufmannschaft”, 1498). Существует предположение, что знаки плюс «+» и минус «-» появились из торговой практики: проданные меры вина отмечались на бочке черточкой «-«, а при восстановлении запаса их перечеркивали, откуда получился знак «+». Здесь я хочу особо подчеркнуть, что знаком «минус» отмечалась не мера (бочка) с «отрицательным» вином, а пустая мера (бочка), что гораздо больше соответствует понятию «ноль». Когда вам математики будут рассказывать об отрицательных числах, всегда помните о пустой бочке, которая по воле математиков превратилась в бочку со знаком «минус».
«Минус 6 делить на минус 3 как быть?» — сперва отбрасываем знаки минус и делим просто 6 (шесть) на 3 (три) при помощи таблицы деления и получаем в результате 2 (два). Потом по табличке вверху странички делим минус на минус и получаем плюс. Теперь прилепливаем полученный плюс к ранее полученной двойке
(-6) : (-3) = +2
Впрочем, знак «+» перед числами писать не принято, поэтому красивее и правильнее будет так:
(-6) : (-3) = 2
«Если число со знаком минус спереди умножаем на такое же число?» — решение смотри выше.
13 ноября 2009 года — 22 сентября 2019 года.
© 2006 — 2021 Николай Хижняк. Все права защищены.
Правила знаков
Минус и плюс – это признаки отрицательных и положительных чисел в математике. Они по-разному взаимодействую с собой, поэтому при выполнении каких-либо действий с числами, например, деление, умножение, вычитание, сложение и т.д., необходимо учитывать
Рассмотрим подробней основные правила знаков.
Деление.
Если мы делим «плюс» на «минус», то получаем всегда «минус». Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс».
Умножение.
Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс».
Вычитание и сложение.
Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль – это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Вот и выйдет -7+3 = -4. Можно сделать еще проще. Просто на первое место ставить положительное число, и выйдет 3-7 = -4, возможно кому-то так более понятно. Вычитание действуют полностью по такому же принципу.
Правила при умножении (делении) чисел | |||||||||||||||
|
Умножения и деление отрицательных чисел. Решение примеров.
В этой статье мы будем изучать умножение и деление отрицательных чисел. Существуют определенные правила умножения отрицательных чисел.
- \(«—«-\) при умножении минус на минус результат становится положительным;
- \(«-+»-\) при умножении минуса на плюс результат становится отрицательным;
- \(«+-«-\) при умножении плюса на минус результат становится отрицательным;
- \(«++»-\) при умножении плюса на плюс результат становится положительным.
Примеры умножения отрицательных чисел.
Задача 1. Вычислить: \((-4)*(-4)\) и \((-6)*(-5).\)
Решение.
Отрицательное число при умножении на отрицательное станет положительным согласно правилу.
- \((-4)*(-4)=16\)
- \((-6)*(-5)=30\)
Ответ: \(16;30.\)
Задача 2. Вычислить: \((-10)*12\) и \((-7)*4.\)
Решение.
Отрицательное при умножении на положительное число станет отрицательным согласно правилу.
-10 * 12= -120
(-7)*4=-28
Ответ: \(-120; -28\)
Задача 3. Вычислить: \(11*(-11)\) и \(13*(-6).\)
Решение.
Положительное при умножении на отрицательное число станет отрицательным согласно правилу.
- \(11*(-11)=-121\)
- \(13*(-6)=-78\)
Ответ: \(-121;-78.\)
Деление отрицательных чисел
При делении действуют те же правила знаков, что и при умножении. Делить на ноль нельзя.
- \(«—«-\) при делении минус на минус результат становится положительным;
- \(«+-«-\)при делении плюса на минус результат становится отрицательным;
- \(«++»-\) при делении плюса на плюс результат становится положительным.
Задача 4. Вычислить: \((-16)*(-4)\) и \((-6)*(-2)\).
Решение.
- \(-16:(-4)=4\)
- \((-6):-2=3\)
Ответ: \(4;3.\)
Задача 5. Вычислить: \((-10):5\) и \((-12):6\).
Решение.
- \((-10):5=-2\)
- \((-12):6=-2\)
Ответ: \(-2;-2.\)
Задача 3. Вычислить: \(121:(-11)\) и \(169:(-13)\).
Решение.
- \(121:(-11)=-11\)
- \(169:(-13)=-13\)
Ответ: \(-11;-13.\)
Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!
Запишитесь на бесплатное тестирование знаний!
Наши преподаватели
Оставить заявкуРепетитор по математике
Проведенных занятий:
Форма обучения:
Дистанционно (Скайп)
Репетитор 1-7 классов. Математика — это чудесный мир логики и точности. Дорога в этот мир лежит через старания, внимательность и весёлые задания. Необычные решения и интерес помогут разобраться и полюбить эту науку!
Оставить заявкуРепетитор по математике
Национальный исследовательский Томский государственный университет
Проведенных занятий:
Форма обучения:
Дистанционно (Скайп)
Преподаватель в университете — 5 лет, Работа со школьниками 5-9 класса. Математика универсальна и является важнейшим инструментов в изучении всех точных наук. С удовольствием помогу любому ученику разобраться и понять сложные темы. На занятиях разложим все знания по полочкам, будем идти от простого к сложному.
Оставить заявкуРепетитор по математике
Брестский государственный университет им. А.С. Пушкина
Проведенных занятий:
Форма обучения:
Дистанционно (Скайп)
Репетитор 6-9 классов. Буду рад помочь разобраться с предметом, успешно усвоить материал школьной программы по математике. Устраню пробелы в пройденном материале, подниму текущий уровень знаний по математике. Доношу материал понятно и грамотно, акцентирую внимание на важных и значимых вещах. Не оставляю материал непонятым. В отличии от школы мы никуда не торопимся — будем разбирать тему до тех пор, пока не сформируем компетенцию. Нет ничего сложного ни в каком предмете, если его преподают с любовью.
Векторы
- — Индивидуальные занятия
- — В любое удобное для вас время
- — Бесплатное вводное занятие
Похожие статьи
Почему минус на минус дает плюс?
«Враг моего врага — мой друг».
Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
Давным-давно людям были известны только натуральные числа: 1, 2, 3, … Их использовали для подсчета утвари, добычи, врагов и т. д. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число (математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения). Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями (например, делая покупки, мы складываем и умножаем), и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа.
Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. (Если у меня есть 5 конфет и я отдам сестре 3, то у меня останется 5 – 3 = 2 конфеты, а вот отдать ей 7 конфет я при всем желании не могу.) Этим можно объяснить, почему люди долго не пользовались отрицательными числами.
В индийских документах отрицательные числа фигурируют с VII века н.э.; китайцы, видимо, начали употреблять их немного раньше. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» (в XVII веке!).
Рассмотрим для примера уравнение 7x – 17 = 2x – 2. Его можно решать так: перенести члены с неизвестным в левую часть, а остальные — в правую, получится 7x – 2x = 17 – 2, 5x = 15, x = 3. При таком решении нам даже не встретились отрицательные числа.
Но можно было случайно сделать и по-другому: перенести слагаемые с неизвестным в правую часть и получить 2 – 17 = 2x – 7x, (–15) = (–5)x. Чтобы найти неизвестное, нужно разделить одно отрицательное число на другое: x = (–15)/(–5). Но правильный ответ известен, и остается заключить, что (–15)/(–5) = 3.
Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного (если уравнение окажется посложнее, с большим числом слагаемых) поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку.
Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами.
Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции… Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов (такой подход характерен для всей современной математики).
В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила (их называют аксиомами), которым подчиняются действия, а не природа элементов множества (вот он, новый уровень абстракции!). Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. д. Отталкиваясь от аксиом, можно выводить другие свойства колец.
Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс.
Кольцом называется множество с двумя бинарными операциями (т. е. в каждой операции задействованы два элемента кольца), которые по традиции называют сложением и умножением, и следующими аксиомами:
- сложение элементов кольца подчиняется переместительному (A + B = B + A для любых элементов A и B) и сочетательному (A + (B + C) = (A + B) + C) законам; в кольце есть специальный элемент 0 (нейтральный элемент по сложению) такой, что A + 0 = A, и для любого элемента A есть противоположный элемент (обозначаемый (–A)), что A + (–A) = 0;
- умножение подчиняется сочетательному закону: A·(B·C) = (A·B)·C;
- сложение и умножение связаны такими правилами раскрытия скобок: (A + B)·C = A·C + B·C и A·(B + C) = A·B + A·C.
Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости (т. е. делить можно не всегда), ни существования единицы — нейтрального элемента по умножению. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец.
Теперь докажем, что для любых элементов A и B произвольного кольца верно, во-первых, (–A)·B = –(A·B), а во-вторых (–(–A)) = A. Из этого легко следуют утверждения про единицы: (–1)·1 = –(1·1) = –1 и (–1)·(–1) = –((–1)·1) = –(–1) = 1.
Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. То есть A + B = 0 = A + C. Рассмотрим сумму A + B + C. Пользуясь сочетательным и переместительным законами и свойством нуля, получим, что, с одной стороны, сумма равна B: B = B + 0 = B + (A + C) = A + B + C, а с другой стороны, она равна C: A + B + C = (A + B) + C = 0 + C = C. Значит, B = C.
Заметим теперь, что и A, и (–(–A)) являются противоположными к одному и тому же элементу (–A), поэтому они должны быть равны.
Первый факт получается так: 0 = 0·B = (A + (–A))·B = A·B + (–A)·B, то есть (–A)·B противоположно A·B, значит, оно равно –(A·B).
Чтобы быть математически строгими, объясним еще, почему 0·B = 0 для любого элемента B. В самом деле, 0·B = (0 + 0) B = 0·B + 0·B. То есть прибавление 0·B не меняет сумму. Значит, это произведение равно нулю.
А то, что в кольце ровно один ноль (ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность!), мы оставим читателю в качестве несложного упражнения.
Ответил: Евгений Епифанов
Умножение и деление целых чисел
При умножении и делении целых чисел применяется несколько правил. В данном уроке мы рассмотрим каждое из них.
При умножении и делении целых чисел следует обращать внимание на знаки чисел. От них будет зависеть какое правило применять. Необходимо также изучить несколько законов умножения и деления. Изучение этих правил позволит избежать некоторых досадных ошибок в будущем.
Законы умножения
Некоторые из законов математики мы рассматривали в уроке законы математики. Но мы рассмотрели не все законы. В математике немало законов и разумнее будет изучать их последовательно по мере необходимости.
Для начала вспомним из чего состоит умножение. Умножение состоит из трёх параметров: множимого, множителя и произведения. Например, в выражении 3 × 2 = 6, число 3 — это множимое, число 2 — множитель, число 6 — произведение.
Множимое показывает, что именно мы увеличиваем. В нашем примере мы увеличиваем число 3.
Множитель показывает во сколько раз нужно увеличить множимое. В нашем примере множитель это число 2. Этот множитель показывает во сколько раз нужно увеличить множимое 3. То есть в ходе операции умножения число 3 будет увеличено в два раза.
Произведение это собственно результат операции умножения. В нашем примере произведение это число 6. Это произведение является результатом умножения 3 на 2.
Выражение 3 × 2 также можно понимать, как сумму двух троек. Множитель 2 в таком случае будет показывать сколько раз нужно повторить число 3:
Таким образом, если число 3 повторить два раза подряд, получится число 6.
Переместительный закон умножения
Множимое и множитель называют одним общим словом – сомножители. Переместительный закон умножения выглядит следующим образом:
От перестановки мест сомножителей произведение не меняется.
Проверим так ли это. Умножим к примеру 3 на 5. Здесь 3 и 5 это сомножители.
3 × 5 = 15
Теперь поменяем местами сомножители:
5 × 3 = 15
В обоих случаях мы получаем ответ 15, поэтому между выражениями 3 × 5 и 5 × 3 можно поставить знак равенства, поскольку они равны одному тому же значению:
3 × 5 = 5 × 3
15 = 15
А с помощью переменных переместительный закон умножения можно записать так:
a × b = b × a
где a и b — сомножители
Сочетательный закон умножения
Этот закон говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.
К примеру, выражение 3 × 2 × 4 состоит из нескольких сомножителей. Чтобы его вычислить, можно перемножить 3 и 2, затем полученное произведение умножить на оставшееся число 4. Выглядеть это будет так:
3 × 2 × 4 = (3 × 2) × 4 = 6 × 4 = 24
Это был первый вариант решения. Второй вариант состоит в том, чтобы перемножить 2 и 4, затем полученное произведение умножить на оставшееся число 3. Выглядеть это будет так:
3 × 2 × 4 = 3 × (2 × 4) = 3 × 8 = 24
В обоих случаях мы получаем ответ 24. Поэтому между выражениями (3 × 2) × 4 и 3 × (2 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:
(3 × 2) × 4 = 3 × (2 × 4)
24 = 24
а с помощью переменных сочетательный закон умножения можно записать так:
a × b × c = (a × b) × c = a × (b × c)
где вместо a, b, c могут стоять любые числа.
Распределительный закон умножения
Распределительный закон умножения позволяет умножить сумму на число. Для этого каждое слагаемое этой суммы умножается на это число, затем полученные результаты складывают.
Например, найдём значение выражения (2 + 3) × 5
Выражение находящееся в скобках является суммой. Эту сумму нужно умножить на число 5. Для этого каждое слагаемое этой суммы, то есть числа 2 и 3 нужно умножить на число 5, затем полученные результаты сложить:
(2 + 3) × 5 = 2 × 5 + 3 × 5 = 10 + 15 = 25
Значит значение выражения (2 + 3) × 5 равно 25.
С помощью переменных распределительный закон умножения записывается так:
(a + b) × c = a × c + b × c
где вместо a, b, c могут стоять любые числа.
Закон умножения на ноль
Этот закон говорит о том, что если в любом умножении имеется хотя бы один ноль, то в ответе получится ноль.
Произведение равно нулю, если хотя бы один из сомножителей равен нулю.
Например, выражение 0 × 2 равно нулю
0 × 2 = 0
В данном случае число 2 является множителем и показывает во сколько раз нужно увеличить множимое. То есть во сколько раз увеличить ноль. Буквально это выражение читается так: «увеличить ноль в два раза». Но как можно увеличить ноль в два раза, если это ноль? Ответ — никак.
Иными словами, если «ничего» увеличить в два раза или даже в миллион раз, всё равно получится «ничего».
И если в выражении 0 × 2 поменять местами сомножители, опять же получится ноль. Это мы знаем из предыдущего переместительного закона:
0 × 2 = 2 × 0
0 = 0
Примеры применения закона умножения на ноль:
5 × 0 = 0
5 × 5 × 5 × 0 = 0
2 × 5 × 0 × 9 × 1 = 0
В последних двух примерах имеется несколько сомножителей. Увидев в них ноль, мы сразу в ответе поставили ноль, применив закон умножения на ноль.
Мы рассмотрели основные законы умножения. Теперь рассмотрим самó умножение целых чисел.
Умножение целых чисел
Пример 1. Найти значение выражения −5 × 2
Это умножение чисел с разными знаками. −5 является отрицательным числом, а 2 – положительным. Для таких случаев нужно применять следующее правило:
Чтобы перемножить числа с разными знаками, нужно перемножить их модули, и перед полученным ответом поставить минус.
−5 × 2 = − (|−5| × |2|) = − (5 × 2) = − (10) = −10
Обычно записывают короче: −5 × 2 = −10
Любое умножение может быть представлено в виде суммы чисел. Например, рассмотрим выражение 2 × 3. Оно равно 6.
2 × 3 = 6
Множителем в данном выражение является число 3. Этот множитель показывает во сколько раз нужно увеличить двойку. Но выражение 2 × 3 также можно понимать как сумму трёх двоек:
То же самое происходит и с выражением −5 × 2. Это выражение может быть представлено в виде суммы
А выражение (−5) + (−5) равно −10. Мы это знаем из прошлого урока. Это сложение отрицательных чисел. Напомним, что результат сложения отрицательных чисел есть отрицательное число.
Пример 2. Найти значение выражения 12 × (−5)
Это умножение чисел с разными знаками. 12 – положительное число, (−5) – отрицательное. Опять же применяем предыдущее правило. Перемножаем модули чисел и перед полученным ответом ставим минус:
12 × (−5) = − (|12| × |−5|) = − (12 × 5) = − (60) = −60
Обычно решение записывают покороче:
12 × (−5) = −60
Пример 3. Найти значение выражения 10 × (−4) × 2
Это выражение состоит из нескольких сомножителей. Сначала перемножим 10 и (−4), затем полученное число умножим на 2. Попутно применим ранее изученные правила:
Первое действие:
10 × (−4) = −(|10| × |−4|) = −(10 × 4) = (−40) = −40
Второе действие:
−40 × 2 = −(|−40 | × | 2|) = −(40 × 2) = −(80) = −80
Значит значение выражения 10 × (−4) × 2 равно −80
Запишем решение покороче:
10 × (−4) × 2 = −40 × 2 = −80
Пример 4. Найти значение выражения (−4) × (−2)
Это умножение отрицательных чисел. В таких случаях нужно применять следующее правило:
Чтобы перемножить отрицательные числа, нужно перемножить их модули и перед полученным ответом поставить плюс
(−4) × (−2) = |−4| × |−2| = 4 × 2 = 8
Плюс по традиции не записываем, поэтому просто записываем ответ 8.
Запишем решение покороче (−4) × (−2) = 8
Возникает вопрос почему при умножении отрицательных чисел вдруг получается положительное число. Давайте попробуем доказать, что (−4) × (−2) равно 8 и ни чему другому.
Сначала запишем следующее выражение:
4 × (−2)
Заключим его в скобки:
( 4 × (−2) )
Прибавим к этому выражению наше выражение (−4) × (−2). Его тоже заключим в скобки:
( 4 × (−2) ) + ( (−4) × (−2) )
Всё это приравняем к нулю:
(4 × (−2)) + ((−4) × (−2)) = 0
Теперь начинается самое интересное. Суть в том, что мы должны вычислить левую часть этого выражения, и в результате получить 0.
Итак, первое произведение (4 × (−2)) равно −8. Запишем в нашем выражении число −8 вместо произведения (4 × (−2))
−8 + ((−4) × (−2)) = 0
Теперь вместо второго произведения временно поставим многоточие
−8 + … = 0
Теперь внимательно посмотрим на выражение −8 + … = 0. Какое число должно стоять вместо многоточия, чтобы соблюдалось равенство? Ответ напрашивается сам. Вместо многоточия должно стоять положительное число 8 и никакое другое. Только так будет соблюдаться равенство. Ведь −8 + 8 равно 0.
Возвращаемся к выражению −8 + ((−4) × (−2)) = 0 и вместо произведения ((−4) × (−2)) записываем число 8
−8 + 8 = 0
Пример 5. Найти значение выражения −2 × (6 + 4)
Применим распределительный закон умножения, то есть умножим число −2 на каждое слагаемое суммы (6 + 4)
−2 × (6 + 4) = −2 × 6 + (−2) × 4
Теперь выполним умножение, и сложим полученные результаты. Попутно применим ранее изученные правила. Запись с модулями можно пропустить, чтобы не загромождать выражение
Первое действие:
−2 × 6 = −12
Второе действие:
−2 × 4 = −8
Третье действие:
−12 + (−8) = −20
Значит значение выражения −2 × (6 + 4) равно −20
Запишем решение покороче:
−2 × (6 + 4) = (−12) + (−8) = −20
Пример 6. Найти значение выражения (−2) × (−3) × (−4)
Выражение состоит из нескольких сомножителей. Сначала перемножим числа −2 и −3, и полученное произведение умножим на оставшееся число −4. Запись с модулями пропустим, чтобы не загромождать выражение
Первое действие:
(−2) × (−3) = 6
Второе действие:
6 × (−4) = −(6 × 4) = −24
Значит значение выражения (−2) × (−3) × (−4) равно −24
Запишем решение покороче:
(−2) × (−3) × (−4) = 6 × (−4) = −24
Законы деления
Прежде чем делить целые числа, необходимо изучить два закона деления.
В первую очередь, вспомним из чего состоит деление. Деление состоит из трёх параметров: делимого, делителя и частного. Например, в выражении 8 : 2 = 4, 8 – это делимое, 2 – делитель, 4 – частное.
Делимое показывает, что именно мы делим. В нашем примере мы делим число 8.
Делитель показывает на сколько частей нужно разделить делимое. В нашем примере делитель это число 2. Этот делитель показывает на сколько частей нужно разделить делимое 8. То есть в ходе операции деления, число 8 будет разделено на две части.
Частное – это собственно результат операции деления. В нашем примере частное это число 4. Это частное является результатом деления 8 на 2.
Далее рассмотрим законы деления.
На ноль делить нельзя
Любое число запрещено делить на ноль.
Дело в том, что деление это действие, обратное умножению. Данную фразу можно понимать в прямом смысле. Например, если 2 × 5 = 10, то 10 : 5 = 2.
Видно, что второе выражение записано в обратном порядке. Если к примеру, у нас имеется два яблока и мы захотим увеличить их в пять раз, то мы запишем 2 × 5 = 10. Получится десять яблок. Затем, если мы захотим обратно уменьшить эти десять яблок до двух, то мы запишем 10 : 5 = 2
Точно так же можно поступать и с другими выражениями. Если к примеру, 2 × 6 = 12, то мы можем обратно вернуться к изначальному числу 2. Для этого достаточно записать выражение 2 × 6 = 12 в обратном порядке, разделяя 12 на 6
12 : 6 = 2
Теперь рассмотрим выражение 5 × 0. Мы знаем из законов умножения, что произведение равно нулю, если хотя бы один из сомножителей равен нулю. Значит и выражение 5 × 0 равно нулю
5 × 0 = 0
Если записать это выражение в обратном порядке, то получим:
0 : 0 = 5
Сразу в глаза бросается ответ 5, который получается в результате деления ноль на ноль. Это невозможно.
В обратном порядке можно записать и другое похожее выражение, например 2 × 0 = 0
0 : 0 = 2
В первом случае, разделив ноль на ноль мы получили 5, а во втором случае 2. То есть каждый раз деля ноль на ноль, мы можем получить разные значения, а это недопустимо.
Второе объяснение заключается в том, что разделить делимое на делитель означает найти такое число, которое при умножении на делитель даст делимое.
Например выражение 8 : 2 означает найти такое число, которое при умножении на 2 даст 8
… × 2 = 8
Здесь вместо многоточия должно стоять число, которое при умножении на 2 даст ответ 8. Чтобы найти это число, достаточно записать это выражение в обратном порядке:
8 : 2 = 4
Получили число 4. Запишем его вместо многоточия:
4 × 2 = 8
Теперь представим, что нужно найти значение выражения 5 : 0. В данном случае 5 – это делимое, 0 – делитель. Разделить 5 на 0 означает найти такое число, которое при умножении на 0 даст 5
… × 0 = 5
Здесь вместо многоточия должно стоять число, которое при умножении на 0 даст ответ 5. Но не существует числа, которое при умножении на ноль даёт 5.
Выражение … × 0 = 5 противоречит закону умножения на ноль, который утверждает, что произведение равно нулю, когда хотя бы один из сомножителей равен нулю.
А значит записывать выражение … × 0 = 5 в обратном порядке, деля 5 на 0 нет никакого смысла. Поэтому и говорят, что на ноль делить нельзя.
С помощью переменных данный закон записывается следующим образом:
, при b ≠ 0
Это выражение можно прочитать так:
Число a можно разделить на число b, при условии, что b не равно нулю.
Свойство частного
Этот закон говорит о том, что если делимое и делитель умножить или разделить на одно и то же число, то частное не изменится.
Например, рассмотрим выражение 12 : 4. Значение этого выражения равно 3
12 : 4 = 3
Попробуем умножить делимое и делитель на одно и то же число, например на число 4. Если верить свойству частного, мы опять должны получить в ответе число 3
(12 × 4) : (4 × 4)
(12 × 4) : (4 × 4) = 48 : 16 = 3
Получили ответ 3.
Теперь попробуем не умножить, а разделить делимое и делитель на число 4
(12 : 4) : (4 : 4)
(12 : 4) : (4 : 4) = 3 : 1 = 3
Получили ответ 3.
Видим, что если делимое и делитель умножить или разделить на одно и то же число, то частное не меняется.
Мы рассмотрели два закона деления. Далее рассмотрим деление целых чисел.
Деление целых чисел
Пример 1. Найти значение выражения 12 : (−2)
Это деление чисел с разными знаками. 12 — положительное число, (−2) – отрицательное. Чтобы решить этот пример, нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить минус.
12 : (−2) = −(|12| : |−2|) = −(12 : 2) = −(6) = −6
Обычно записывают покороче:
12 : (−2) = −6
Пример 2. Найти значение выражения −24 : 6
Это деление чисел с разными знаками. −24 – это отрицательное число, 6 – положительное. Опять же модуль делимого делим на модуль делителя, и перед полученным ответом ставим минус.
−24 : 6 = −(|−24| : |6|) = −(24 : 6) = −(4) = −4
Запишем решение покороче:
−24 : 6 = −4
Пример 3. Найти значение выражения −45 : (−5)
Это деление отрицательных чисел. Чтобы решить этот пример, нужно модуль делимого разделить на модуль делителя, и перед полученным ответом поставить знак плюс.
−45 : (−5) = |−45| : |−5| = 45 : 5 = 9
Запишем решение покороче:
−45 : (−5) = 9
Пример 4. Найти значение выражения −36 : (−4) : (−3)
Согласно порядку действий, если в выражении присутствует только умножение или деление, то все действия нужно выполнять слева направо в порядке их следования.
Разделим −36 на (−4), и полученное число разделим на −3
Первое действие:
−36 : (−4) = |−36| : |−4| = 36 : 4 = 9
Второе действие:
9 : (−3) = −(|9| : |−3|) = −(9 : 3) = −(3) = −3
Запишем решение покороче:
−36 : (−4) : (−3) = 9 : (−3) = −3
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Навигация по записям
Порядок выполнения математических действий | интернет проект BeginnerSchool.ru
Сегодня мы поговорим о порядке выполнения математических действий. Какие действия выполнять первыми? Сложение и вычитание, или умножение и деление. Странно, но у наших детей возникают проблемы с решением, казалось бы, элементарных выражений.
Читаем выражение слева направо и выбираем порядок действий по приоритету. Сначала выполняем действия в скобках. Затем умножение и/или деление. Далее складываем и вычитаем.
Если скобки имеют несколько вложений, то есть если внутри скобок есть ещё скобки, то сначала выполняем действия во внутренних скобках. Для простоты понимания, выражение в скобках можно воспринимать как самостоятельное выражение, то есть как отдельный пример, который надо решить. Внутри скобок действия выполняются согласно тому же порядку: Действия в скобках, затем умножение/деление, затем сложение/вычитание.
Умножение и деление не имеет между собой приоритета и выполняются слева направо, также как и сложение с вычитанием.
Рассмотрим пример:
38 – (10 + 6) = 22;Итак, вспомним о том, что сначала вычисляются выражения в скобках
1) в скобках: 10 + 6 = 16;
2) вычитание: 38 – 16 = 22.
Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.
10 ÷ 2 × 4 = 20;Порядок выполнения действий:
1) слева направо, сначала деление: 10 ÷ 2 = 5;
2) умножение: 5 × 4 = 20;
10 + 4 – 3 = 11, т.е.:
1) 10 + 4 = 14;
2) 14 – 3 = 11.
Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.
18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7Порядок выполнения действий:
1) 18 ÷ 2 = 9;
2) 2 × 3 = 6;
3) 12 ÷ 3 = 4;
4) 9 – 6 = 3; т.е. слева направо – результат первого действия минус результат второго;
5) 3 + 4 = 7; т.е. результат четвертого действия плюс результат третьего;
Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.
30 + 6 × (13 – 9) = 54, т.е.:1) выражение в скобках: 13 – 9 = 4;
2) умножение: 6 × 4 = 24;
3) сложение: 30 + 24 = 54;
Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:
1) действия, заключенные в скобках;
2) умножение и деление;
3) сложение и вычитание.
Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта“.
Понравилась статья — поделитесь с друзьями:
Оставляйте пожалуйста комментарии в форме ниже
Как правильно умножать отрицательные числа?
Основные определения
Вспомним, как отличить положительное число от отрицательного, что такое умножение и какие у него свойства.
Начнем с того, что проведем прямую и отметим на ней начало отсчета — точку нуль (0). А теперь укажем направление движения по прямой вправо от начала координат. В этом нам поможет красивая стрелка:
Два главных определения:
Положительные числа — это точки координатной прямой, которые лежат правее начала отсчета (нуля). Иногда рядом с ними ставят знак плюс — «+», но чаще всего положительные числа никак не обозначают. То есть «+1» и «1» — это одно и тоже число.
Запоминаем!
Положительные числа — это те, что больше нуля, а отрицательные — меньшие.
Отрицательные числа — это точки координатной прямой, которые лежат левее начала отсчета (нуля). Их всегда обозначают знаком минус — «-».
Нуль (0) — ни положительное, ни отрицательное число. Вот это ему повезло!
Числовую ось можно расположить как горизонтально (стрелка вверх), так и вертикально (стрелка вправо).
Если стрелка направлена вверх, то в верхней части от начала отсчета всегда расположены положительные числа, а в нижней — отрицательные. Смотрите:
Прямая, на которой отмечена начальная точка, положительное направление и единичный отрезок, называется координатной или числовой осью.
Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.
Свойства умножения
|
Вычислять можно в уме, при помощи таблицы умножения или в столбик. Продвинутые школьники могут использовать онлайн-калькулятор.
Правило умножения отрицательных чисел: чтобы умножить два отрицательных числа, нужно перемножить их модули. Это значит, что для любых отрицательных чисел -a, -b верно равенство:
А вот как умножить два числа с разными знаками:
- перемножить модули этих чисел
- перед полученным числом поставить знак минус
А теперь упростим правила. Сформулируем их в легкой форме с минимумом слов, чтобы проще запомнить:
- «—» — при умножении минус на минус ответ будет положительным
или минус на минус дает плюс - «-+» — при умножении минуса на плюс ответ будет отрицательным
или минус на плюс дает минус - «+-» — при умножении плюса на минус ответ будет отрицательным
или плюс на минус дает минус - «++» — при умножении плюса на плюс ответ будет положительным
или плюс на плюс дает плюс.
Примеры умножения отрицательных чисел
Пример 1. Вычислить: (-2)∗(-2) и (-3)∗(-7)
Как решаем:
Вспомним правило: отрицательное число умножить на отрицательное — получается ответ со знаком плюс. Считаем:
- (-2)∗(-2) = 4
- (-3)∗(-7) = 21
Ответ: 4; 21.
Пример 2. Вычислить: (-11)∗11 и (-20)∗2
Как решаем:
Вспомним правило: отрицательное число умножить на положительное — получается ответ со знаком минус. Считаем:
- -11 * 11 = -121
- (-20) * 2 = -40
Ответ: -121; -40.
Пример 3. Вычислить произведение: 5∗(-5) и 12∗(-8)
Как решаем:
Вспомним правило: умножение положительного на отрицательное число дает отрицательный результат. Считаем:
- 5 ∗ (-5)= -25
- 12 ∗ (-8)= -96
Ответ: -25; -96.
Пример 4. Вычислить произведение: (-0,125 ) * (-6)
Как решаем:
- Используем правило умножения отрицательных чисел:
(-0,125 ) * (-6) = 0,125 * 6. - Выполним умножение десятичной дроби на натуральное число столбиком:
Ответ: 0,75.
Умножение и деление отрицательных чисел
Purplemath
Если перейти от сложения и вычитания, как вы производите умножение и деление с отрицательными числами? Собственно, сложную часть мы уже рассмотрели: вы уже знаете правила «знака»:
плюс раз плюс плюс
(добавление большого количества горячих кубиков повышает температуру)
минус раз плюс минус
(удаление большого количества горячих кубиков снижает температуру)
плюс умножить на минус равно минус
(добавление большого количества холодных кубиков снижает температуру)
минус умножить на минус равно плюс
(удаление большого количества холодных кубиков повышает температуру)
MathHelp.com
Правила знаков действуют одинаково для деления; просто замените «раз» на «деленное на». Вот пример правил в разделе:
(Помните, что дроби — это просто еще одна форма деления! «Дроби — это деление»!)
Некоторым людям нравится думать об отрицательных числах в терминах долгов.Так, например, если вы должны 10 долларов шести людям, ваш общий долг составит 6 × 10 долларов = 60 долларов. В этом контексте имеет смысл получить отрицательный ответ. Но в каком контексте может иметь смысл деление отрицательного на отрицательное (и получение положительного)?
Подумайте о том, чтобы перекусить в кафе. Когда вы идете платить, у ребенка возникают проблемы с использованием вашей дебетовой карты. Он проводит по ней шесть раз, прежде чем, наконец, вернуть карту вам. Вернувшись домой, вы проверяете свой банковский счет в Интернете. Вы можете сказать по сумме, что да, он действительно взимал с вас или более одного раза.Некоторая часть этого общего дебета (отрицательная на вашем счете) неверна.
Прежде чем звонить в банк для исправления ситуации, вы хотите подтвердить количество превышенных комиссий. Как в этом разобраться? Вы можете разделить всю сумму (скажем, 76,02 доллара США) на сумму, указанную в квитанции (скажем, 12,67 доллара США), которая является суммой одного платежа. Каждое списание является минусом на вашем счету, поэтому математика составляет:
.(- 76,02 доллара) ÷ (- 12 долларов.67) = 6
Итак, всего действительно было шесть зарядов. Количество зарядов, 6, при подсчете количества событий, должно быть положительным. В этом реальном контексте деление минуса на минус и получение плюса имеет смысл. И теперь вы знаете, что нужно указать службе поддержки клиентов отменить ровно пять начислений.
Вы можете заметить, что люди отменяют знак минус.Они пользуются тем, что «минус, умноженный на минус, есть плюс». Например, предположим, что у вас есть (–2) (- 3) (- 4). Любые два отрицательных результата при умножении становятся одним положительным. Так что выберите любые два из перемноженных (или разделенных) отрицаний и «отмените» их знаки:
Упростить (–2) (- 3) (- 4).
Начну с того, что уберу одну пару знаков «минус».Потом размножу как обычно.
(–2) (- 3) (- 4)
= (–2) (- 3) (–4)
= (+6) (–4)
= –24
Если вам дано длинное умножение с отрицательными числами, просто уберите знаки «минус» в парах:
Упростить (–1) (- 2) (- 1) (- 3) (- 4) (- 2) (- 1).
Первое, что я сделаю, это подсчитаю знаки «минус». Один два три четыре пять шесть семь. Итак, есть три пары, которые я могу отменить, оставив одну. В результате мой окончательный ответ должен быть отрицательным. Если я получу положительный результат, я буду знать, что сделал что-то не так.
(–1) (- 2) (- 1) (- 3) (- 4) (- 2) (- 1)
= (–1) (- 2) (–1) (- 3) (- 4) (- 2) (- 1)
= (+1) (+ 2) (–1) (- 3) (- 4) (- 2) (- 1)
= (1) (2) (–1) (- 3) (–4) (- 2) (- 1)
= (1) (2) (+1) (+ 3) (–4) (- 2) (- 1)
= (1) (2) (1) (3) (–4) (- 2) (–1)
= (1) (2) (1) (3) (+4) (+ 2) (–1)
= (1) (2) (1) (3) (4) (2) (- 1)
= (2) (3) (4) (2) (- 1)
= 48 (–1)
= –48
Я получил отрицательный ответ, поэтому знаю, что мой знак правильный.
Вот еще один пример, показывающий тот же процесс отмены в контексте разделения:
Отрицательные скобки
Основная трудность, с которой люди сталкиваются с негативом, заключается в том, чтобы иметь дело со скобками; в частности, в переносе отрицания через круглые скобки. Обычная ситуация примерно такая:
Если бы у вас было «3 ( x + 4)», вы бы знали, что нужно «распределить» 3 «над» круглыми скобками:
3 ( x + 4) = 3 ( x ) + 3 (4) = 3 x + 12
Те же правила применяются, когда вы имеете дело с негативом.Если у вас проблемы с отслеживанием, используйте маленькие стрелки:
← проведите по экрану , чтобы просмотреть изображение полностью →
Мне нужно взять 3 в скобки:
3 ( x — 5) = 3 ( x ) + 3 (–5) = 3 x — 15
Здесь я возьму «минус» в скобках; Я буду распределять –2 на x и минус 3.
–2 ( x — 3) = –2 ( x ) — 2 (–3) = –2 x + 2 (+3) = –2 x + 6
Обратите внимание, как я внимательно следил за знаками в круглых скобках. «Минус» был сохранен рядом с цифрой 3 за счет использования еще одного набора круглых скобок. Не стесняйтесь использовать символы группировки, чтобы обозначить предполагаемый смысл как для оценщика, так и для вас самих.
Другая проблема, связанная с предыдущей, связана с вычитанием круглых скобок. Вы можете отслеживать знак вычитания, преобразовав вычитание в умножение на минус:
Я начну с написания маленькой цифры «1» перед круглыми скобками. Затем я нарисую стрелки от этой единицы к терминам в круглых скобках, чтобы напомнить себе о том, что мне нужно сделать.
← проведите по экрану , чтобы просмотреть изображение полностью →
Не бойтесь написать эту маленькую цифру «1» и нарисовать эти маленькие стрелки.Вы должны делать все, что вам нужно, чтобы ваша работа была прямой и постоянно получала правильный ответ.
Упростить 6 — (3
x — 4 [1 — x ]).
Я буду работать изнутри, упрощая сначала символы внутренней группировки в соответствии с Порядком операций. Итак, первое, что я сделаю, это возьму –4 через скобки.Тогда я упрощу; Я продолжу, поставив 1 перед круглыми скобками и, чтобы помочь мне отслеживать тот -1, который я буду распространять, я нарисую маленькие стрелки.
← проведите по экрану , чтобы просмотреть изображение полностью →
Филиал
Упростить
1 / 3 — ( x -2) / 3 .
Это хитрый. Они заставляют меня вычесть дробь. Мне нужно объединить дроби, что означает объединение числителей. Чтобы не упустить из виду, что именно означает этот «минус» (а именно, что я вычитаю весь числитель второй дроби, а не только x ), я конвертирую минус с плюсом –1:
← проведите по экрану , чтобы просмотреть изображение полностью →
Обратите внимание, что я преобразовал вычитание дроби в добавление отрицательного числа, умноженного на единицу дроби.Очень легко «потерять» минус, когда вы добавляете такие беспорядочные полиномиальные дроби. Самая распространенная ошибка — ставить минус на x и забывать отнести его к –2. Будьте особенно осторожны с дробями!
Для дополнительной практики со скобками попробуйте здесь.
URL: https://www.purplemath.com/modules/negative3.htm
Сложение и вычитание положительных и отрицательных чисел
Числа могут быть положительными или отрицательными
Это числовая строка:
Отрицательные числа (-) | Положительные числа (+) |
«-» — отрицательный знак. | «+» — положительный знак |
Отсутствие знака означает положительный результат
Если число имеет без знака , это обычно означает, что это положительное число .
Играй с этим!
Сначала попробуйте ползунки ниже и посмотрите, что произойдет, если числа станут отрицательными:
числа / изображения / номер-строка-add.js
Воздушные шары и гири
Давайте подумаем о числах как о воздушных шарах (положительных) и весах (отрицательных):
К этой корзине привязаны воздушные шары и гирьки:
|
Добавление положительного числа
Сложение положительных чисел — это просто сложение.
Мы можем добавить воздушные шары (мы добавляем положительное значение ) корзина тянется вверх (положительно) |
Пример: 2 + 3 = 5
действительно говорит
«Положительное 2 плюс Положительное 3 равно Положительное 5»
Мы могли бы записать это как (+2) + (+3) = (+5)
Вычитание положительного числа
Вычитание положительных чисел — это просто вычитание.
Воздушные шары можно забрать ( вычитаем положительное значение ) корзина тянется вниз (минус) |
Пример: 6 — 3 = 3
действительно говорит
«Положительных 6 минус Положительных 3 равно Положительных 3»
Мы могли бы записать это как (+6) — (+3) = (+3)
Добавление отрицательного числа
Теперь посмотрим, как выглядит сложение и вычитание отрицательных чисел :
Мы можем добавлять веса (мы добавляем отрицательные значения ) корзина тянется вниз (минус) |
Пример: 6 + (−3) = 3
действительно говорит
«Положительных 6 плюс отрицательных 3 равно положительных 3»
Мы могли бы записать это как (+6) + (−3) = (+3)
Последние два примера показали нам, что удаление воздушных шаров (вычитание положительного числа) или прибавление веса (добавление отрицательного числа) заставляет корзину опускаться.
Итак, имеют тот же результат :
- (+6) — (+3) = (+3)
- (+6) + (−3) = (+3)
Другими словами, вычитание положительного аналогично добавлению отрицательного .
Вычитание отрицательного числа
Наконец, мы можем убрать веса (мы вычитаем отрицательные значения ) корзина тянется вверх (положительно) |
Пример: Что такое 6 — (−3)?
6 — (- 3) = 6 + 3 = 9
Да, действительно! Вычесть отрицание — это то же самое, что и сложить!
Два отрицания дают положительный результат
Что мы нашли?
Добавление положительного числа — это простое сложение…
Добавление положительного значения Добавление
Положительное и отрицательное вместе …
Вычитание положительного
или
Добавление отрицательного числа
равно
Вычитание
Пример: Что такое 6 — (+3)?
6 — (+ 3) = 6 — 3 = 3
Пример: Что такое 5 + (−7)?
5 + (- 7) = 5 — 7 = −2
Вычитание негатива…
Вычитание отрицательного числа аналогично Добавление
Пример: Что такое 14 — (−4)?
14 — (- 4) = 14 + 4 = 18
Правила:
Все это можно поместить в два правила :
Правило | Пример | ||||
---|---|---|---|---|---|
+ (+) | Два одинаковых знака превращаются в знак положительный | 3 + (+ 2) = 3 + 2 = 5 | |||
— (-) | 6 — (- 3) = 6 + 3 = 9 | ||||
+ (-) | Два непохожих знака превращаются в знак минуса | 7 + (- 2) = 7 — 2 = 5 | |||
— (+) | 8 — (+ 2) = 8 — 2 = 6 | ||||
Они «подобны знакам», когда они подобны друг другу (другими словами: одинаковы).
Итак, все, что вам нужно запомнить, это:
Два знака типа становятся положительным знаком
Два знака , отличных от , становятся отрицательным знаком
Пример: Что такое 5 + (- 2)?
+ (-) — это , в отличие от знаков (они не совпадают), поэтому они становятся отрицательным знаком .
5 + (- 2) = 5 — 2 = 3
Пример: Что такое 25 — (- 4)?
— (-) соответствует знакам , поэтому они становятся положительным знаком .
25 — (- 4) = 25 + 4 = 29
Начальный отрицательный
Что, если мы начнем с отрицательного числа?
Использование числовой линии может помочь:
Пример: Что такое −3 + (+ 2)?
+ (+) — это , как и знаки , поэтому они становятся положительным знаком , .
−3 + (+ 2) = −3 + 2
Начните с −3 на числовой прямой,
двигайтесь вперед на 2, и вы получите −1
−3 + (+ 2) = −3 + 2 = −1
Пример: Что такое −3 + (- 2)?
+ (-) — это в отличие от знаков , поэтому они становятся отрицательным знаком .
−3 + (- 2) = −3 — 2
Начните с −3 на числовой прямой,
переместитесь назад на 2, и вы получите −5
−3 + (- 2) = −3 — 2 = −5
А теперь поиграйте с ним!
Попробуйте сыграть в Casey Runner, вам нужно знать правила положительного и отрицательного, чтобы добиться успеха! |
Объяснение здравого смысла
И есть объяснение «здравого смысла»:
Если я скажу «Ешь!» Я призываю вас поесть (положительный результат)
Если я скажу «Не ешьте!» Я говорю об обратном (отрицательном).
Теперь, если я скажу: « НЕ, не ешь!», Я говорю, что не хочу, чтобы вы умерли с голоду, поэтому я снова говорю: «Ешь!» (положительный).
Итак, два отрицания дают положительный результат, и если это вас устраивает, тогда вы сделали!
Другое объяснение здравого смысла
Друг +, враг —
+ + ⇒ + | .друг друга мой друг | |
+ — ⇒ — | друг врага — мой враг | |
— + ⇒ — | враг друга — мой враг | |
— — ⇒ + | .враг врага — мой друг |
Пример банка
Пример. В прошлом году банк по ошибке снял с вашего счета 10 долларов, и они хотят это исправить.
Итак, банк должен забрать отрицательные 10 долларов.
Допустим, ваш текущий баланс составляет 80 долларов США, поэтому у вас будет:
80 долларов — (- 10 долларов) = 80 долларов + 10 долларов = 90
долларовТаким образом, вы получаете $, еще 10 на свой счет.
Длинный пример, который вам может понравиться
Очки союзника
Элли может быть непослушным или милым. Так родители Элли сказали
«Если вы будете любезны, мы добавим 3 балла (+3).
Если непослушный, снимаем 3 балла (−3).
Когда вы набираете 30 очков, вы получаете игрушку ».
Ally начинает день с 9 очками: | 9 | |
Мама Элли обнаруживает пролитое молоко: | 9 — 3 = 6 | |
Тогда папа признается, что пролил молоко и пишет «отменить». Как «отменить» минус 3? | ||
Итак, мама вычисляет: | 6 — (−3) = 6 + 3 = 9 |
Итак, когда мы вычитаем отрицательное, мы получаем
баллов (т.е.е. так же, как добавление очков).
Таким образом, вычитание отрицательного числа аналогично добавлению
Несколько дней спустя. У Элли 12 очков. | ||
| | |
Мама добавляет 3 очка, потому что комната Элли чистая. | 12 + 3 = 15 | |
| | |
Папа говорит: «Я убрал эту комнату» и пишет «отменить» на диаграмме.Мама считает: | 15 — (+3) = 12 | |
| | |
Папа видит, как Элли чистит собаку. Пишет на графике «+3». Мама считает: | 12 + (+3) = 15 | |
| | |
Элли бросает камень в окно. Папа пишет на диаграмме «−3».Мама считает: | 15 + (−3) = 12 |
См. « 15 — (+3) » и « 15 + (−3) » дают 12.
Итак:
Неважно, вычтите ли вы
положительных очков или добавите отрицательные
, вы все равно потеряете очки.
Таким образом, вычитание положительного
или
Добавление отрицательного числа
равно
Вычитание
Попробуйте эти упражнения…
Теперь попробуйте этот лист и посмотрите, как у вас дела.
А еще попробуйте эти вопросы:
11715, 11716, 11717, 11718, 11719, 11720, 11721, 3445, 3446
Умножение и деление на целые числа (предалгебра, изучение и понимание целых чисел) — Mathplanet
Вы также должны обращать внимание на знаки при умножении и делении. Следует помнить два простых правила:
Когда вы умножаете отрицательное число на положительное, произведение всегда отрицательное.
Когда вы умножаете два отрицательных числа или два положительных числа, произведение всегда будет положительным.
Это похоже на правило сложения и вычитания: два знака минус становятся плюсом, а плюс и минус становятся минусом. Однако при умножении и делении вы вычисляете результат так, как если бы не было знаков минус, а затем смотрите на знаки, чтобы определить, положительный или отрицательный результат. Два примера быстрого умножения:
$$ 3 \ cdot (-4) = — 12 $$
3 умножить на 4 равно 12.Поскольку существует одно положительное и одно отрицательное число, произведение отрицательное 12.
$$ (- 3) \ cdot (-4) = 12 $$
Теперь у нас есть два отрицательных числа, поэтому результат положительный.
Переходя к делению, вы можете вспомнить, что вы можете подтвердить полученный ответ, умножив частное на знаменатель. Если вы ответили правильно, то произведение этих двух чисел должно совпадать с числителем. Например,
$$ \ frac {12} {3} = 4 $$
Чтобы проверить, является ли 4 правильным ответом, мы умножаем 3 (знаменатель) на 4 (частное):
$$ 3 \ cdot 4 = 12 $$
Что произойдет, если разделить два отрицательных числа? Например,
$$ \ frac {(- 12)} {(- 3)} = \:? $$
Чтобы знаменатель (-3) стал числителем (-12), вам нужно умножить его на 4, поэтому частное равно 4.
Итак, частное отрицательного и положительного чисел отрицательно, и, соответственно, частное положительного и отрицательного чисел также отрицательно. Можно сделать вывод, что:
Когда вы делите отрицательное число на положительное, то частное отрицательное.
Когда вы делите положительное число на отрицательное, частное также становится отрицательным.
Когда вы делите два отрицательных числа, получается положительное частное.
Те же правила верны и для умножения.
ВидеоурокВычислить следующие выражения
$$ (- 4) \ cdot (-12), \: \: \: \: \ frac {-12} {3} $$
Как складывать, вычитать, умножать и делить положительные и отрицательные числа
Давайте посмотрим на следующую числовую строку и заметим, что каждая точка (точка) на числовой прямой соответствует одному числу:
В числовой строке выше мы видим три типа чисел или целых чисел: отрицательные числа, ноль и положительные числа.Отрицательные числа находятся слева от нуля, поэтому они меньше нуля. Положительные числа справа от нуля, поэтому они больше нуля. Ноль, разделительная точка, не является ни положительным, ни отрицательным.
Для числовой линии выше «1» соответствует или относится к красной точке, «2» относится к зеленой точке, «3» относится к синей точке и так далее. Когда мы перемещаемся вправо по числовой строке, мы увеличиваем числа. Мы определили это как дополнение. Когда мы движемся влево, мы уменьшаемся.И мы определили это как вычитание. Обычно так работает числовая линия.
Когда мы складываем два положительных числа или умножаем два положительных числа, мы получаем положительное число. Однако мы можем вычесть положительное число из положительного, и внезапно мы не получим положительное число!
Например, если мы вычтем 7 из 4, мы начнем с 4 в числовой строке и переместимся влево на 7 позиций. Это подводит нас к -3. Поскольку -3 находится слева от 0, оно меньше нуля.
Глядя на обратную операцию, мы можем сказать, что если 4-7 = -3, то -3 + 7 = 4. И это правильно. Если мы начнем с -3 и переместим на 7 делений вправо, мы получим 4.
Положительные числа — это не только целые числа справа от нуля, но и все типы чисел, такие как дроби, десятичные дроби и радикалы. Отрицательные числа также включают различные формы и различные типы чисел, которые появляются слева от нуля.
У нас не всегда есть числовая линия, с которой можно работать, поэтому нам нужно изучить несколько правил работы с отрицательными числами.Во-первых, нам нужно определить абсолютное значение. Абсолютное значение числа — это количество единиц, отсчитываемых от нуля. Он всегда выражается положительно, но без знака «плюс».
Абсолютное значение 3 равно 3. Абсолютное значение -3 также равно 3. И 3, и -3 — три единицы от нуля. Абсолютное значение обозначается путем написания числа между двумя вертикальными полосами.
| 3 | = 3 и | -3 | = 3
Добавление отрицательных чисел |
Если перед числом вы не видите отрицательный или положительный знак, это положительный знак.
При сложении чисел одного знака (положительного или отрицательного) сложите их абсолютные значения и дайте результату тот же знак.
6 + 5 = 11 (6 и 5 положительные; 6 + 5 равно 11, что положительно)
-7 + -8 = -15
(-7 и -8 оба отрицательны; сложите | 7 | + | 8 |, что равно 7 + 8, чтобы получить 15; ответ -15)
Если все числа в добавляемой группе отрицательные: -2 + -3 + -4 = -9, снова сложите абсолютные значения 2 + 3 + 4, чтобы получить 9 и поставить отрицательный знак.
Сложение положительных и отрицательных чисел |
При сложении чисел противоположного знака возьмите их абсолютные значения, вычтите меньшее из большего и присвойте результату знак числа с большим абсолютным значением.
7 + -3 = | 7 | — | 3 | = 4
-8 + 6 = | 8 | что равно 8 и | 6 | что составляет 6. Вычтите меньшее из большего:
8-6, что дает результат 2 и дает ему знак большего числа, равного 8.
Ответ — -2.
Вычитание положительных и отрицательных чисел |
При вычитании положительного числа из отрицательного используйте то же правило, что и для сложения двух отрицательных чисел: сложите абсолютные значения и присвойте разнице отрицательный знак.
-5 — 4 = | 5 | + | 4 | = | 9 | = -9 (это как -5 + -4 = -9)
-2 — 12 = | 2 | + | 12 | = | 14 | = -14
При вычитании отрицательного числа из положительного, двойной отрицательный результат вычитания отрицательного становится положительным, поэтому используйте то же правило, что и для сложения двух положительных чисел: сложите абсолютные значения и присвойте разнице положительный знак.
5 — -4 = | 5 | + | 4 | = 5 + 4 = 9
Если бы вы использовали числовую строку, вы бы пошли влево для вычитания, а затем перевернули (вправо) для отрицательного числа, так что окончательный ответ будет справа от исходного числа.
16 — -10 = | 16 | + | 10 | = 16 + 10 = 26
Аддитивное обратное число — это число с противоположным знаком, так что при сложении двух результат равен нулю.
а + (-а) = 0
Как видите, это положительные и отрицательные числа одного и того же абсолютного значения.
10 + -10 = 0
-24 + 24 = 0
Умножение положительных и отрицательных чисел |
При умножении положительного числа и отрицательного числа (или отрицательного числа на положительное число) умножьте абсолютные значения и дайте ответ отрицательный знак.
8 х -5 = | 8 | х | 5 | = 8 x 5 = 40, но дайте ему отрицательный знак, сделав -40
-13 x 3 = -39
9 х -3 = -27
Чтобы умножить несколько чисел, посчитайте количество отрицательных знаков в числах, которые нужно умножить.Если это четное число, произведение будет положительным, а если нечетное, произведение будет отрицательным.
6 х -2 х -3 х 5 = | 6 | х | 2 | х | 3 | х | 5 |
6 x 2 = 12, 12 x 3 = 36 и 36 x 5 = 180
Имеется два отрицательных знака (четное число), поэтому ответ положительный.
Если бы было -6 x -2 x -3 x 5, ответ был бы -180
Умножение двух отрицательных чисел |
При умножении двух отрицательных чисел два отрицательных числа компенсируют друг друга, поэтому умножьте абсолютные значения и дайте ответ положительный знак.
-21 х -3 = | 21 | х | 3 | = 63 (остается положительным)
-7 x -8 = | 7 | х | 8 | = 56
Деление отрицательного числа на отрицательное |
Чтобы разделить два числа с одинаковым знаком (два положительных или два отрицательных), используйте абсолютные значения, и результат будет положительным.
16 ¸ 4 = | 16 | ¸ | 4 | = 4
-20 ¸ -10 = | 20 | ¸ | 10 | = 2
Деление положительного числа на отрицательное или отрицательного числа на положительное
Чтобы разделить пару чисел с разными знаками (отрицательное на положительное или положительное на отрицательное), используйте абсолютные значения двух чисел и присвойте результату отрицательный знак.
-12 ¸ 3 = | 12 | ¸ | 3 | = 4, но это -4
18 ¸ -3 = | 18 | ¸ | 3 | = 6, но это -6
Использование отрицательных чисел |
Отрицательные числа используются для обозначения низких температур. Цифры ниже 0 ° C отрицательны и ниже точки замерзания. (Помните, что значения ниже 32 ° F ниже точки замерзания, но температура часто опускается ниже 0 ° F.)
Отрицательные числа используются для отображения измерений ниже уровня моря.Уровень моря равен 0.
Отрицательные числа используются с деньгами, чтобы показать задолженность или денежную задолженность. Если человек или домохозяйство тратят больше денег, чем зарабатывают, мы говорим, что они «отрицательные на определенную сумму», или называем это «красным», потому что бухгалтеры используют красные чернила для отображения отрицательных чисел.
Больше и меньше и наборы чисел |
Набор чисел — это группа чисел, которая соответствует заданному описанию.Например, набор целых чисел меньше 0 будет выражен как n <0. В этом предложении набор чисел, удовлетворяющий условиям, будет состоять из отрицательных целых чисел.
Все целые числа больше 0 будут выражены как n> 0. Набор чисел, удовлетворяющий этим условиям, будет набором всех положительных целых чисел. Каждое из этих целых чисел будет называться членом или элементом этого набора.
Какие целые числа от 3 до 8? Это будет 4, 5, 6 и 7.Другой способ выразить это — набор чисел больше 3, но меньше 8, которые можно представить в виде математического предложения, которое выглядит так:
3 Прочтите это: n такое, что n больше 3 и меньше 8 Поскольку 3 И n <8 или n меньше 8 или 8 больше n п = 4, 5, 6, 7 Мы могли бы сказать 3 n <8, и в этом случае в ответ было бы включено 3, поэтому n = 3, 4, 5, 6, 7.Знак означает «меньше или равно», а знак означает «больше или равно». Стандартные числа, все, что больше нуля, описываются как «положительные» числа. Мы не ставим перед ними знак плюса (+), потому что в этом нет необходимости, поскольку, по общему мнению, числа без знака положительны. Числа меньше нуля известны как «отрицательные» числа. Перед ними стоит знак минус (-), чтобы указать, что они меньше нуля (например, -10 или « минус 10 »). Вероятно, самый простой способ визуализировать отрицательные и положительные числа — использовать числовую линию, инструмент, с которым вы, возможно, хорошо знакомы, особенно если у вас есть дети в начальной школе. Это выглядит примерно так: Числовая линия может помочь вам визуализировать как положительные, так и отрицательные числа, а также операции (сложение и вычитание), которые вы можете с ними делать. Когда вам нужно вычислить сложение или вычитание, вы начинаете с первого числа и перемещаете второе число разрядов вправо (для сложения) или влево (для вычитания). Эта числовая линия является упрощенной версией, но вы можете нарисовать их с любым числом, если хотите. Большим преимуществом числовой линии является то, что ее очень легко нарисовать самостоятельно на обратной стороне конверта или клочка макулатуры, а также довольно сложно ошибиться в расчетах. Если вы внимательно подсчитываете количество мест, которые вы перемещаете, вы получите правильный ответ. Рабочие примеры Начиная с 10, вы перемещаете 25 чисел влево и сразу видите, что ответ — -15. На этот раз вы начинаете с -17 и перемещаетесь на 23 позиции вправо. Сразу видно, что ответ — 6. Если вы вычесть отрицательное число, два отрицательных числа объединятся, чтобы получить положительное. −10 — (- 10) не равно −20. Вместо этого вы можете думать об этом как о том, чтобы повернуть один из отрицательных знаков вертикально, пересечь другой и получить плюс.Тогда сумма будет -10 + 10 = 0. Краткое примечание по скобкам Для наглядности, вы никогда не стали бы писать два знака минус рядом без скобок. Итак, если вас попросят вычесть отрицательное число, оно всегда будет заключено в скобки, чтобы вы могли видеть, что использование двух отрицательных знаков было намеренным. -10-10 неверно (и сбивает с толку) -10 — (- 10) правильно (и яснее) При умножении или делении комбинациями положительных и отрицательных чисел вы можете упростить процесс, сначала игнорируя знаки (+/-) и просто умножая или деля числа, как если бы они оба были положительными.Получив числовой ответ, вы можете применить очень простое правило для определения знака ответа: Итак: Но: В качестве побочного вопроса это каким-то образом объясняет, почему у вас не может быть квадратного корня из отрицательного числа (подробнее об этом читайте на нашей странице в Специальные числа и понятия ).Квадратный корень — это число, которое умножается само на себя, чтобы получить число. Вы не можете умножить число на само по себе, чтобы получить отрицательное число. Чтобы получить отрицательное число, вам нужно одно отрицательное и одно положительное число. Правило работает точно так же, когда вам нужно умножить или разделить более двух чисел. Четное количество отрицательных чисел даст положительный ответ. Нечетное количество отрицательных чисел даст отрицательный ответ. Работал примеров 5 x 25 равно 125.Но здесь у вас есть одно отрицательное и одно положительное число, поэтому знак ответа будет отрицательным. Следовательно, ответ будет −125 . 40 ÷ 8 равно 5. Опять же, у вас есть одно положительное и одно отрицательное число, поэтому знак ответа будет отрицательным. Ответ: −5 . 50 ÷ 5 равно 10. На этот раз у вас два отрицательных числа, поэтому знак ответа будет положительным.Ответ: 10 . 100 x 2 равно 200. Опять же, у вас два отрицательных числа, поэтому ответ положительный. Это 200 . Для начала рассмотрим первую часть расчета. 10 x 2 = 20. У вас есть одно положительное и одно отрицательное число, поэтому знак ответа будет отрицательным, то есть −20. Теперь возьмем вторую часть вычисления: −20 × 3.Итак, 20 × 3 = 60, но опять же, у вас есть отрицательное и положительное число, поэтому ответ будет отрицательным: −60 . Почему умножение двух отрицаний дает положительный ответ? Тот факт, что отрицательное число, умноженное на другое отрицательное число, дает положительный результат, часто может сбивать с толку и казаться нелогичным. Чтобы объяснить, почему это так, вспомните числовые линии, использованные ранее в этой статье, поскольку они помогают объяснить это визуально. В обоих этих примерах вы двигались вперед (то есть в том направлении, куда вы смотрели), что является положительным шагом. Отрицательные знаки могут выглядеть немного устрашающе, но правила, регулирующие их использование, просты и понятны. Помните об этом, и у вас не будет проблем. математика (BrE) | математика (AmE) — это краткая форма математика На этой странице перечислены основные математические символы с их названиями и примерами на английском языке. Знак плюс означает: Любое число больше нуля является положительным числом и может быть написано со знаком плюс перед ним или без него. Таким образом, +5 (плюс пять) и 5 (пять) — это одно и то же число. 3 + 5 = 8 Сложение дает нам сумму .В 3 + 5 = 8 получается восемь. Знак минус означает: Любое число меньше нуля является отрицательным числом и записывается со знаком минус перед ним. -3 8-5 = 3 Вычитание дает нам разницы .В 8-5 = 3 разница в три. Знак раз представляет: 5 x 6 = 30 Умножение дает нам произведение . В 5 х 6 = 30 получается тридцать. Знак деления означает: 15 ÷ 3 = 5 дает нам частное .При 15 ÷ 3 = 5 частное равно пяти. Знак равно представляет равенство : 3 + 4 = 7 Обратите внимание, что мы обычно говорим, что равно НЕ равно: 3 <4 4> 3 x ≠ z x ≥ z z ≤ x см. Дроби Десятичный разделитель отделяет целое число от дробной части справа: 1,23 В английском языке десятичным разделителем обычно является точка (.). Обратите внимание, что в некоторых языках десятичным разделителем является запятая (,). см. Десятичные дроби В английском языке разделитель тысяч разделяет целые числа на группы по три справа. 10 987 654 321 В английском языке разделителем тысяч обычно является запятая (,).Обратите внимание, что в некоторых языках разделителем тысяч является точка (.) Или иногда пробел (). см. Тыс. Знак процента указывает число или соотношение в виде доли от 100 ( процента ). 40% √16 = 4 Положительные и отрицательные числа — это два широких класса чисел, которые используются в математике, а также в повседневных транзакциях, таких как управление деньгами или измерение веса. Существуют правила сложения, вычитания, умножения и деления положительных и отрицательных чисел.Как правило, легче выполнять операции с отрицательными числами, если они заключены в квадратные скобки, чтобы разделять их. Числовые линии также упрощают понимание положительных чисел и чисел. Сложить положительные и отрицательные числа просто, если оба числа имеют одинаковый знак.Просто найдите сумму чисел и держите знак. Например: Найдите сумму положительного и отрицательного числа, вычтя число с меньшим значением из числа с большее значение. Знак — это знак большего числа. Правила вычитания аналогичны правилам сложения.Для двух положительных чисел, если первое число больше второго, результатом будет другое положительное число. Если вы вычтите большое положительное число из меньшего положительного числа, вы получите отрицательное число. Легкий способ сделать это — вычесть меньшее число из большего числа и изменить знак ответа на минус. Вычитание положительного числа из отрицательного числа аналогично сложению отрицательного числа. Другими словами, это делает отрицательное число более отрицательным. Вычитание отрицательного числа из положительного числа отменяет отрицательные знаки и становится простым сложением. Это делает положительное число более положительным. Когда вы вычитаете отрицательное число из другого отрицательного числа, отрицательные знаки снова отменяют каждое другое, чтобы стать знаком плюс.Ответ имеет знак большего числа. Правила умножения и деления просты: Вот несколько примеров. В этих примерах используются целые числа (целые числа), но те же правила применяются к десятичным и дробным числам. положительных и отрицательных чисел | SkillsYouNeed
Визуализация отрицательных и положительных чисел
Что такое 10-25?
Что такое −17 + 23?
Вычитание отрицательных чисел
Умножение и деление на положительные и отрицательные числа
(положительное число) × (положительное число) = положительное число
(отрицательное число) × (отрицательное число) = положительное число
(положительное число) × (отрицательное число) = отрицательное число
Что такое −5 × 25?
Что такое −40 ÷ 8?
Что такое −50 ÷ −5?
Что такое −100 × −2?
Что такое 10 x −2 × 3?
Следовательно, положительный × положительный = положительный
Следовательно, отрицательный × положительный = отрицательный
Следовательно, положительный × отрицательный = отрицательный
Следовательно, отрицательный × отрицательный = положительный Заключение
основных математических символов | Словарь
плюс / дополнительный знак а.понятие
положительное г. операция сложения
три плюс пять равно восемь
пять добавленных к трем составляют восемь
три добавленных к пяти дают восемь
если сложить пять к трем, получится восемь —
знак минус / знак вычитания а. понятие отрицательного
минус три г. операция вычитания
восемь минус пять равно трем
пять вычтено из восьми равно трем
если вычесть пять из восьми, вы получите три
если вы вычтете пять из восьми, вы получите три × 9000 7 раз знак / знак умножения
пять умножить на шесть равно тридцать
пять умножить на шесть равно тридцать
пять шестерок равно тридцать
если умножить 5 на 6, получится тридцать ÷ OR /
разделительный знак отдел
15/3 = 5
пятнадцать делить на три равно пять
пять делится на пятнадцать трижды
если пятнадцать разделить на три, получится пять
если три разделить на пятнадцать, получится пять операция результат дополнение «плюс» 2 + 2 = 4 сумма вычитание «минус» 5–3 = 2 разница умножение «раз» 3 х 5 = 15 товар отдел «разделить на» 21/7 = 3 частное =
равно знак
три плюс четыре равно семь
< два плюс два равны четыре
менее
три меньше четырех>
больше
четыре больше трех ≠
НЕ равно
x не равно z ≥
больше или равно
x больше или равно z ≤
меньше или равно
z меньше или равно x ¾
дробь.
десятичный разделитель | точка,
разделитель тысяч%
знак процента
сорок процентов
За нее проголосовало всего сорок процентов людей.
Какой процент проголосовал за нее? Сорок процентов. √
корень квадратный
квадратный корень шестнадцати равен четырем
квадратный корень шестнадцати равен четырем Правила для положительных и отрицательных чисел
Сложение и вычитание положительных и отрицательных чисел
Когда вы складываете или вычитаете положительные и отрицательные числа, знак ответа зависит от того, похожи ли знаки или какое число имеет большее значение. Умножение и деление положительного числа и отрицательные числа
Если вы умножите или разделите одинаковые знаки, вы получите положительное число. Умножение или деление положительных и отрицательных чисел дает отрицательное число.
Связанные сообщения