Нахождение длины вектора по его координатам: Как найти длину вектора? Ответ на webmath.ru

Содержание

Длина вектора — как найти? Формулы и примеры

Что такое векторы и какими они бывают

Как обычно, мы начнем с самого важного: с определения.

Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом.

Вектор обозначают знаком →, например . Как вы заметили, вектор можно выразить одной латинской буквой, а можно — сочетанием двух букв, которыми мы назовем точками начала и конца вектора.

Нулевой вектор — вектор, начало которого совпадает с его концом. Обозначается он так: .

Как вы уже знаете, векторы бывают коллинеарными и неколлинеарными, сонаправленными и противоположно направленными. Теперь давайте подумаем, что объединяет все виды векторов без исключения. Правильно, у всех есть длина! О том, что это такое, мы и поговорим дальше.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Длина вектора

Длиной или модулем вектора называется длина направленного отрезка, определяющего вектор.

Иногда в математике длину вектора называют модулем. Это легко запомнить, так как длина вектора обозначается с помощью знака | |. Например: . Альтернативное название длины вектора дает нам отличную подсказку: она не может быть отрицательной, в какую бы сторону вектор ни был направлен. А вот нулевой — пожалуйста!

Длина нулевого вектора всегда равна нулю.

Здесь вам может стать интересно, зачем нам нужно знать, как найти длину вектора, и это очень хороший вопрос. Причин может быть множество, но мы выделим несколько главных:

  1. Чтобы определить равенство векторов, необходимо знать их длины. Векторы являются равными, если равны их длины, и сами векторы — сонаправленные.

  2. Вычислив модуль вектора, мы можем рассчитать другие величины.

  3. Например, в физике сила — это векторная величина, т.

    е. имеет направление. Если вычислить модуль силы, мы можем рассчитать массу тела, его ускорение и т. д.

  4. В геометрии с помощью длины векторов мы можем определить угол между ними, их скалярное произведение.

Достаточно весомые аргументы для нахождения этой величины, правда? Самое время перейти от слов к делу: давайте научимся вычислять длину вектора через свои координаты!

Как можно найти длину вектора по его координатам

Используя прямоугольную систему координат, нарисуем вектор АВ (х, у) из точки (0; 0). Тогда его можно будет считать радиус-вектором для векторов АВ1 и АА1.

Давайте обозначим длину вектора |АВ1| = у, длину вектора |АА1| = х. Треугольники АА1В и АВ1В являются прямоугольными, где АВ — гипотенуза. Теперь вспомните, как можно найти длину гипотенузы, зная длины катетов. Верно, через теорему Пифагора! Составим выражение для АВ:

Это значит, чтобы найти длину вектора нужно взять квадратный корень из суммы квадратов его координат.

В общем виде эту формулу для длины вектора записывают так — длина вектора :

Если мы будем рассматривать векторы в трехмерном пространстве, формулу нахождения длины вектора можно рассчитать так:

Давайте разберемся, как работают эти формулы для нахождения длины вектора, на примерах. Вы можете решать задания самостоятельно, а потом свериться с нами: так будет еще эффективнее!

Пример № 1

Найдите модуль вектора .

Решение:

Ответ:

Пример № 2

Проведите вычисление длины вектора по его координатам {-2; 0; 5}.

Решение:

Ответ:

Пример № 3

Определите координату х вектора , если его координата по у равна 6, а длина вектора 10.

Решение:

,

,

,

.

,

,

,

.

Ответ: .

Уверены, что у вас все блестяще получилось!

Как найти длину вектора по двум точкам

Давайте подумаем, как решать задачи, если нам не даны координаты вектора. Для этого нужно понять, как найти длину вектора по двум точкам — координатам начала и конца. Вспомним: координаты вектора с точкой А (х_а; у_а) и В (х_в; у_в) можно рассчитать так: (х_в – х_а; у_в – у_а). А значит, длину вектора мы определим, если подставим эти выражения в формулу для ее нахождения:

Пример № 4

Найти длину вектора , если В (4; 6), С (-2; 0).

Решение:

Ответ:

Как найти длину вектора по теореме косинусов

Пришло время разобраться, как длина вектора связана с теоремой косинусов. К сожалению, не во всех задачах дано нужное количество информации, чтобы определить длину вектора — тут-то нам и поможет теорема. Вспомним ее!

Квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Итак, чтобы определить длину стороны треугольника, нужно сложить квадраты двух других сторон, вычесть удвоенное произведение длин сторон на косинус угла между ними и взять корень из полученного числа. Так мы получим формулу нахождения длины вектора через теорему косинусов.

Предположим, что нам необходимо узнать длину вектора или . Тогда, чтобы воспользоваться теоремой косинусов, нам нужно найти длину векторов и и угол между ними.

Пример № 5

Длины векторов и равны 5 и 12 соответственно, а угол между ними равен π/3. Проведите вычисление длины вектора .

Решение:

Ответ:

Сегодня мы обсудили с вами все основные моменты, которые касаются длины вектора: изучили теорию и дополнили ее базовыми задачами. Дело осталось за малым — выучить весь материал и практиковаться! В этом вам помогут курсы по профильной математике в школе Skysmart. Уникальная платформа, учителя-профессионалы, индивидуальная программа — уроки просто созданы для того, чтобы стать уверенными в математике. Ждем вас на занятиях и до новых встреч!

Нахождение длины вектора через координаты начала и. Вектор. Координаты вектора

На оси абсцисс и ординат называются координатами вектора . Координаты вектора общепринято указывать в виде (х, у) , а сам вектор как: =(х, у).

Формула определения координат вектора для двухмерных задач.

В случае двухмерной задачи вектор с известными координатами точек A(х 1 ;у 1) и B(x 2 ; y 2 ) можно вычислить:

= (x 2 — x 1 ; y 2 — y 1).

Формула определения координат вектора для пространственных задач.

В случае пространственной задачи вектор с известными координатами точек A(х 1 ;у 1 ; z 1 ) и B(x 2 ; y 2 ; z 2 ) можно вычислить применив формулу:

= (

x 2 x 1 ; y 2 y 1 ; z 2 z 1 ).

Координаты дают всеобъемлющую характеристику вектора, поскольку по координатам есть возможность построить и сам вектор. Зная координаты, легко вычислить и длину вектора . (Свойство 3, приведенное ниже).

Свойства координат вектора.

1. Любые равные векторы в единой системе координат имеют равные координаты .

2. Координаты коллинеарных векторов пропорциональны. При условии, что ни один из векторов не равен нулю.

3. Квадрат длины любого вектора равен сумме квадратов его координат .

4.При операции умножения вектора на действительное число каждая его координата умножается на это число.

5. При операции сложения векторов вычисляем сумму соответствующие координаты векторов

.

6. Скалярное произведение двух векторов равняется сумме произведений их соответствующих координат.

Векторы. Действия с векторами. В этой статье мы поговорим о том, что такое вектор, как находить его длину, и как умножать вектор на число, а также как находить сумму, разность и скалярное произведение двух векторов.

Как обычно, немного самой необходимой теории.

Вектор — это направленный отрезок, то есть такой отрезок, у которого есть начало и конец:

Здесь точка А — начало вектора, а точка В — его конец.

У вектора есть два параметра: его длина и направление.

Длина вектора — это длина отрезка, соединяющего начало и конец вектора. Длина вектора обозначается

Два вектора называются равными , если они имеют одинаковую длину и сонаправлены.

Два вектора называются сонаправленными , если они лежат на параллельных прямых и направлены в одну сторону: вектора и сонаправлены:

Два вектора называются противоположно направленными, если они лежат на параллельных прямых и направлены в противоположные стороны: вектора и , а также и направлены в противоположные стороны:

Вектора, лежащие на параллельных прямых называются коллинеарными : вектора , и — коллинеарны.

Произведением вектора на число называется вектор, сонаправленный вектору , если title=»k>0″>, и направленный в противоположную сторону, если , и длина которого равна длине вектора , умноженной на :

Чтобы сложить два вектора и , нужно начало вектора соединить с концом вектора . Вектор суммы соединяет начало вектора с концом вектора :


Это правило сложения векторов называется правилом треугольника .

Чтобы сложить два вектора по правилу параллелограмма , нужно отложить вектора от одной точки и достроить до параллелограмма. Вектор суммы соединяет точку начала векторов с противоположным углом параллелограмма:


Разность двух векторов определяется через сумму: разностью векторов и называется такой вектор , который в сумме с вектором даст вектор :

Отсюда вытекает правило нахождения разности двух векторов : чтобы из вектора вычесть вектор , нужно отложить эти вектора от одной точки. Вектор разности соединяет конец вектора с концом вектора (то есть конец вычитаемого с концом уменьшаемого):


Чтобы найти угол между вектором и вектором , нужно отложить эти вектора от одной точки. Угол, образованный лучами, на которых лежат вектора, называется углом между векторами:


Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

Предлагаю вам решить задачи из Открытого банка заданий для , а затем сверить све решение с ВИДЕОУРОКАМИ:

1 . Задание 4 (№ 27709)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов и .

2 . Задание 4 (№ 27710)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

3 . Задание 4 (№ 27711)

Две стороны прямоугольника ABCD O . Найдите длину суммы векторов и .

4 . Задание 4 (№ 27712)

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O . Найдите длину разности векторов и . (чертеж из предыдущей задачи).

5 . Задание 4 (№ 27713)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора .

6 . Задание 4 (№ 27714)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора + .

7 .Задание 4 (№ 27715)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора — .(чертеж из предыдущей задачи).

8 .Задание 4 (№ 27716)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора — .

9 . Задание 4 (№ 27717)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора + .

10 . Задание 4 (№ 27718)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора — .(чертеж из предыдущей задачи).

11 .Задание 4 (№ 27719)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите скалярное произведение векторов и .(чертеж из предыдущей задачи).

12 . Задание 4 (№ 27720)

ABC равны Найдите длину вектора +.

13 . Задание 4 (№ 27721)

Стороны правильного треугольника ABC равны 3. Найдите длину вектора -.(чертеж из предыдущей задачи).

14 . Задание 4 (№ 27722)

Стороны правильного треугольника ABC равны 3. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр «Час ЕГЭ», попробуйте скачать
Firefox

Oxy

О А ОА .

, откуда ОА .

Таким образом, .

Рассмотрим пример.

Пример.

Решение.

:

Ответ:

Oxyz в пространстве.

А ОА будет диагональю.

В этом случае (так как ОА ОА .

Таким образом, длина вектора .

Пример.

Вычислите длину вектора

Решение.

, следовательно,

Ответ:

Прямая на плоскости

Общее уравнение

Ax + By + C ( > 0).

Вектор = (А; В) — нормальный вектор прямой.

В векторном виде: + С = 0 , где — радиус-вектор произвольной точки на прямой (рис. 4.11).

Частные случаи:

1) By + C = 0 — прямая параллельна оси Ox ;

2) Ax + C = 0 — прямая параллельна оси Oy ;

3) Ax + By = 0 — прямая проходит через начало координат;

4) y = 0 — ось Ox ;

5) x = 0 — ось Oy .

Уравнение прямой в отрезках

где a, b — величины отрезков, отсекаемых прямой на осях координат.

Нормальное уравнение прямой (рис. 4.11)

где — угол, образуемый нормально к прямой и осью Ox ; p — расстояние от начала координат до прямой.

Приведение общего уравнения прямой к нормальному виду:

Здесь — нормируемый множитель прямой; знак выбирается противоположным знаку C , если и произвольно, если C = 0 .

Нахождение длины вектора по координатам.

Длину вектора будем обозначать . Из-за такого обозначения длину вектора часто называют модулем вектора.

Начнем с нахождения длины вектора на плоскости по координатам.

Введем на плоскости прямоугольную декартову систему координат Oxy . Пусть в ней задан вектор и он имеет координаты . Получим формулу, позволяющую находить длину вектора через координаты и .

Отложим от начала координат (от точки О ) вектор . Обозначим проекции точки А на координатные оси как и соответственно и рассмотрим прямоугольник с диагональю ОА .

В силу теоремы Пифагора справедливо равенство , откуда . Из определения координат вектора в прямоугольной системе координатмы можем утверждать, что и , а по построению длина ОА равна длине вектора , следовательно, .

Таким образом, формула для нахождения длины вектора по его координатам на плоскости имеет вид .

Если вектор представлен в виде разложения по координатным векторам , то его длина вычисляется по этой же формуле , так как в этом случае коэффициенты и являются координатами вектора в заданной системе координат.

Рассмотрим пример.

Пример.

Найдите длину вектора , заданного в декартовой системе координат.

Решение.

Сразу применяем формулу для нахождения длины вектора по координатам :

Ответ:

Теперь получим формулу для нахождения длины вектора по его координатам в прямоугольной системе координат Oxyz в пространстве.

Отложим от начала координат вектор и обозначим проекции точки А на координатные оси как и . Тогда мы можем построить на сторонах и прямоугольный параллелепипед, в котором ОА будет диагональю.

В этом случае (так как ОА – диагональ прямоугольного параллелепипеда), откуда . Определение координат вектора позволяет нам записать равенства , а длина ОА равна искомой длине вектора, следовательно, .

Таким образом, длина вектора в пространстве равна корню квадратному из суммы квадратов его координат , то есть, находится по формуле .

Пример.

Вычислите длину вектора , где — орты прямоугольной системы координат.

Решение.

Нам дано разложение вектора по координатным векторам вида , следовательно, . Тогда по формуле нахождения длины вектора по координатам имеем .

Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. 2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.


*Все представленные выше четыре вектора равны!

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:


При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Суммой двух векторов АВ и ВС будет являться вектор АС .

Записывается как АВ +ВС =АС .

Это правило называется – правилом треугольника .

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b , или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a , и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили вектор противоположный вектору b, и нашли разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть, координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То c 1 = a 1 + b 1 c 2 = a 2 + b 2

Если

То c 1 = a 1 – b 1 c 2 = a 2 – b 2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .

Найдём вектор, который будет являться результатом АО –ВО:

АО –ВО =АО +(–ВО )=АВ

То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ +AD .

Найдём вектор, который будет являться суммой векторов AD и AB BC равен вектору AD . Значит AB +AD =AB +BC =AC

AC это длина диагонали ромба АС , она равна 16.

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО +ВО .

Найдём вектор, который будет являться суммой векторов АО и ВО ВО равен вектору OD, з начит

AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

По теореме Пифагора:

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО –ВО .

Найдём вектор, который будет являться результатом АО –ВО :

АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:

По теореме Пифагора:

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВ –АС .

Найдём результат разности векторов:

СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

27663. Найдите длину вектора а (6;8).

27664. Найдите квадрат длины вектора АВ .

Формула вычисления длины вектора по его координатам. Как найти координаты вектора. Вычисление углов между двумя плоскостями

Найдем длину вектора по его координатам (в прямоугольной системе координат), по координатам точек начала и конца вектора и по теореме косинусов (задано 2 вектора и угол между ними).

Вектор – это направленный отрезок прямой. Длина этого отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора.

1. Вычисление длины вектора по его координатам

Если даны координаты вектора в плоской (двухмерной) прямоугольной системе координат, т.е. известны a x и a y , то длину вектора можно найти по формуле

В случае вектора в пространстве добавляется третья координата

В MS EXCEL выражение =КОРЕНЬ(СУММКВ(B8:B9)) позволяет вычислить модуль вектора (предполагается, что координаторы вектора введены в ячейки B8:B9 , см. файл примера ).

Функция СУММКВ() возвращает сумму квадратов аргументов, т.е. в данном случае эквивалентна формуле =B8*B8+B9*B9 .

В файле примера также вычислена длина вектора в пространстве.

Альтернативной формулой является выражение =КОРЕНЬ(СУММПРОИЗВ(B8:B9;B8:B9)) .

2. Нахождение длины вектора через координаты точек

Если вектор задан через координаты точек его начала и конца, то формула будет другой =КОРЕНЬ(СУММКВРАЗН(C28:C29;B28:B29))

В формуле предполагается, что координаты точек начала и конца введены в диапазоны C28:C29 и B28:B29 соответственно.

Функция СУММКВРАЗН() в озвращает сумму квадратов разностей соответствующих значений в двух массивах.

По сути, в формуле сначала вычисляются координаты вектора (разности соответствующих координат точек), затем вычисляется сумма их квадратов.

3. Нахождение длины вектора по теореме косинусов

Если требуется найти длину вектора по теореме косинусов, то обычно заданы 2 вектора (их модули и угол между ними).

Найдем длину вектора с используя формулу =КОРЕНЬ(СУММКВ(B43:C43)-2*B43*C43*COS(B45))

В ячейках B43:B43 содержатся длины векторов а и b, а в ячейке В45 — угол между ними в радианах (в долях числа ПИ() ).

Если угол задан в градусах, то формула будет немного отличаться =КОРЕНЬ(B43*B43+C43*C43-2*B43*C43*COS(B46*ПИ()/180))

Примечание : для наглядности в ячейке со значением угла в градусах можно применить , см. например, статью

На оси абсцисс и ординат называются координатами вектора . Координаты вектора общепринято указывать в виде (х, у) , а сам вектор как: =(х, у).

Формула определения координат вектора для двухмерных задач.

В случае двухмерной задачи вектор с известными координатами точек A(х 1 ;у 1) и B(x 2 ; y 2 ) можно вычислить:

= (x 2 — x 1 ; y 2 — y 1).

Формула определения координат вектора для пространственных задач.

В случае пространственной задачи вектор с известными координатами точек A(х 1 ;у 1 ; z 1 ) и B(x 2 ; y 2 ; z 2 ) можно вычислить применив формулу:

= (x 2 x 1 ; y 2 y 1 ; z 2 z 1 ).

Координаты дают всеобъемлющую характеристику вектора, поскольку по координатам есть возможность построить и сам вектор. Зная координаты, легко вычислить и длину вектора . (Свойство 3, приведенное ниже).

Свойства координат вектора.

1. Любые равные векторы в единой системе координат имеют равные координаты .

2. Координаты коллинеарных векторов пропорциональны. При условии, что ни один из векторов не равен нулю.

3. Квадрат длины любого вектора равен сумме квадратов его координат .

4.При операции умножения вектора на действительное число каждая его координата умножается на это число.

5. При операции сложения векторов вычисляем сумму соответствующие координаты векторов .

6. Скалярное произведение двух векторов равняется сумме произведений их соответствующих координат.

Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|\overline{α}|^2=^2+^2$

$|\overline{α}|^2=x^2+y^2$

$|\overline{α}|=\sqrt{x^2+y^2}$

Ответ: $\sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|\overline{α}|^2=^2+^2$

$|\overline{α}|^2=x^2+y^2$

$|\overline{α}|=\sqrt{x^2+y^2}$

Ответ: $\sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

вектор длина

Вы искали вектор длина? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и вычисление длины вектора, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «вектор длина».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как вектор длина,вычисление длины вектора,вычисление длины вектора по его координатам,вычисление длины вектора по его координатам доказательство,вычислить длину вектора,длина вектор,длина вектора,длина вектора c,длина вектора в пространстве,длина вектора как найти,длина вектора как обозначается,длина вектора модуль вектора,длина вектора определение,длина вектора по двум точкам,длина вектора по его координатам,длина вектора по координатам,длина вектора по координатам начала и конца,длина вектора по координатам точек,длина вектора по координатам формула,длина вектора равна,длина вектора равна квадратному корню из суммы его координат,длина вектора формула,длина вектора формула по координатам,длина вектора через координаты,длина вектора это,длина векторов,длина векторов по координатам,длина через координаты вектора,длину вектора,длины векторов,длины векторов как найти,как в прямоугольнике найти длины векторов,как вычислить длину вектора,как вычислить длину вектора по координатам,как зная координаты вектора найти его длину,как зная координаты найти длину вектора,как найти длина вектора,как найти длину вектора,как найти длину вектора ав,как найти длину вектора если известны его координаты,как найти длину вектора если известны координаты вектора,как найти длину вектора зная его координаты,как найти длину вектора зная его координаты начала и конца,как найти длину вектора зная координаты,как найти длину вектора зная координаты его начала и конца,как найти длину вектора и координаты,как найти длину вектора по двум точкам,как найти длину вектора по его координатам,как найти длину вектора по координатам,как найти длину вектора по координатам двух точек,как найти длину вектора по координатам начала и конца,как найти длину вектора формула,как найти длину вектора через координаты,как найти длину векторов,как найти длину и координаты вектора,как найти длины векторов,как найти длины векторов по координатам,как найти квадрат длины вектора,как найти координаты вектора если известна длина вектора,как найти координаты вектора зная длину,как найти координаты вектора зная его длину,как найти координаты вектора зная его длину и координаты начала,как найти координаты вектора и длину,как найти координаты вектора через длину,как найти координаты и длину вектора,как находить длину вектора,как обозначается длина вектора,как определить длину вектора,как определить длину вектора по координатам,как узнать длину вектора,как узнать длину вектора по координатам,квадрат длины вектора формула,координаты вектора длина вектора,модуль вектора длина вектора,модуль вектора определение,найдите длину и координаты вектора,найдите длины векторов,найти длину вектора,найти длину вектора по координатам,найти длину вектора по координатам точек,найти длину и координаты вектора,найти длину по координатам точек вектора,найти длины векторов,найти координаты вектора и длину,найти координаты и длину вектора,нахождение длины вектора,нахождение длины вектора по его координатам,определение вектора длина вектора,определение вектора длины,определение вектора длины вектора,определение длина вектора,определение длины вектора,определение модуль вектора,по координатам точек найти длину вектора,формула вычисления длины вектора,формула вычисления длины вектора по его координатам,формула длина вектора,формула длины вектора,формула длины вектора по его координатам,формула для вычисления длины вектора по его координатам,формула для нахождения длины вектора,формула как найти длину вектора,формула квадрат длины вектора,формула модуля вектора,формула нахождения длины,формула нахождения длины вектора,формула нахождения длины вектора по его координатам,чему равна длина вектора,что такое длина вектора. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и вектор длина. Просто введите задачу в окошко и нажмите «решить» здесь (например, вычисление длины вектора по его координатам).

Решить задачу вектор длина вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Что значит найти вектор — dj-sensor.ru

Содержание

  1. Длина вектора — основные формулы
  2. Длина вектора через координаты точек его начала и конца
  3. Нахождение длины вектора по теореме косинусов

Если вектор (x,y,z) перпендикулярен вектору (u,v,w), то их скалярное произведение, т. е. произведение длины первого на длину второго на косинус угла между ними, равно 0 (нулю), поскольку косинус 90 градусов равен 0. Скалярное произведение двух векторов по определению = x*u + y*v + z*w. Соответственно у вас система уравнений для искомого (x,y,z):

-6*x + 4*y + 2*z = 0 (1ое уравнение, перпендикулярность A)
3*x + 1*y + 5*z = 0 (2ое уравнение, перпендикулярность B)

Умножаем второе уравнение с двух сторон на 2 и прибавляем к первому. Получаем:

-6x + 6x +4y + 2y +2z+10z = 0, т.е.

z = -1/2 *y = — 0.5 * y

Подставляем этот z в первое уравнение, получаем:

Соответственно z= -0.5y = -0.5*(2x) = -x.

Отсюда ответ: вектор (x, 2x, -x), где x любое число, будет перпендикулярен и А, и В.
(Можно подставить в уравнения 1 и 2 и проверить)

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Читайте также:  Школьница наносит ответный удар фильм

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Читайте также:  Что лучше 360 total security или касперский

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Читайте также:  Чем отличается код бодо от азбуки морзе

Здравствуйте!
Помогите решить два задания:
«В прямоугольной ДСК на плоскости Oxy заданы две точки M(11; –17) и F(–23; –37). Найдем координаты векторов ОМ и МF в данной системе координат».
«В трехмерном пространстве в прямоугольной системе координат Oxyz заданы координаты точки С(11; 13; 17) и координаты вектора СК = (–8; 18; –23). Найдем координаты конца вектора СК».
Спасибочки за помощь!

Пример 1.
В прямоугольной ДСК на плоскости Oxy заданы две точки M(11; –17) и F(–23; –37). Найдем координаты векторов ОМ и МF в данной системе координат.

Решение.
Вектор ОМ является радиус-вектором точки М, а значит, его координаты совпадут с координатами точки М, таким образом, ОМ = (11; –17).
Координаты вектора MF найдем как разность соответствующих координат заданных точек F и M:
MF = (–23–11; –37–(–17)) = (–34; –20).

Ответ. ОМ = (11; –17), MF = (–34; –20).

Пример 2.
В трехмерном пространстве в прямоугольной системе координат Oxyz заданы координаты точки С(11; 13; 17) и координаты вектора СК = (–8; 18; –23). Найдем координаты конца вектора СК.

Решение.
Известно, что координаты вектора СК равняются разности координат точек конца и начала вектора соответственно, то координаты вектора . Подставим известные координаты точки С:
.
Из условия задачи известно, что СК = (–8; 18; –23).
В прямоугольной системе координат равность векторов подтверждается равностью их соответствующих координат.
Поэтому приравняем соответствующие координаты вектора и получим следующую систему уравнений:

Из данной системы уравнений найдем неизвестные координаты точки К:

  • Автор: Мария Сухоруких

и произведения kv называются скалярными множителями v.

Для действительного числа k и вектора v = 1, v 2 >, скалярное произведение k и v равно
kv = k.1, v 2 > = 1, kv 2 >.
Вектор kv является скалярным числом, кратным вектора v.

Пример 2 Пусть u = и w = . Найдите — 7w, 3u и — 1w.

Решение
— 7w = — 7. = ,
3u = 3. = ,
— 1w = — 1. = .

Теперь мы можем сложить два вектора, используя компоненты. Чтобы сложить два вектора, заданных в компонентной форме, мы добавляем соответствующие компоненты. Пусть u = 1, u 2 > и v = 1, v 2 >. Тогда
u + v = 1 + v 1 , u 2 + v 2 >

Например, если v = и w = , то
v + w = ​​=

Если u = 1, u 2 > и v = 1, v 2 >, тогда
и + v = 1 + v 1 , и 2 + v 2 >.

Прежде чем мы определим вычитание векторов, нам нужно определить — v. Противоположность v = 1, v 2 >, показанная ниже, равна
— v = (- 1).v = (- 1)1, v 2 > = 1, — v 2 >

Вычитание векторов, таких как u — v, включает вычитание соответствующих компонентов. Мы покажем это, переписав u — v как u + (- v). Если u = 1, u 2 > и v = 1, v 2 >, то
u — v = u + (- v) = 1, u 2 > + 1, — v 2 > = 1 + (- v 1 ), u 2 + (- v 2 ) > = 1 — v 1 , u 2 — v 2 >

Мы можем проиллюстрировать вычитание векторов параллелограммами так же, как мы делали сложение векторов.

Вычитание векторов

Если u = 1, u 2 > и v = 1, v 2 >, то
u — v = 1 — v 1 , у 2 — в 2 >.

Интересно сравнить сумму двух векторов с разностью тех же двух векторов в одном и том же параллелограмме. Векторы u + v и u — v являются диагоналями параллелограмма.

Пример 3 Выполните следующие вычисления, где u = и v = .
а) и + в
б) и — 6в
в) 3и + 4в
г) |5в — 2и|

Раствор
а) u + v = + = = ;
б)и — 6в = — 6. = — = ;
в) 3и + 4в = 3. + 4. = + = ;
г) |5в — 2у| = |5. — 2.| = | — | = || = √(- 29) 2 + 21 2 = √1282 ≈ 35,8

Прежде чем мы сформулируем свойства векторного сложения и скалярного умножения, нам нужно определить еще один специальный вектор — нулевой вектор. Вектор, начальная и конечная точки которого оба являются нулевым вектором , обозначается как O или . Его величина равна 0. При сложении векторов нулевой вектор является вектором аддитивной идентичности:
v + O = v.          1, v 2 > + = 1, v 2 >
Операции над векторами во многом схожи с операциями над действительными числами.

Свойства векторного сложения и скалярного умножения

Для всех векторов u, v и w и для всех скаляров b и c:
1. u + v = v + u.
2. и + (v + w) = (u + v) + w.
3. v + O = v.
4 1.v = v; 0.v = O.
5. v + (-v) = O.
6. b(cv) = (bc)v.
7. (b + c)v = bv + cv.
8. b(u + v) = bu + bv.

Единичные векторы

Вектор величины или длины 1 называется единичным вектором . Вектор v = является единичным, поскольку
|v| = || = √(- 3/5) 2 + (4/5) 2 = √9/25 + 16/25 = √25/25 = √1 = 1,

Пример 4 Найдите единичный вектор, который имеет то же направление, что и вектор w = .

Решение Сначала найдем длину w:
|w| = √(- 3) 2 + 5 2 = √34. Таким образом, нам нужен вектор, длина которого составляет 1/√34 длины w, а направление совпадает с направлением вектора w. Этот вектор равен
u = w/√34 = /√34 = .
Вектор u является единичным, поскольку
|u| = | ш / √ 34 | = = √9/34 + 25/34 = √34/34 = √1 = 1,

Если v — вектор и v ≠ O, то
(1/|v|) • v,          или          v/|v|,
— это единичный вектор в направлении v.

Хотя единичные векторы могут иметь любое направление, единичные векторы, параллельные осям x и y, особенно полезны. Они определены как
i =          и          j = .

Любой вектор может быть выражен как линейная комбинация единичных векторов i и j. Например, пусть v = 1, v 2 >. Тогда
v = 1, v 2 > = 1, 0 > + 2 > = v 1 + v 2 = v 1 i + v 2 j.

Пример 5 Выразите вектор r = в виде линейной комбинации i и j.

Решение
r = = 2i + (- 6)j = 2i — 6j.

Пример 6 Запишите вектор q = — i + 7j в компонентной форме.

Решение q = — i + 7j = -1i + 7j =

Операции с векторами также можно выполнять, когда векторы записываются как линейные комбинации i и j.

Пример 7 Если a = 5i — 2j и b = -i + 8j, найти 3a — b.

Раствор
3a — b = 3(5i — 2j) — (- i + 8j) = 15i — 6j + i — 8j = 16i — 14j.

Углы направления

Конечная точка P единичного вектора в стандартном положении — это точка на единичной окружности, обозначенная (cosθ, sinθ). Таким образом, единичный вектор может быть выражен в компонентной форме
u = ,
или как линейная комбинация единичных векторов i и j,
u = (cosθ)i + (sinθ)j,
где компоненты u являются функциями направления угла θ, измеренного против часовой стрелки от оси x к вектору. Поскольку θ изменяется от 0 до 2π, точка P описывает окружность x 2 + y 2 = 1. Это принимает во всех возможных направлениях единичные векторы, поэтому уравнение u = (cosθ)i + (sinθ)j описывает каждый возможный единичный вектор на плоскости.

Пример 8 Вычислите и зарисуйте единичный вектор u = (cosθ)i + (sinθ)j для θ = 2π/3. Включите единичный круг в свой эскиз.

Решение
u = (cos(2π/3))i + (sin(2π/3))j = (- 1/2)i + (√3/2)j

Пусть v = 1, v 2 > с дирекционным углом θ. Используя определение функции тангенса, мы можем определить направляющий угол по составляющим v:

Пример 9 Определить направляющий угол θ вектора w = — 4i — 3j.

Решение Мы знаем, что
w = — 4i — 3j = .
Таким образом, мы имеем
тангенс θ = (- 3)/(- 4) = 3/4         и θ = тангенс — 1 (3/4).
Поскольку w находится в третьем квадранте, мы знаем, что θ является углом третьего квадранта. Опорный угол равен
tan — 1 (3/4) ≈ 37°,          и          θ ≈ 180° + 37° или 217°.

Удобно для работы с прикладными задачами и в последующих курсах, таких как исчисление, иметь способ выразить вектор так, чтобы можно было легко определить или прочитать как его величину, так и его направление. Пусть v — вектор. Тогда v/|v| является единичным вектором в том же направлении, что и v. Таким образом, мы имеем
в/|в| = (cosθ)i + (sinθ)j
v = |v|[(cosθ)i + (sinθ)j]              Умножение на |v|
v = |v|(cosθ)i + |v|(sinθ)j.

Пример 10 Скорость и направление полета самолета. Самолет движется по азимуту 100° со скоростью 190 км/ч при скорости ветра 48 км/ч с направления 220°. Найдите путевую скорость самолета и направление его следа или курса относительно земли.

Решение Сначала делаем чертеж. Ветер представлен, а вектор скорости самолета — . Результирующий вектор скорости есть v, сумма двух векторов:
v = + .

Азимут (измеренный с севера) вектора воздушной скорости составляет 100°. Его направляющий угол (измеряемый против часовой стрелки от положительной оси абсцисс) равен 350°. Азимут (измеренный с севера) вектора ветра составляет 220°. Его направляющий угол (отсчитываемый против часовой стрелки от положительной оси x) равен 50°. Величины и равны 190 и 48 соответственно. Имеем
= 190(cos350°)i + 190(sin350&deg)j и
= 48(cos50°)i + 48(sin50&deg)j.
Таким образом,
v = +
     = [190(cos350°)i + 190(sin350&deg)j] + [48(cos50°)i + 48(sin50&deg)j]
     = [190(cos350°)i + 48(cos50°)i] + [ 190(sin350&deg)j + 48(sin50&deg)j]
     ≈ 217,97i + 3,78j.
Из этой формы мы можем определить путевую скорость и курс:
Путевая скорость ≈ √(217,97) 2 + (3,78) 2 ≈ 218 км/ч.
Пусть α будет углом направления v. Тогда
tanα = 3,78/217,97
α = tan — 1 3,78/217,97 ≈ 1°.
Таким образом, курс самолета (направление с севера) равен 90° — 1° или 89°.

Угол между векторами

Когда вектор умножается на скаляр, результатом является вектор. При сложении двух векторов результатом также является вектор. Таким образом, мы могли бы ожидать, что произведение двух векторов тоже будет вектором, но это не так. скалярное произведение двух векторов является действительным числом или скаляром. Этот продукт полезен при нахождении угла между двумя векторами и при определении того, перпендикулярны ли два вектора.

скалярное произведение двух векторов u = 1, u 2 > и v = 1, v 2 > равно
u • v = u 1 .v 1 + u 2 . 2 .
(Обратите внимание, что u 1 v 1 + u 2 v 2 является скаляром , а не вектором.)

Пример 11 Найдите указанное скалярное произведение, когда
u = , v = и w = .
а)у • ш
б) ш • в

Раствор
а) и • ш = 2(- 3) + (- 5)1 = — 6 — 5 = — 11;
б) ш • v = (- 3)0 + 1(4) = 0 + 4 = 4.

Скалярное произведение можно использовать для нахождения угла между двумя векторами. Угол между двумя векторами является наименьшим положительным углом, образованным двумя направленными отрезками прямой. Таким образом, угол θ между u и v — это тот же угол, что и между v и u, и 0 ≤ θ ≤ π.

Если θ — угол между двумя ненулевыми векторами u и v, то
cosθ = (u • v)/|u||v|.

Пример 12 Найдите угол между u = и v = .

Решение Начнем с нахождения u • v, |u| и |v|:
u • v = 3(- 4) + 7(2) = 2,
|u| = √3 2 + 7 2 = √58 и
|v| = √(- 4) 2 + 2 2 = √20.
Тогда
cosα = (u • v)/|u||v| = 2/√58,√20
α = cos — 1 (2/√58,√20)
α ≈ 86,6°.

Силы в равновесии

Когда несколько сил действуют через одну и ту же точку на объекте, их векторная сумма должна быть равна O, чтобы возник баланс. Когда возникает равновесие, то объект либо неподвижен, либо движется прямолинейно без ускорения. Тот факт, что для баланса векторная сумма должна быть равна O, и наоборот, позволяет решать многие прикладные задачи, связанные с силами.

Пример 13 Подвесной блок. Блок весом 350 фунтов подвешен на двух тросах, как показано слева. В точке А действуют три силы: W, тянущая блок вниз, и R и S, два троса, тянущие вверх и наружу. Найдите натяжение каждого троса.

Решение Рисуем силовую диаграмму с начальными точками каждого вектора в начале координат. Чтобы был баланс, сумма векторов должна быть вектором O:

R + S + W = O.
Мы можем выразить каждый вектор через его величину и угол направления:
R = |R|[(cos125°)i + (sin125°)j],
S = |S|[(cos37°)i + (sin37°)j] и
W = |W|[(cos270 °)i + (sin270°)j]
= 350(cos270°)i + 350(sin270°)j
= -350j          cos270° = 0; sin270° = — 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *