Нахождение производной по определению: Определение производной функции в точке

Содержание

Определение производной функции в точке

Определение производной

Производная функции в точке
Пусть функция f(x) определена в некоторой окрестности точки x.
Производной f′(x) функции f(x) в точке x называется конечный предел отношения приращения функции к приращению ее аргумента, когда последний стремится к нулю:
(1)   .
Приращением аргумента
функции в точке x называется разность значений аргумента в некоторой точке и точке x: .
Приращением функции
в точке x называется разность значений функции в некоторой точке и точке x: .
Дифференцирование
– это процесс вычисления производной.

В определении (1), приращение аргумента является одной переменной, хотя ее обозначение состоит из двух букв. Обычно переменную принято обозначать одной буквой или буквой с одним или несколькими индексами. Но приращение в математическом анализе настолько часто встречается, что его обозначают с небольшим нарушением правил. Приращение функции также является одной переменной. В приведенном выше определении, является независимой переменной, а – зависимой, то есть функцией. Она зависит от двух переменных: x и : ; или от x и : . Но при вычислении предела (1), мы считаем, что x является фиксированным, заданным числом. Тогда , как и все выражение за знаком предела является функцией от одной переменной . Таким образом задача о нахождении производной сводится к задаче о вычислении предела от функции , зависящей от одной переменной ; или от функции , зависящей от одной переменной .

В правой части (1) мы сделали замену, и перешли от переменной к переменной . Тогда . При ,
.

После того, как мы нашли производную в заданной точке, то x уже можно считать не фиксированным числом, а переменной. То есть предел (1) можно рассматривать как функцию от x. Еще раз подчеркнем, что выражение является функцией от двух переменных: x и . А выражение , полученное после вычисления предела, зависит только от одной переменной x.

Примеры вычисления производной, используя определение

Все примеры Здесь и далее мы приводим подробные решения примеров, в которых нужно вычислить производную функции , используя определение ⇑:
  решение ⇓ ;    ⇓ ;    ⇓ .

Пример

Все примеры ⇑ Найти производную функции , используя определение производной.

Решение

Функция определена для всех x. Поэтому она определена в любой окрестности любой точки x. Используем определение (1). Считаем, что x – фиксированное число, то есть что его значение задано. Найдем приращение функции в точке x:

.
Находим отношение приращения функции к приращению ее аргумента:
.
Находим предел функции , зависящей от переменной . При этом считаем, что x является фиксированным, заданным числом:
.

Итак, мы нашли производную:
.
Поскольку вычисленный нами предел существует, и является конечным числом для всех x, то функция имеет производную для всех значений аргумента x.

Ответ

.

Обозначение производной

Обозначение Лагранжа

Наиболее популярным является обозначение Лагранжа. Производную функции обозначают как и саму функцию, добавляя штрих после ее характеристики: . Если функция задана алгебраическим выражением, то это выражение заключают в скобки, и ставят знак штриха справа за закрывающей скобкой: . При этом производная также является функцией от той же переменной x, что и . Правда область определения производной может не совпадать с областью определения функции, а является ее подмножеством.

Напомним, что в обозначении функции фигурируют три символа: независимая переменная, характеристика функции и зависимая переменная (см. «Определение функции»). Так, в выражении
(2)   ,
x является независимой переменной, или аргументом функции; f   – характеристикой функции; y   – зависимой переменной, или значением функции. Обозначение зависимой переменной может совпадать или не совпадать с обозначением характеристики.

Когда мы имеем дело с производной, то независимую переменную обозначают так же, как и независимую переменную функции. В нашем случае это x.

Характеристику производной обозначают тем же символом, что и характеристику функции, добавляя штрих: . Если функция зависит от нескольких переменных, например
(3)   ,
но все кроме одной считают постоянными, то к характеристике производной добавляют нижний индекс, обозначающий ту переменную, по которой, в данной задаче, вычисляют производную. При этом знак штриха может быть опущен. Например, следующие два обозначения эквивалентны: . Здесь подразумевается, что переменные и мы считаем постоянными. Тогда, в данный момент, является функцией от одной переменной . Подобные производные функций от нескольких переменных называются частными производными. Детально они будут рассмотрены позже.

Зависимую переменную производной обозначают аналогично характеристике, добавляя штрих к обозначению зависимой переменной функции. Так, для примера (2), это будет : . Если функция зависит от нескольких переменных, то к обозначению добавляют нижний индекс с обозначением переменной, по которой выполняется дифференцирование. При этом знак штриха также может быть опущен. Например, для функции (3), зависимая переменная производной по переменной может обозначаться как , или как : .

Нижний индекс добавляют и при вычислениях, связанными со сложными функциями. Пусть, например, функцию можно представить как сложную: , составленную из двух функций: и . При этом множества значений функций и совпадают. Поэтому их удобно обозначить одной переменной y. Тогда производную от y, выраженную через переменную x, обозначают как : . А производную от y, выраженную через переменную , обозначают как : .

Обозначение производной по времени в физике

В механике и физике, производную по времени обозначают не штрихом, а точкой над переменной. Обычно время обозначают буквой t. Тогда

.

Обозначение Лейбница

В способе Лейбница, зависимую переменную обозначают в форме дифференциалов:
.
Этот способ удобен, поскольку указывает, по какой переменной ведется дифференцирование. Такой способ применяется только для функций от одной переменной. Для функций от многих переменных используют обозначение частной производной: .

Иногда в форме дифференциалов обозначают характеристику производной, добавляя справа аргумент:
.
Однако этот способ не очень удобен.

Обозначение Коши

Также, для обозначения производной, используют обозначение Коши:
.
Но мы не будем им пользоваться.

Существование производной

Рассмотрим предел, который используется при вычислении производной, при заданном значении x:
(4)   .
Здесь могут возникнуть три случая: 1) в точке x существует конечный предел (4); 2) существует бесконечный предел или ; 3) предела (4) не существует.

1) Если существует конечный предел (4), то говорят, что функция имеет производную в точке x.

2) Если в некоторой точке x существует бесконечный предел (4), то производной в этой точке не существует. Поскольку в определении ⇑ указано, что производной называется конечный предел. Однако при этом говорят, что функция f имеет в точке x бесконечную производную, равную или .

3) Если предела (4) не существует, то функция не имеет производной в точке x.

Пример бесконечной производной +∞

Все примеры ⇑ Найдем производную функции .

Решение


Производная функции в точке x = 0 равна плюс бесконечности.

Функция определена для всех x. Найдем отношение приращения функции к приращению ее аргумента в точке x:
.
Применим формулу . Тогда
;
(5)   .
Считаем, что x является фиксированным числом. Тогда отношение является функцией от одной переменной : . При она определена для всех . При она определена для всех .

Пусть . Тогда:
.
Пусть . Подставим в (5) :
.
Поскольку , то
.

Ответ

Таким образом мы нашли, что функция имеет производную для всех . При функция не имеет производной, она равна .

Производные справа и слева

Определение

Правая (левая) производная функции f в точке x
Пусть функция f(x) определена в правой окрестности точки x. Тогда
правой производной функции f в точке x
называется правый предел
.
Соответственно, если функция определена в левой окрестности x, то левой производной функции f в точке x называется левый предел
.
Правую (левую) производную также называют производной слева (справа) в точке x, или правосторонней (левосторонней) производной в точке x.

Лемма об односторонних производных

Функция имеет в точке x производную тогда и только тогда, когда она имеет в этой точке производные справа и слева, и они равны: . При этом
.

Доказательство

Для доказательства применим теорему об односторонних пределах.

Пусть существует производная функции в точке x. Это означает, что она определена в некоторой окрестности точки x, и существует конечный предел функции при :
.
Но тогда существуют правая и левая окрестности точки x, на которых определена. По теореме об односторонних пределах, существуют равные правый и левый пределы:
.
Отсюда следует, что в точке x существуют односторонние производные
.

Пусть теперь, в точке x, существуют равные односторонние производные:

.
Это означает, что существуют правая и левая окрестности точки x, в которой определена . И существуют односторонние равные пределы:
.
Отсюда следует, что существует двусторонняя окрестность точки x, на которой определена . И по теореме об односторонних пределах, существует двусторонний предел:
.
Это означает, что в точке x существует производная
.

Лемма доказана.

Следствие

Если функция имеет в точке x не равные односторонние производные, то она не имеет производной в этой точке.

Действительно, допустим противное. Пусть функция имеет в точке x не равные односторонние производные, но при этом имеет производную в этой точке. Тогда, согласно лемме об односторонних производных, она имеет в этой точке равные производные слева и справа, что противоречит предположению.

Пример

Все примеры ⇑ В качестве примера, найдем производную функции .

Решение


Функция y = |x| не имеет производной в точке x = 0.

Функция определена для всех значений аргумента x. Поэтому она определена в любой окрестности произвольной точки x.

1. Пусть . Тогда ,

.

2. Пусть . Тогда ,

.

3. Рассмотрим точку . В ней
.
Найдем производную справа в точке . При этом ,
.
Теперь найдем производную слева в точке . В этом случае ,
.

Итак, мы нашли, что односторонние производные в точке существуют, но не равны:
.
Согласно следствию леммы об односторонних производных, производной функции в точке не существует.

Ответ

;
;
.
В точке производная не существует.

Использованная литература:
Г.Е. Иванов. Лекции по математическому анализу. Часть 1. Москва, МФТИ, 2018.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов.     Опубликовано:

Урок 10. определение производной. физический смысл производной - Алгебра и начала математического анализа - 11 класс

Алгебра и начала математического анализа, 11 класс

Урок №10. Определение производной. Физический смысл производной.

Перечень вопросов, рассматриваемых в теме

1) Определение производной;

2) Физический смысл производной;

2) Приращение функции;

3) Скорость материальной точки в заданный момент времени по данному закону движения.

Глоссарий по теме

Пусть функция y=f(x) определена в точках x0 и x1. Разность x1−x0 называют приращением аргумента (при переходе от точки x0 к точке x1), а разность f(x1)-f(x0) называют приращением функции.

Определение. Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Изучая поведение функции y=f(x) около конкретной точки x0, важно знать, как меняется значение функции при изменении значения аргумента. Для этого используют понятия приращений аргумента и функции.

Пусть функция y=f(x) определена в точках x0 и x1. Разность x1−x0 называют приращением аргумента (при переходе от точки x0 к точке x1), а разность f(x1)-f(x0) называют приращением функции.

Приращение аргумента обозначают Δx (читают: дельта икс; Δ — прописная буква греческого алфавита "дельта"; соответствующая строчная буква пишется так: δ). Приращение функции обозначают Δy или Δf.

Итак, x1-x0=Δx, значит, x1=x0+Δx.

f(x1)-f(x0)=Δy, значит, 

Δy=f(x0+Δx)-f(x0). (1)

Нельзя истолковывать термин "приращение" как "прирост".

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Найдем приращение Δx и Δf в точке x0, если f(x)= x2, x0=2 и х=1,9

Решение:

Δx= x1−x0=1,9-2=-0,1

Δf= f(1,9) –f(2)=1,92-22=-0,39

Ответ: Δx=-0,1; Δf =-0,39

Пример 2.

Найдем приращение Δx и Δf в точке x0, если f(x)= x2, x0=2 и х=2,1

Решение:

Δx= x1−x0=2,1-2=0,1

Δf= f(1,9) –f(2)=2,12-22=0,41

Ответ: Δx=0,1; Δf =0,41

Пример 3.

Найдем приращение Δf функции в точке x0,если приращение аргумента равно x0.

Решение:

по формуле (1) находим:

.

Ответ: .

С помощью введенных обозначений приращений удобно также выражать среднюю скорость движения за промежуток времени [t0; t0+∆t]. Если точка движется по прямой и известна ее координата x(t), то

Эта формула верна и для ∆t<0 (для промежутка [t0+∆t; t0]).

Аналогично выражение называют средней скорость изменения функции на промежутке с концами х0 и х0+∆х.

Определение. Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Обозначение: y’ или f’(x)

Если функция f(x) имеет производную в точке х, то эта функция называется дифференцируемой в этой точке. Если функция f(x) имеет производную в каждой точке некоторого промежутка, то эта функция дифференцируема на этом промежутке. Операция нахождения производной называется дифференцированием.

Схема вычисления производной функции

  1. Найти приращение функции на отрезке [x; x+Δx]:

∆y=y(x+∆x)-y(x)

  1. Разделить приращение функции на приращение аргумента:

  1. Найти предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Пример 4.

Вычислить производную функции y=x2

Решение: Используем схему вычисления производной по действиям:

  1. ∆y=y(x+∆x)-y(x)= (х+∆х)²-х²= х²+2х·∆х+ ∆х²-х²= 2х·∆х+ ∆х²

Ответ: y’=2x.

Физический смысл производной: если положение точки при её движении задаётся функцией пути S(t), где t – время движения, то производная функции S есть мгновенная скорость движения в момент времени t: v(t)=S’(t).

Таким образом, скорость – есть производная от пути по времени.

Пример 5.

Точка движется по закону s(t)=1-2t. Найдите среднюю скорость движения за промежуток времени от t=0,8 до t=1.

Решение:

найдем ∆t= 1-0,8=0,2

S(0,8)= 1-2·0,8= -0,6=S(t)

S(1)= 1-2·1= -1=S(t+∆t)

.

Ответ: .

Необходимое и достаточное условие дифференцируемости

Теорема 1. Для того, чтобы функция f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы в этой точке она имела конечную производную. Следствие. Функция, дифференцируемая в точке, непрерывна в этой точке.

Замечание. Дифференциалом dx независимой переменной будем считать приращение Δx, т.е. dx ≡ Δx.

Нахождение производной

Нахождение производной

Если вас интересуют общие вопросы и само понятие производной, вы можете посмотреть цикл демонстрационных видеороликов от автора данного сайта Максима Семенихина на тему «Понятие производной».

  1. Понятие о скорости возрастания и убывания функции (6:01)
  2. Вычисление скорости возрастающей функции (2:05)
  3. Вычисление скорости убывающей функции (2:18)
  4. На разных промежутках – разная скорость (4:15)
  5. Средняя и мгновенная скорости (3:38)
  6. Средняя скорость возрастания функции (1:59)
  7. Определение производной как скорости (2:50)
  8. Пример вычисления производной по определению (3:46)
  9. Обозначение производной (1:41)

а также видеоурок

Вычисление производных сложных функций (14:51)

Для нахождения производной функции в общем случае необходимо знать следующее:

  1. Таблицу производных элементарных функций.
  2. Правила дифференцирования.
  3. Как находить производную сложной функции.

Таблица производных элементарных функций представлена ниже:

Для нахождения производной суммы, произведения и частного функций используются три правила дифференцирования:

Для нахождения производной сложной функции используется формула

f(g(x))' = f '(g(x)) · g'(x)

Нахождение производной сложной функции – вопрос, заслуживающий отдельного рассмотрения. Вы можете просмотреть видеоурок «Вычисление производных сложных функций».

Онлайн калькулятор
для нахождения производной
любой функции

Для нахождения производной любой функции вы можете воспользоваться калькулятором (виджетом WolframAlpha) вверху страницы. Просто введите функцию в текстовое поле, нажмите кнопку «=» и получите результат.
Для того, чтобы получить пошаговое объяснение нахождению производной, нажмите ссылку «Step-by-step Solution», которая появится после нажатия кнопки «=».

Общее определение производной. Производная суммы и разности

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол ; с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол ; с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задачи . Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования ? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных , оттачивая алгоритм и технические приёмы решения:

Пример 1

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о -я) и составим соответствующее приращение функции:

Вычислим предел:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций .

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:

Ответ

В который раз порадуемся логарифмам:

Пример 2

Найти производную функции , пользуясь определением производной

Решение : рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Найдём производную:

Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ : по определению производной:

Или сокращённо:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Пример 3

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Пример 3: Решение : рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :

Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ : по определению производной

Пример 4

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных . Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .

Пример 4: Решение , принадлежащую , и зададим в ней приращение

Найдём производную:

Используем замечательный предел

Ответ : по определению

Пример 5

Найти производную функции , используя определение производной

Решение : используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки .

Составленное приращение функции бывает выгодно сразу же упростить . Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ : по определению.

В целях проверки найдём производную с помощью правил дифференцирования и таблицы :

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Пример 6

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Пример 6: Решение : рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:


Вычислим производную:


Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ : по определению.

Вернёмся к стилю №2:

Пример 7


Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции :

Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:

Найдём производную:


(1) Используем тригонометрическую формулу .

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ : по определению

Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пример 8

Пользуясь определением, найти производную функции

Пример 8: Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:

Найдём производную:

Используем тригонометрическую формулу и первый замечательный предел:


Ответ : по определению

Разберём более редкую версию задачи:

Пример 9

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число

Вычислим ответ стандартным способом:

Решение : с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу :

Ответ : по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Пример 10

Используя определение, найти производную функции в точке (одно из которых может оказаться и бесконечным) , о котором я в общих чертах уже рассказал на теоретическом уроке о производной .

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Определение производной правила дифференцирования. Производная по определению (через предел)

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Задача нахождения производной от заданной функции является одной из основных в курсе математики старшей школы и в высших учебных заведениях. Невозможно полноценно исследовать функцию, построить ее график без взятия ее производной. Производную функции легко можно найти, зная основные правила дифференцирования, а также таблицу производных основных функций. Давайте разберемся, как найти производную функции.

Производной функции называют предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Понять это определение достаточно сложно, так как понятие предела в полной мере не изучается в школе. Но для того, чтобы находить производные различных функций, понимать определение не обязательно, оставим его специалистам математикам и перейдем сразу к нахождению производной.

Процесс нахождения производной называется дифференцированием. При дифференцировании функции мы будем получать новую функцию.

Для их обозначения будем использовать латинские буквы f, g и др.

Существует много всевозможных обозначений производных. Мы будем использовать штрих. Например запись g" означает, что мы будем находить производную функции g.

Таблица производных

Для того чтобы дать ответ на вопрос как найти производную, необходимо привести таблицу производных основных функций. Для вычисления производных элементарных функций не обязательно производить сложные вычисления. Достаточно просто посмотреть ее значение в таблице производных.

  1. (sin x)"=cos x
  2. (cos x)"= –sin x
  3. (x n)"=n x n-1
  4. (e x)"=e x
  5. (ln x)"=1/x
  6. (a x)"=a x ln a
  7. (log a x)"=1/x ln a
  8. (tg x)"=1/cos 2 x
  9. (ctg x)"= – 1/sin 2 x
  10. (arcsin x)"= 1/√(1-x 2)
  11. (arccos x)"= - 1/√(1-x 2)
  12. (arctg x)"= 1/(1+x 2)
  13. (arcctg x)"= - 1/(1+x 2)
Пример 1. Найдите производную функции y=500.

Мы видим, что это константа. По таблице производных известно, что производная константы, равна нулю (формула 1).

Пример 2. Найдите производную функции y=x 100 .

Это степенная функция в показателе которой 100 и чтобы найти ее производную нужно умножить функцию на показатель и понизить на 1 (формула 3).

(x 100)"=100 x 99

Пример 3. Найдите производную функции y=5 x

Это показательная функция, вычислим ее производную по формуле 4.

Пример 4. Найдите производную функции y= log 4 x

Производную логарифма найдем по формуле 7.

(log 4 x)"=1/x ln 4

Правила дифференцирования

Давайте теперь разберемся, как находить производную функции, если ее нет в таблице. Большинство исследуемых функций, не являются элементарными, а представляют собой комбинации элементарных функций с помощью простейших операций (сложение, вычитание, умножение, деление, а также умножение на число). Для нахождения их производных необходимо знать правила дифференцирования. Далее буквами f и g обозначены функции, а С - константа.

1. Постоянный коэффициент можно выносить за знак производной

Пример 5. Найдите производную функции y= 6*x 8

Выносим постоянный коэффициент 6 и дифференцируем только x 4 . Это степенная функция, производную которой находим по формуле 3 таблицы производных.

(6*x 8)" = 6*(x 8)"=6*8*x 7 =48* x 7

2. Производная суммы равна сумме производных

(f + g)"=f" + g"

Пример 6. Найдите производную функции y= x 100 +sin x

Функция представляет собой сумму двух функций, производные которых мы можем найти по таблице. Так как (x 100)"=100 x 99 и (sin x)"=cos x. Производная суммы будет равна сумме данных производных:

(x 100 +sin x)"= 100 x 99 +cos x

3. Производная разности равна разности производных

(f – g)"=f" – g"

Пример 7. Найдите производную функции y= x 100 – cos x

Эта функция представляет собой разность двух функции, производные которых мы также можем найти по таблице. Тогда производная разности равна разности производных и не забудем поменять знак, так как (cos x)"= – sin x.

(x 100 – cos x)"= 100 x 99 + sin x

Пример 8. Найдите производную функции y=e x +tg x– x 2 .

В этой функции есть и сумма и разность, найдем производные от каждого слагаемого:

(e x)"=e x , (tg x)"=1/cos 2 x, (x 2)"=2 x. Тогда производная исходной функции равна:

(e x +tg x– x 2)"= e x +1/cos 2 x –2 x

4. Производная произведения

(f * g)"=f" * g + f * g"

Пример 9. Найдите производную функции y= cos x *e x

Для этого сначала найдем производного каждого множителя (cos x)"=–sin x и (e x)"=e x . Теперь подставим все в формулу произведения. Производную первой функции умножим на вторую и прибавим произведение первой функции на производную второй.

(cos x* e x)"= e x cos x – e x *sin x

5. Производная частного

(f / g)"= f" * g – f * g"/ g 2

Пример 10. Найдите производную функции y= x 50 /sin x

Чтобы найти производную частного, сначала найдем производную числителя и знаменателя отдельно: (x 50)"=50 x 49 и (sin x)"= cos x. Подставив в формулу производной частного получим:

(x 50 /sin x)"= 50x 49 *sin x – x 50 *cos x/sin 2 x

Производная сложной функции

Сложная функция - это функция, представленная композицией нескольких функций. Для нахождения производной сложной функции также существует правило:

(u (v))"=u"(v)*v"

Давайте разберемся как находить производную такой функции. Пусть y= u(v(x)) - сложная функция. Функцию u назовем внешней, а v - внутренней.

Например:

y=sin (x 3) - сложная функция.

Тогда y=sin(t) - внешняя функция

t=x 3 - внутренняя.

Давайте попробуем вычислить производную этой функции. По формуле необходимо перемножить производные внутренней и внешней функции.

(sin t)"=cos (t) - производная внешней функции (где t=x 3)

(x 3)"=3x 2 - производная внутренней функции

Тогда (sin (x 3))"= cos (x 3)* 3x 2 - производная сложной функции.

Урок на тему: "Что такое производная? Определение производной"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Введение в понятие производной.
2. Чуть-чуть истории.

4. Производная на графике функции. Геометрический смысл производной.

6. Дифференцирование функции.
7. Примеры.

Введение в понятие производной

Существует множество задач совершенно разных по смыслу, но при этом есть математические модели, которые позволяют рассчитывать решения наших задач совершенно одинаковым способом. Например, если рассмотреть такие задачи как:

А) Есть некоторый счет в банке, который постоянно изменяется один раз в несколько дней, сумма постоянно растет, требуется найти с какой скоростью растет счет.
б) Завод выпускает конфеты, есть некоторый постоянный прирост выпуска конфет, найти насколько быстро увеличивается прирост конфет.
в) Скорость движения автомобиля в некоторый момент времени t, если известно положение автомобиля, и он движется по прямой линии.
г) Нам дан график функции и в некоторой точке к нему проведена касательная, требуется найти тангенс угла наклона к касательной.
Формулировка наших задач совершенно разная, и, кажется, что они решаются совершенно разными способами, но математики придумали как можно решить все эти задачи совершенно одинаковым способом. Было введено понятие производной.

Чуть-чуть истории

Термин производная ввел великий математик – Лагранж, перевод на русский язык получается из французского слова derivee, он же и ввел современные обозначения производной которые мы рассмотрим позже.
Рассматривали понятие производной в своих работах Лейбниц и Ньютон, применение нашему термину они находили в геометрии и механики соответственно.
Чуть позже мы с вами узнаем, что производная определяется через предел, но существует небольшой парадокс в истории математики. Математики научились считать производную раньше, чем ввели понятие предела и собственно поняли, что же такое производная.

Пусть функция y=f(x) определена на некотором интервале, содержащим внутри себя некоторую точку x0. Приращение аргумента Δx – не выходит из нашего интервала. Найдем приращение Δy и составим отношение Δy/Δx, если существует предел этого отношения при Δx стремящимся к нулю, то указанный предел называют производной функции y=f(x) в точке x0 и обозначают f’(x0).

Попробуем объяснить, что такое производная не математическим языком:
На математическом языке: производная - предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю.
На обычном языке: производная – скорость изменения функции в точке x0.
Давайте посмотрим на графики трех функций:

Ребята, как вы думаете, какая из кривых растет быстрее?
Ответ, кажется, очевиден всем 1 кривая растет быстрее остальных. Мы смотрим, насколько круто идет вверх график функции. Другими словами - насколько быстро меняется ордината при изменении х. Одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная на графике функции. Геометрический смысл производной

Теперь давайте посмотрим, как же найти производную с помощью графиков функции:


Посмотрим на наш график функции: Проведём в точке c абсциссой x0 касательную к графику функции. Касательная и график нашей функции соприкасаются в точке А. Нам надо оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной.

Определение. Производная функции в точке x0 равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Угол наклона касательной выбирается как угол между касательной и положительным направлением оси абсцисс.
И так производная нашей функции равна:


И так производная в точке x0 равна тангенсу угла наклона касательной, это геометрический смысл производной.

Алгоритм нахождения производной функции y=f(x).
а) Зафиксировать значение x, найти f(x).
б) Найти приращение аргумента x+ Δx, и значение приращения функции f(x+ Δx).
в) Найти приращение функции Δy= f(x+ Δx)-f(x).
г) Составить соотношение: Δy/Δx
д) Вычислить

Это и есть производная нашей функции.

Дифференцирование функции

Если функции y=f(x)имеет производную в точке x, то ее называют дифференцируемой в точке x. Процесс нахождения производной называют дифференцированием функции y=f(x).
Вернемся к вопросу непрерывности функции. Если функция дифференцируема в некоторой точке, тогда к графику функции в этой точке можно провести касательную, функция не может иметь разрыв в этой точки, тогда просто напросто нельзя провести касательную.
И так запишем выше сказанное как определение:
Определение. Если функция дифференцируема в точке x, то она непрерывна в этой точке.
Однако, если функция непрерывна в точке, то это не значит, что она дифференцируема в этой точке. Например, функция y=|x| в точке x=0 непрерывна, но касательную провести нельзя, а значит и производной не существует.

Примеры производной

Найти производную функции: y=3x
Решение:
Будем пользоваться алгоритмом поиска производной.
1) Для фиксированного значения x, значение функции y=3x
2) В точке x+ Δx, y=f(x+ Δx)=3(x+ Δx)=3x+3 Δx

3) Найдем приращение функции: Δy= f(x+ Δx)-f(x)= 3x+3 Δx-3x=3Δ


Дата: 20.11.2014

Таблица производных.

Производная - одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала - приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов - чтобы понять задание, и всего несколько правил - чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование - это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование - действие над функцией.

Производная - результат этого действия.

Так же, как, например, сумма - результат сложения. Или частное - результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y" или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли...)

Штрих также может обозначать производную конкретной функции, например: (2х+3)" , (x 3 )" , (sinx)" и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего - научиться их решать.) Напомню ещё раз: нахождение производной - это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире - бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе - линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов - штука достаточно трудоёмкая. А математики - тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева - элементарная функция, справа - её производная.

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции - одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице - вроде и нету...

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) " = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y" = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию... Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню - это уже новая функция.

По табличке находим синус и соответствующую производную:

y" = (sin x)" = cosx

Подставляем ноль в производную:

y"(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию - это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает...

Но если увидеть, что наша функция - это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это - табличная функция. Сразу получаем:

Ответ: y" = - sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями... То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая - это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования - таблицей производных - всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

в точке - Производные функций


Подборка по базе: МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ ПЗ.docx, метода принятия управленческих решений.docx, Методы принятия управленческих решений.docx, физра примеры разминки.docx, Совершенствование управленческих решений.docx, ЗАДАЧИ.Обеспечение исполнения решений суда.docx, Реферат по Методу управленческих решений.docx, ЛИСТ ОТВЕТА РЕШЕНИЙ КЕЙС-ЗАДАЧ.docx, Система поддержки принятия решений по выбору тура.docx, Гидролиз органических веществ, уравнения и примеры.pdf
1   2   3   4   5   6   7   8 в точке определяется формулой:
Напоминаю обозначения и термины называют приращением аргумента
– приращением функции
– это ЕДИНЫЕ символы (дельту нельзя отрывать от икса или игрека. Очевидно, что является динамической переменной, – константой и результат вычисления предела
– числом иногда – плюс либо минус бесконечностью).
В качестве точки можно рассмотреть ЛЮБОЕ значение , принадлежащее области определения функции
, в котором существует производная.
! Примечание оговорка в котором существует производная – в общем случае существенна Так, например, точка
хоть и входит в область определения функции
, но производной там не существует. Поэтому формула неприменима в точке и укороченная формулировка без оговорки будет некорректна. Аналогичные факты справедливы и для других функций с обрывами графика, в частности, для арксинуса и арккосинуса.
Таким образом, после замены
, получаем вторую рабочую формулу:
Обратите внимание на коварное обстоятельство, которое может запутать чайника в данном пределе икс, будучи сам независимой переменной, исполняет роль статиста, а динамику задаёт опять же приращение
. Результатом вычисления предела является производная функция Исходя из вышесказанного, сформулируем условия двух типовых задач Найти производную в точке, используя определение производной Найти производную функцию, используя определение производной. Эта версия, по моим наблюдениям, встречается заметно чаще и ей будет уделено основное внимание.
Принципиальное отличие заданий состоит в том, что в первом случае требуется найти число как вариант, бесконечность, а во втором – функцию. Кроме того, производной может и вовсе не существовать.
Как найти производную по определению Составить отношение
и вычислить предел Откуда появилась таблица производных и правила дифференцирования Благодаря единственному пределу. Кажется волшебством, нов действительности – ловкость руки никакого мошенничества. На уроке Что такое производная я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных, оттачивая алгоритм и технические приёмы решения:
Пример Найти производную функции
, пользуясь определением производной По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода лесенка начинается с дощечки, а производная функция – с производной в точке. Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции
, в которой существует производная. Зададим в данной точке приращение
разумеется, не выходящее за рамки о/о-я) и составим соответствующее приращение функции:
Вычислим предел:
Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменательна сопряженное выражение Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций.
Итак, Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала


, то, осуществив замену
, получаем:
Ответ: по определению производной Готово. В который раз порадуемся логарифмам:
Пример Найти производную функции
, пользуясь определением производной
Решение: рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален сточки зрения оформления. Идея состоит в том, чтобы вначале решения избавиться от подстрочного индекса и вместо буквы использовать букву Рассмотрим произвольную точку
, принадлежащую области определения функции
(интервалу
), и зададим в ней приращение
. А вот здесь, кстати, как ив большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области
определения.
Тогда соответствующее приращение функции:
Найдём производную:
Простота оформления уравновешивается путаницей, которая может

возникнуть у начинающих (да и не только. Ведьмы привыкли, что в пределе изменяется буква икс Но тут всё по-другому: – античная статуя, а
– живой посетитель, бодро шагающий по коридору музея. То есть икс – это как бы константа».
Устранение неопределённости закомментирую пошагово:
(1) Используем свойство логарифма
(2) В скобках почленно делим числитель на знаменатель) В знаменателе искусственно домножаем и делим на икс чтобы воспользоваться замечательным пределом
, при этом в качестве бесконечно малой величины выступает Ответ по определению производной Или сокращённо: Предлагаю самостоятельно сконструировать ещё две табличные формулы:
Пример Найти производную по определению В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).
Пример Найти производную по определению
А тут всё необходимо свести к замечательному пределу Решение оформлено вторым способом.
Аналогично выводится ряд других табличных производных. Полный список можно найти в школьном учебнике, или, например, 1- м томе Фихтенгольца. Не вижу особого смысла переписывать из книги доказательства правил дифференцирования – они тоже порождены формулой Переходим к реально встречающимся заданиям:
Пример Найти производную функции
, используя определение производной
Решение: используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента
. Тогда соответствующее приращение функции:
Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение
. Берём точку (число) и находим в ней значение функции
, то есть в функцию вместо икса следует подставить . Теперь берём

тоже вполне конкретное число итак же подставляем его в функцию
вместо икса. Записываем разность, при этом необходимо полностью взять в
скобки.
Составленное приращение функции
бывает выгодно сразу же упростить. Зачем Облегчить и укоротить решение дальнейшего предела. Используем формулы, раскрываем скобки и сокращаем всё, что можно сократить:
Индейка выпотрошена, с жаркое никаких проблем:
В итоге Поскольку в качестве можно выбрать любое действительное число,
то проведём замену и получим Ответ по определению.
В целях проверки найдём производную с помощью правил

дифференцирования и таблицы:
Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию быстрым способом в самом начале решения.
Пример Найти производную функции по определению производной
Это пример для самостоятельного решения. Результат лежит на поверхности:
Вернёмся к стилю Пример Пользуясь определением, найти производную функции
Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции:
Решение: рассмотрим произвольную точку
, принадлежащую, зададим в ней приращение аргумента и составим приращение функции:
Найдём производную


(1) Используем тригонометрическую формулу) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель) В силу нечётности синуса выносим минус. Под косинусом указываем, что слагаемое
(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел
. Таким образом, неопределённость устранена, причёсываем результат.
Ответ: по определению
Как видите, основная трудность рассматриваемой задачи упирается в

сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться го варианта с икс нулевым».
Пример Пользуясь определением, найти производную функции
Это задание для самостоятельного решения. Образец оформлен в том же духе, что предыдущий пример.
Разберём более редкую версию задачи:
Пример Найти производную функции в точке
, пользуясь определением производной.
Во-первых, что должно получиться в сухом остатке Число
Вычислим ответ стандартным способом:
Решение: сточки зрения наглядности это задание значительно проще,
так как в формуле вместо

рассматривается конкретное значение. Зададим в точке приращение и составим соответствующее приращение функции:
Вычислим производную в точке:
Используем весьма редкую формулу разности тангенсов ив который раз сведём решение к первому замечательному пределу:
Ответ: по определению производной в точке.
Задачу не так трудно решить ив общем виде – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.
Пример Используя определение, найти производную функции в точке

Это пример для самостоятельного решения.
Заключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:
Пример Будет ли дифференцируема функция в
точке Решение очевидно, что кусочно-заданная функция непрерывна в точке
, но будет ли она там дифференцируема Алгоритм решения, причём не только для кусочных функций, таков) Находим левостороннюю производную в данной точке
2) Находим правостороннюю производную в данной точке
3) Если односторонние производные конечны и совпадают, то функция дифференцируема в точке и геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной. Если получены два разных значения
одно из которых
может оказаться и бесконечным, то функция не дифференцируема в точке Если же обе односторонние производные равны бесконечности пусть даже разных знаков, то функция
не дифференцируема в точке , нотам существует бесконечная производная и общая вертикальная касательная к графику см. Пример 5 урока Уравнение нормали


! Примечание таким образом, между вопросами Будет ли дифференцируема функция в точке и Существует ли производная в точке есть разница!
Всё очень просто) При нахождении левосторонней производной приращение аргумента отрицательно
, а слева от точки расположена парабола
, поэтому приращение функции равно:
И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке) Справа от точки находится график прямой и приращение аргумента положительно
. Таким образом, приращение функции:
Правосторонний предел и правосторонняя производная в точке) Односторонние производные конечны и различны Ответ функция не дифференцируема в точке
Ещё легче доказывается книжный случай недифференцируемости модуля в точке
, о котором я в общих чертах уже рассказал на теоретическом уроке о производной.

Некоторые кусочно-заданные функции дифференцируемы ив точках стыка графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке
. Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.
На этом забавном гибриде и закончим повествование =) Решения и ответы:
Пример 3: Решение рассмотрим некоторую точку , принадлежащую области определения функции
. Зададим в данной точке приращение
и составим соответствующее приращение функции:
Найдём производную в точке Так как в качестве можно выбрать любую точку области определения функции
, то
и Ответ
по определению производной

Пример 4: Решение рассмотрим произвольную точку
, принадлежащую , и зададим в ней приращение
. Тогда соответствующее приращение функции:
Найдём производную:
Используем замечательный предел Ответ
по определению
Пример 6: Решение рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента
. Тогда соответствующее приращение функции:
Вычислим производную:
Таким образом Поскольку в качестве можно выбрать любое действительное число, то
и

Ответ
по определению.
Пример 8: Решение рассмотрим произвольную точку
, принадлежащую , зададим в ней приращение
и составим приращение функции:
Найдём производную:
Используем тригонометрическую формулу и первый замечательный
предел:
Ответ:
по определению
Пример 10: Решение Зададим приращение
в точке
. Тогда приращение функции:
Вычислим производную в точке Умножим числитель и знаменательна сопряженное выражение:
Ответ:
по определению производной в точке Как найти уравнение нормали к графику функции в заданной
точке?
На данном уроке мы узнаем, как найти уравнение нормали к графику функции в точке и разберём многочисленные примеры, которые касаются этой задачи. Для качественного усвоения материала нужно понимать геометрический смысл производной и уметь их находить хотя бы на уровне следующих статей Как найти производную?
Производная сложной функции
и
Простейшие задачи с производными
Перечисленные уроки позволят чайникам быстро сориентироваться в теме и поднять свои навыки дифференцирования практически с полного нуля. По существу, сейчас последует развёрнутое продолжение параграфа об уравнении касательной й статьи из вышеприведенного списка. Почему продолжение Уравнение нормали тесно связано с уравнением касательной. Помимо прочего я рассмотрю задачи о том, как построить уравнения этих линий в ситуациях, когда функция задана неявно
либо
параметрически
Но сначала освежим воспоминания если функция дифференцируема в точке (те. если существует конечная производная
), то уравнение касательной к графику функции в точке можно найти последующей формуле

Это самый распространенный случай, с которым мы уже столкнулись на уроке Простейшие задачи с производными. Однако дело этим не ограничивается если в точке существует бесконечная производная, то касательная будет параллельна оси и её уравнение примет вид
. Дежурный пример функция с производной
, которая обращается в бесконечность вблизи критической точки. Соответствующая касательная выразится уравнением (ось ординат. Если же производной не существует например, производной отв точке
), то, разумеется, не существует и общей
касательной
Как различать последние два случая, я расскажу чуть позже, а пока что вернёмся в основное русло сегодняшнего урока:
Что такое нормаль Нормалью к графику функции в точке называется прямая, проходящая через данную точку перпендикулярно касательной к графику функции в этой точке понятно, что касательная должна существовать. Если совсем коротко, нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания.
Как найти уравнение нормали Из курса аналитической геометрии напрашивается очень простой алгоритм находим уравнение касательной и представляем его в
общем виде. Далее снимаем нормальный вектор и составляем уравнение нормали по точке и направляющему вектору .

Этот способ применять можно, нов математическом анализе принято пользоваться готовой формулой, основанной на взаимосвязи угловых коэффициентов перпендикулярных прямых. Если существует конечная и отличная от нуля производная
, то уравнение нормали к графику функции в точке выражается следующим уравнением:
Особые случаи, когда равна нулю либо бесконечности мы обязательно рассмотрим, но сначала обычные примеры Пример Составить уравнения касательной и нормали к графику кривой в точке, абсцисса которой равна В практических заданиях часто требуется найти и касательную тоже. Впрочем, это очень только нА руку – лучше будет набита рука =) Решение Первая часть задания хорошо знакома, уравнение касательной составим по формуле:
В данном случае:
Найдём производную Здесь на первом шаге вынесли константу за знак производной, на втором – использовали правило дифференцирования сложной
функции
Теперь вычислим производную в точке
:
Получено конечное число и это радует. Подставим ив формулу
:
Перебросим наверх левой части, раскроем скобки и представим уравнение касательной в общем виде
:
Вторая часть задания ничуть не сложнее. Уравнение нормали составим по формуле Избавляемся от
трёхэтажности дроби и доводим уравнение до ума – искомое уравнение.
Ответ: Здесь можно выполнить частичную проверку. Во-первых, координаты точки должны удовлетворять каждому уравнению – верное равенство – верное равенство.
И, во-вторых, векторы нормали должны быть ортогональны. Это элементарно проверяется с помощью скалярного произведения, что и требовалось проверить.
Как вариант, вместо нормальных векторов можно использовать направляющие векторы прямых
! Данная проверка оказывается бесполезной, если неверно найдена производная и/или производная в точке
. Это слабое звено задания – будьте предельно внимательны!
Чертежа по условию не требовалось, но полноты картины ради:
Забавно, но фактически получилась и полная проверка, поскольку чертёж выполнен достаточно точно =) Кстати, функция задаёт верхнюю дугу
эллипса
Следующая задача для самостоятельного решения:
Пример Составить уравнения касательной и нормали к графику функции

в точке Примерный образец чистового оформления задания в конце урока.
Теперь разберём два особых случая) Если производная в точке равна нулю
, то уравнение касательной упростится То есть, касательная будет параллельна оси Соответственно, нормаль будет проходить через точку параллельно оси
, а значите уравнение примет вид
2) Если производная в точке существует, но бесконечна, то, как отмечалось в самом начале статьи, касательная станет вертикальной
. И поскольку нормаль проходит через точку параллельно оси
, то её уравнение выразится зеркальным образом
Всё просто:
Пример Составить уравнения касательной и нормали к параболе в точке
. Сделать чертёж.
Требование выполнить чертёж я не добавлял – так было сформулировано задание в оригинале. Хотя это редкость. Решение составим уравнение касательной

В данном случае Казалось бы, расчёты пустяковые, а в знаках запутаться более чем реально:
Таким образом:
Поскольку касательная параллельна оси
Случай №1), то нормаль, проходящая через туже точку
, будет параллельна оси ординат:
Чертёж – это, конечно же, дополнительные хлопоты, но зато добротная проверка аналитического решения Ответ
, В школьном курсе математики распространено упрощённое определение касательной, которое формулируется примерно так Касательная к графику функции – это прямая, имеющая сданным графиком единственную общую точку. Как видите, в общем случае это утверждение некорректно. Согласно геометрическому смыслу производной, касательной является именно зелёная, а не синяя прямая.
Следующий пример посвящён тому же Случаю №1, когда Пример Написать уравнение касательной и нормали к кривой в точке Краткое решение и ответ в конце урока

Случай №2, в котором на практике встречается редко, поэтому начинающие могут особо не волноваться и с лёгким сердцем пропустить пятый пример. Информация, выделенная курсивом, предназначена для читателей с высоким уровнем подготовки, которые хорошо разобрались с определениями производной и касательной, а также имеют опыт нахождения производной по определению
:
Пример Найти уравнения касательной и нормали к графику функции в точке Решение в критической точке знаменатель производной обращается в ноль, и поэтому здесь нужно вычислить односторонние производные
с помощью определения производной (см. конец статьи Производная по

1   2   3   4   5   6   7   8

Контрольный тест на тему: "Определение производной функции"

Тест: "Определение производной".

Вариант: №3.

1)

f(x)=f(x)-f(x0)

2)

x=x-x0

3)

4)

Задание №2

Дана функция y=f(x). x называется ...

1)

независимой переменной

2)

зависимой переменной

3)

приращением аргумента

4)

приращением функции

Задание №3

Дана функция y=f(x). y называется ...

1)

независимой переменной

2)

зависимой переменной

3)

приращением аргумента

4)

приращением функции

Задание №4

Производной функции y=f(x) называется ...

1)

отношение приращения функции к приращению аргумента

2)

предел отношения приращения аргумента к приращению функции при приращении аргумента стремящемся к нулю

3)

предел отношения приращения функции к приращению аргумента при приращении аргумента стремящемся к нулю

4)

отношение приращения аргумента к приращению функции

Задание №5

Производная функции y=f(x) в точке x0 вычисляется по формуле:

1)

f(x)=f(x)-f(x0)

2)

x=x-x0

3)

4)

Задание №6

Найдите производную функции y=f(x) по определению производной функции:

f(x)=3x

1)

3

2)

2x

3)

x2

4)

x

Задание №7

Найдите производную функции y=f(x) по определению производной функции:

f(x)=4x

1)

x

2)

4

3)

x2

4)

1

Задание №8

Найдите производную функции y=f(x) по определению производной функции:

f(x)=6x-1

1)

x

2)

6

3)

6x2

4)

-6

Задание №9

Найдите производную функции y=f(x) по определению производной функции:

f(x)=3x+45

Выберите один из 4 вариантов ответа:

1)

3

2)

2x

3)

x2

4)

x

Задание №10

Найдите производную функции y=f(x) по определению производной функции:

f(x)=6x2

1)

6x2

2)

12x

3)

12x2

4)

1

Задание №11

Найдите производную функции y=f(x) по определению производной функции:

f(x)=x2

1)

x

2)

2x

3)

x2

4)

1

Задание №12

Найдите производную функции y=f(x) по определению производной функции:

f(x)=6x2+45

1)

6x2

2)

12x

3)

12x2

4)

1

Задание №13

Найдите производную функции y=f(x) по определению производной функции:

f(x)=4x2+8

1)

4x2

2)

4x

3)

8x

4)

4

Тест: "Определение производной".

Вариант: №3.

Ответы:

Исчисление

- Нахождение производной по определению?

исчисление - Нахождение производной по определению? - Обмен математическими стеками
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Mathematics Stack Exchange - это сайт вопросов и ответов для людей, изучающих математику на любом уровне, и профессионалов в смежных областях.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 608 раз

$ \ begingroup $

Вычислить производную заданной функции непосредственно из определения производной и выразить результат, используя дифференциалы

$$ \ lim_ {h \ to 0} \ frac {f (x + h) -f (x)} {h} $$

, когда $ f (x) = 1 / \ sqrt {1 + x ^ 2} $

какие-нибудь советы / решения о том, как начать работу с этим? Я могу решать более простые проблемы, но не с root и т. {{3} / {2}}}.} $$

  1. Нарисуйте точный помеченный график \ (s \) по осям, представленным на рисунке 1.3.10. Вы должны уметь делать это без использования вычислительной техники.

    Рисунок 1.3.10. Оси для построения \ (y = s (t) \) в упражнении 1.3.3.
  2. Вычислите среднюю скорость изменения \ (s \) на временном интервале \ ([1,2] \ text {.} \) Включите единицы в свой ответ и напишите одно предложение, чтобы объяснить значение найденного вами значения.
  3. Используйте определение предела, чтобы вычислить мгновенную скорость изменения \ (s \) относительно времени, \ (t \ text {,} \) в момент \ (a = 1 \ text {.} \) Покажите свой используйте правильные обозначения, включите в свой ответ единицы измерения и напишите одно предложение, чтобы объяснить значение найденного вами значения.
  4. На вашем графике в (a) нарисуйте две линии: одна, наклон которой представляет собой среднюю скорость изменения \ (s \) на \ ([1,2] \ text {,} \), другая, наклон которой представляет мгновенное скорость изменения \ (s \) в момент \ (a = 1 \ text {.{t / 5} \ text {.} \) Используйте эту функцию, чтобы ответить на следующие вопросы.

    1. Нарисуйте точный график \ (P \) для значений от \ (t = 0 \) до \ (t = 5 \) по осям, представленным на рисунке 1.3.11. Тщательно промаркируйте шкалу на осях.

      Рисунок 1.3.11. Оси для построения \ (y = P (t) \) в упражнении 1.3.4.
    2. Вычислите среднюю скорость изменения \ (P \) между 2030 и 2050 годами. Включите единицы в свой ответ и напишите одно предложение, чтобы объяснить значение (на повседневном языке) найденного вами значения.
    3. Используйте определение предела, чтобы написать выражение для мгновенной скорости изменения \ (P \) относительно времени, \ (t \ text {,} \) в момент \ (a = 2 \ text {.} \ ) Объясните, почему этот предел трудно точно оценить.
    4. Оцените предел в (c) для мгновенной скорости изменения \ (P \) в момент \ (a = 2 \), используя несколько небольших значений \ (h \). Как только вы определили точную оценку \ (P '(2) \ text {,} \), включите единицы в свой ответ и напишите одно предложение (используя повседневный язык), чтобы объяснить значение найденного вами значения.
    5. На приведенном выше графике нарисуйте две линии: одна, наклон которой представляет собой среднюю скорость изменения \ (P \) на \ ([2,4] \ text {,} \), другая, наклон которой представляет мгновенную скорость изменения. из \ (P \) в момент \ (a = 2 \ text {.} \)
    6. В тщательно сформулированном предложении опишите поведение \ (P '(a) \) при увеличении значения \ (a \). Что это отражается на поведении данной функции \ (P \ text {?} \)

    3.2 Производная как функция - Объем исчисления 1

    Цели обучения

    • Определите производную функцию заданной функции.
    • Постройте производную функцию от графика заданной функции.
    • Укажите связь между производными и непрерывностью.
    • Опишите три условия, когда функция не имеет производной.
    • Объясните значение производной высшего порядка.

    Как мы видели, производная функции в данной точке дает нам скорость изменения или наклон касательной к функции в этой точке. Если мы дифференцируем функцию положения в данный момент времени, мы получаем скорость в этот момент.Кажется разумным заключить, что знание производной функции в каждой точке может дать ценную информацию о поведении функции. Однако процесс нахождения производной даже для нескольких значений с использованием методов предыдущего раздела быстро стал бы довольно утомительным. В этом разделе мы определяем производную функцию и изучаем процесс ее нахождения.

    Функция производной дает производную функции в каждой точке области определения исходной функции, для которой определена производная.Мы можем формально определить производную функцию следующим образом.

    Определение

    Позвольте быть функцией. Производная функция , обозначенная как, - это функция, область определения которой состоит из таких значений, что существует следующий предел:

    .

    Говорят, что функция дифференцируется на , если
    существует. В более общем смысле, функция называется дифференцируемой на , если она дифференцируема в каждой точке открытого набора, а дифференцируемая функция - это функция, в которой существует в своей области.

    В следующих нескольких примерах мы используем (рисунок), чтобы найти производную функции.

    Нахождение производной функции квадратного корня

    Найдите производную от.

    Решение

    Начните непосредственно с определения производной функции. Используйте (рисунок).

    Нахождение производной квадратичной функции

    Найдите производную функции.

    Решение

    Выполните ту же процедуру, но без умножения на конъюгат.

    Найдите производную от.

    Решение

    Мы используем множество различных обозначений для выражения производной функции. На (Рисунок) мы показали, что если, то. Если бы мы выразили эту функцию в форме, мы могли бы выразить производную как или. Мы могли бы передать ту же информацию письменно. Таким образом, для функции каждое из следующих обозначений представляет собой производную от:

    .

    Вместо мы также можем использовать. Использование обозначений (так называемых обозначений Лейбница) довольно распространено в технике и физике.Чтобы лучше понять это обозначение, напомним, что производная функции в точке - это предел наклона секущих линий, когда секущие линии приближаются к касательной. Наклоны этих секущих линий часто выражаются в виде где - разница значений, соответствующая разнице значений, которые выражаются как ((Рисунок)). Таким образом, производная, которую можно представить как мгновенную скорость изменения относительно, выражается как

    . Фигура 1.Производная выражается как.

    Мы уже обсуждали, как построить график функции, поэтому, имея уравнение функции или уравнение производной функции, мы можем построить график. Учитывая и то, и другое, мы ожидаем увидеть соответствие между графиками этих двух функций, поскольку дает скорость изменения функции (или наклон касательной к).

    На (рис.) Мы обнаружили, что для. Если мы построим график этих функций на тех же осях, что и на (Рисунок), мы сможем использовать графики, чтобы понять взаимосвязь между этими двумя функциями.Во-первых, мы замечаем, что он увеличивается по всей своей области, что означает, что наклон его касательных во всех точках положительный. Следовательно, мы ожидаем для всех значений в его области. Кроме того, по мере увеличения наклон касательных к уменьшается, и мы ожидаем увидеть соответствующее уменьшение. Мы также замечаем, что это не определено и соответствует вертикальной касательной к точке 0.

    Рис. 2. Производная везде положительна, потому что функция возрастает.

    На (рис.) Мы обнаружили, что для. Графики этих функций показаны на (Рисунок). Обратите внимание, что для. Для этих же значений. Для значений увеличивается и. Кроме того, имеет горизонтальную касательную в точках и.

    Построение производной с помощью функции

    Используйте следующий график, чтобы нарисовать график.

    Нарисуйте график. На каком интервале находится график выше оси?

    Решение

    Теперь, когда мы можем построить график производной, давайте рассмотрим поведение графиков.Во-первых, мы рассматриваем взаимосвязь между дифференцируемостью и непрерывностью. Мы увидим, что если функция дифференцируема в точке, она должна быть там непрерывной; однако функция, непрерывная в какой-то точке, не обязательно должна быть дифференцируемой в этой точке. Фактически, функция может быть непрерывной в точке и не дифференцируемой в этой точке по одной из нескольких причин.

    Проба

    Если дифференцируем в, то существует и

    .

    Мы хотим показать, что это непрерывно, показав это.Таким образом,

    Следовательно, поскольку определено и, заключаем, что непрерывно в точке.

    Мы только что доказали, что дифференцируемость предполагает непрерывность, но теперь мы рассмотрим, подразумевает ли непрерывность дифференцируемость. Чтобы определить ответ на этот вопрос, исследуем функцию. Эта функция всюду непрерывна; однако не определено. Это наблюдение приводит нас к мысли, что непрерывность не предполагает дифференцируемости. Давайте изучим дальше. Для,

    .

    Этот предел не существует, потому что

    .

    См. (Рисунок).

    Рисунок 4. Функция непрерывна в 0, но не дифференцируема в 0.

    Рассмотрим некоторые дополнительные ситуации, в которых непрерывная функция не дифференцируема. Рассмотрим функцию:

    .

    Таким образом не существует. Беглый взгляд на график проясняет ситуацию. Функция имеет вертикальную касательную в точке 0 ((рисунок)).

    Рисунок 5. Функция имеет вертикальную касательную в точке. Он непрерывен в 0, но не дифференцируем в 0.

    У функции также есть производная, которая демонстрирует интересное поведение при 0. Мы видим, что

    .

    Этот предел не существует, в основном потому, что наклон секущих линий непрерывно меняет направление по мере приближения к нулю ((Рисунок)).

    Рисунок 6. Функция не дифференцируема в 0.

    Итого:

    1. Заметим, что если функция не непрерывна, она не может быть дифференцируемой, поскольку каждая дифференцируемая функция должна быть непрерывной. Однако, если функция непрерывна, она все равно не может быть дифференцируемой.
    2. Мы видели, что это невозможно дифференцировать в 0, потому что предел наклона касательных линий слева и справа не был одинаковым. Визуально это привело к появлению острого угла на графике функции в 0. Отсюда мы заключаем, что для того, чтобы быть дифференцируемой в точке, функция должна быть «гладкой» в этой точке.
    3. Как мы видели в примере, функция не может быть дифференцируемой в точке, где есть вертикальная касательная.
    4. Как мы видели, функция может быть не дифференцируемой в точке и более сложными способами.

    Кусочная функция, которая является непрерывной и дифференцируемой

    Производная функции сама по себе является функцией, поэтому мы можем найти производную от производной. Например, производная функции положения - это скорость изменения положения или скорости. Производная скорости - это скорость изменения скорости, которая является ускорением. Новая функция, полученная дифференцированием производной, называется второй производной. Кроме того, мы можем продолжать использовать производные для получения третьей производной, четвертой производной и так далее.В совокупности они называются производными более высокого порядка . Обозначения для производных высшего порядка от могут быть выражены в любой из следующих форм:

    .

    Интересно отметить, что обозначение для можно рассматривать как попытку выразить более компактно. Аналогично.

    Поиск второй производной

    Для, найдите.

    В поисках ускорения

    Положение частицы вдоль оси координат в момент времени (в секундах) определяется выражением (в метрах).Найдите функцию, описывающую его ускорение во времени.

    • Производная функция

    В следующих упражнениях используйте определение производной для поиска.

    1.

    2.

    3.

    4.

    Решение

    5.

    6.

    Решение

    7.

    8.

    Решение

    9.

    10.

    Решение

    Для следующих упражнений используйте график, чтобы нарисовать график его производной.

    11. 12.
    Решение

    13. 14.
    Решение

    Для следующих упражнений данный предел представляет собой производную функции в.Найти и .

    15.

    16.

    Решение

    17.

    18.

    Решение

    19.

    20.

    Решение

    Для следующих функций:

    1. зарисовать график и
    2. использует определение производной, чтобы показать, что функция не дифференцируема в.

    21.

    23.

    Для следующих графиков

    1. определяет, для каких значений существует, но не является непрерывным, и
    2. определить, для каких значений функция является непрерывной, но не дифференцируемой при.
    25.

    Для следующих функций используйте, чтобы найти.

    28.

    29.

    30.

    Решение

    Для следующих упражнений используйте калькулятор для построения графиков. Определите функцию, затем используйте калькулятор для построения графика.

    31. [Т]

    33. [Т]

    35. [Т]

    Для следующих упражнений опишите, что представляют собой эти два выражения в терминах каждой из данных ситуаций. Обязательно укажите единицы измерения.

    37. обозначает население города во время в годах.

    38. обозначает общую сумму денег (в тысячах долларов), потраченную на концессии клиентами в парке развлечений.

    Решение

    а. Средняя ставка, с которой клиенты потратили на уступки, в тысячах на одного клиента.
    г. Скорость (в тысячах на одного покупателя), по которой покупатели тратили деньги на уступки, в тысячах на одного покупателя.

    39. обозначает общую стоимость (в тысячах долларов) производства радиочасов.

    40. обозначает оценку (в процентных пунктах), полученную по тесту за количество часов обучения.

    Решение

    а. Средняя оценка, полученная за тест, при среднем времени обучения между двумя суммами.
    г. Скорость (в процентных пунктах в час), с которой оценка по тесту повышалась или понижалась за данное среднее время обучения в часах.

    41. обозначает стоимость (в долларах) учебника социологии в университетских книжных магазинах США с 1990 года.

    42. обозначает атмосферное давление на высоте футов.

    Решение

    а. Среднее изменение атмосферного давления между двумя разными высотами.
    г. Скорость (торр на фут), с которой атмосферное давление увеличивается или уменьшается на высоте.

    Решение

    а. Скорость (в градусах на фут), с которой температура повышается или понижается для данной высоты.
    г. Скорость изменения температуры при изменении высоты на высоте 1000 футов составляет -0.1 градус на фут.

    Решение

    а. Скорость, с которой число людей, заболевших гриппом, меняется через несколько недель после первоначальной вспышки.
    г. Скорость резко увеличивается до третьей недели, после чего она замедляется, а затем становится постоянной.

    Для следующих упражнений используйте следующую таблицу, в которой показана высота ракеты Saturn V для миссии Apollo 11 через несколько секунд после запуска.

    Время (секунды) Высота (метры)
    0 0
    1 2
    2 4
    3 13
    4 25
    5 32

    47. В чем физический смысл? Какие единицы?

    48. [T] Создайте таблицу значений и нанесите график на одном и том же графике. ( Подсказка: для внутренних точек, оцените левый и правый пределы и усредните их.)

    Решение
    Время (секунды) (м / с)
    0 2
    1 2
    2 5.5
    3 10,5
    4 9,5
    5 7

    Значение производной

    5

    Скорость изменения функции
    при определенном значении x

    Уклон прямой

    Наклон касательной к кривой

    Секунда кривой

    Коэффициент разницы

    Определение производной

    Производная от f ( x ) = x 2

    Дифференцируемая при x

    Обозначения для производной

    Коэффициент простой разности

    Раздел 2: Проблемы

    Производная от f ( x ) = 2 x - 5

    Уравнение касательной к кривой

    Производная от f ( x ) = x 3

    РАСЧЕТ ПРИМЕНЯЕТСЯ К ВЕЩАМ, которые не изменяются с постоянной скоростью.Скорость из-за силы тяжести, рождений и смертей в популяции, единицы y для каждой единицы x . Значения функции, называемой производной, будут иметь переменную скорость изменения.

    Теперь, поскольку мы считаем x независимой переменной, а y зависимой, то любое изменение Δ x в значении x приведет к изменению Δ y в значении . y . На прямой линии скорость изменения - такое количество единиц x для каждой единицы x - постоянна и называется наклоном линии.

    Наклон прямой - это число:

    Δ y
    Δ x
    = = Изменение в и -coördinate
    Изменение в x -coördinate
    .

    (Тема 8 Precalculus.)

    Прямая линия имеет один и только один наклон; одна и только одна скорость изменения.

    Если, например, x представляет время, а y представляет расстояние, то

    прямолинейный график, который их связывает, указывает на постоянную скорость. Скажем, 45 миль в час - в каждый момент времени.

    Наклон касательной к кривой

    Однако исчисление связано со скоростью изменения, которая не является постоянной.

    Если эта кривая представляет расстояние Y в зависимости от времени X , то скорость изменения - скорость - в каждый момент времени непостоянна.Вопрос, который задает расчет: «Какова скорость изменения точно в точке P ?» Ответом будет наклон касательной к кривой в этой точке. И метод определения этого наклона - этого числа - был замечательным открытием Исаака Ньютона (1642-1727) и Готфрида Лейбница (1646-1716). Это метод нахождения того, что называется производной.

    Секунда кривой

    Касательная - это прямая линия, которая касается кривой.Секущая - это прямая линия, пересекающая кривую. Следовательно, рассмотрим секущую линию, которая пересекает кривую в точках P и Q . Тогда наклон секущей равен

    .
    Δ y
    Δ x
    =

    Но еще раз вопрос, который задает исчисление: как функция изменяется точно при x 1 ?

    Каков наклон касательной к кривой в точке P ?

    Однако мы не можем оценить точно при P - потому что Δ y и Δ x тогда оба будут равны 0, а значение будет совершенно неоднозначным.

    Поэтому мы будем рассматривать более короткие и более короткие расстояния Δ x , что приведет к последовательности секущих -

    - череда спусков. И мы определим касательную в точке P как предел этой последовательности наклонов.

    Этот наклон, этот предел будет значением того, что мы будем называть производной.

    Коэффициент разницы

    Пусть y = f ( x ) будет непрерывной функцией, и пусть координаты фиксированной точки P на графике будут ( x , f ( x )). (Тема 4 Precalculus.) Пусть теперь x изменится на величину Δ x . Тогда новый код x будет равен x + Δ x .
    Это координата x для Q на графике.

    Но когда значение x изменяется, возникает результирующее изменение Δ y
    в значении y , то есть в значении f ( x ). Его новое значение - f ( x + Δ x ). Координаты Q следующие ( x + Δ x , f ( x + Δ x )).

    Затем

    Итак, вот определение наклона касательной в точке P :

    Наклон касательной на P
    - это предел изменения функции (числитель)
    , деленный на изменение независимой переменной
    , когда это изменение приближается к 0.

    Поскольку Δ x , а не x - это переменная, которая приближается к 0, x остается постоянной, и этот предел будет функцией x . Поскольку она будет производной от f ( x ), мы называем ее производной функцией или производной от f ( x ). Чтобы напомнить нам, что он был производным от f ( x ), мы обозначим его как f ' ( x ) - « f-prime of x

    Это частное -

    - называется частным Ньютона, или разностным коэффициентом. Его вычисление и упрощение - фундаментальная задача дифференциального исчисления.

    Опять же, коэффициент разности является функцией Δ x . Но для упрощения письменных вычислений вместо Δ x будем писать h .

    Δ x = ч
    Δ y = f ( x + h ) - f ( x )

    Тогда коэффициент разницы будет:

    Теперь выразим определение производной следующим образом.

    ОПРЕДЕЛЕНИЕ 5. Под производной функции f ( x ) мы подразумеваем следующий предел, если он существует:

    Мы называем это ограничение функцией f ' ( x ) - « f -prime of x » - и когда этот предел существует, мы говорим, что f само по себе является дифференцируемым при x . , и что f имеет производную.

    Итак, мы берем предел отношения разности, равный h , приближающемуся к 0.Когда этот предел существует, это означает, что коэффициент разницы можно сделать как можно ближе к этому пределу - « f ' ( x )» - как нам угодно. (Урок 2.)

    Что касается x , мы должны считать его фиксированным. Это конкретное значение, при котором мы оцениваем f ' ( x ).

    На практике мы должны упростить коэффициент разности, прежде чем позволить h приблизиться к нулю. Мы должны выразить числитель -

    f ( x + h ) - f ( x )

    - таким образом, чтобы мы могли разделить его на х .

    Подводя итог: производная - это функция - правило, которое присваивает каждому значению x наклон касательной в точке ( x , f ( x )) на график f ( x ). Это скорость изменения f ( x ) в этот момент.

    В качестве примера мы применим определение, чтобы доказать, что наклон касательной к функции f ( x ) = x 2 , в точке ( x , x 2 ), равно 2 x .

    ТЕОРЕМА. f ( x ) = x 2
    подразумевает
    f ' ( x ) = 2 x .

    Доказательство. Вот коэффициент разницы, который мы продолжим для упрощения:

    1) ( x + h ) 2 - x 2
    h
    2) = x 2 + 2 xh + h 2 - x 2
    h
    3) = 2 xh + h 2
    h
    4) = 2 x + h .

    Переходя от строки 1) к строке 2), мы возводили в квадрат бином x + h . (Урок 18 алгебры.)

    Переходя к строке 3), мы вычли x 2 с. То есть мы вычли f ( x ).

    В строке 4) мы разделили числитель на h . (Урок 20 из Алгебра.)

    Мы можем это сделать, потому что h никогда не равно равному 0, даже если мы берем предел (Урок 2).

    Завершим определение производной и возьмем предел:

    f ' ( x ) = (2 x + h )
    = 2 x .

    Это то, что мы хотели доказать.

    Всякий раз, когда мы применяем определение, мы должны алгебраически манипулировать коэффициентом разности, чтобы мы могли просто заменить h на 0. Фактически вся теория пределов со всеми ее сложностями и тонкостями была изобретена, чтобы оправдать именно это. (Бедного Ньютона и Лейбница критиковали за то, что они предлагали оправдания, которые не нравились изобретателям ограничений в XIX веке.) Мы можем положить здесь h = 0, потому что коэффициент разности уменьшается до 2 x + h , и, следовательно, многочлен от х .

    Проблема. Пусть f ( x ) = x 2 , и вычислим наклон касательной к графику -

    а) при x = 5.

    Поскольку f ' ( x ) = 2 x , то при x = 5 наклон касательной линии равен 10.

    б) при x = −3. −6.

    c) при x = 0.0.

    Дифференцируемая при x

    Согласно определению, функция будет дифференцируемой при x , если там существует определенный предел. Графически это означает, что график при этом значении x будет иметь касательную линию. Тогда при каких значениях функция , а не будет дифференцируемой?

    Без касательной

    Выше представлены два примера.Функция слева не имеет производной при x = 0, потому что функция там разрывная. При x = 0, очевидно, нет касательной.

    Что касается графика справа, это функция абсолютного значения, y = | x |. (Тема 5 Precalculus.) И невозможно определить касательную линию на x = 0, потому что график образует там острый угол. Фактически, наклон касательной линии , когда x приближается к 0 слева, равен -1.Однако наклон, приближающийся справа, равен +1. Наклон касательной в точке 0 - которая была бы производной в точке x = 0 - поэтому не существует. (Определение 2.2.)

    Тем не менее, функция абсолютного значения является непрерывной при x = 0. Так, левый предел самой функции при приближении x к 0 равен , равному правому пределу, а именно 0. Это иллюстрирует эту непрерывность в точке не является гарантией дифференцируемости - существования касательной - в этой точке.

    (И наоборот, если функция дифференцируема в точке - если есть касательная - она ​​также будет непрерывной там. График будет гладким и без изломов.)

    Поскольку дифференциальное исчисление - это изучение производных, оно в основном занимается функциями, которые дифференцируемы при всех значениях их областей определения. Такие функции называются дифференцируемыми.

    Можете ли вы назвать элементарный класс дифференцируемых функций?

    Чтобы увидеть ответ, наведите указатель мыши на цветную область.
    Чтобы закрыть ответ еще раз, нажмите «Обновить» («Reload»).
    Сначала подумайте об этом сами!

    Полиномы.

    Обозначения для производной

    Поскольку производная является этим пределом: тогда символ самого лимита (читается: "dee- y , dee- x .")

    Например, если

    y = x 2 ,
    тогда, как мы видели,
    = 2 x .

    "Dee- y , dee- x - производная от y по отношению к x - это 2 x ."

    Так же пишем

    y ' ( x ) = 2 x .

    " y - простое число x равно 2 x ."

    Сам по себе символ: d
    dx
    ("dee, dee- x ") , называется

    оператор дифференциала .Мы должны взять производную от того, что следует за ним.

    Например,

    d
    dx
    f ( x ) означает производную по отношению к x от f ( x ).
    d
    dt
    (4 т 3 -5) означает производную по отношению к т
    из (4 т 3 - 5).

    И так далее.

    Коэффициент простой разности

    Коэффициент разницы является версией. И иногда мы будем использовать последнее. То есть изменение значения функции y = f ( x ) равно y + Δ y . Следовательно, коэффициент разницы составляет

    .

    Иногда удобнее выразить коэффициент разницы как

    .

    Примечание : Когда Δ x приближается к 0 - когда точка Q приближается к P по кривой - тогда Δ y или, что эквивалентно, Δ f также приближается к 0.То есть

    Теперь ученик должен выполнить Задачи, требующие определения производной.

    Содержание | Дом


    Сделайте пожертвование, чтобы TheMathPage оставалась в сети.
    Даже 1 доллар поможет.


    Авторские права © 2021 Лоуренс Спектор

    Вопросы или комментарии?

    Эл. Почта: [email protected]


    Модуль 10 - Производная функции

    В этом уроке вы будете использовать несколько различных функций TI-83 для поиска и понимания производных.


    В модуле 9 вы видели, что скорости соответствуют наклонам на графике положения во времени. Средняя скорость соответствует наклону

    Секущая линия - это линия, проходящая через две точки на кривой.
    секущая линия, соединяющая две точки, а мгновенная скорость соответствует наклону касательной к кривой.

    Средняя скорость определяется как , который представляет собой наклон секущей линии через точки
    ( a , f ( a )) и ( a + h , f ( a + h )) .

    Мгновенная скорость определяется выражением , который представляет собой наклон касательной к кривой в точке ( a , f ( a )).

    Наклон касательной к графику функции в точке называется производной функции в этой точке. Формальное определение производной приведено ниже.

    Формальное определение производной

    Производная функции f при x = a равна

    при условии, что лимит существует.

    Иллюстрация схождения секущей линии

    Для функций, имеющих касательную линию, если точка ( a , f ( a )) на кривой зафиксирована, поскольку h приближается к нулю, вторая точка ( a + h , f ( a + h )) приближается к фиксированной точке, и соответствующие секущие линии сходятся к касательной в этой точке.

    В описанной ниже процедуре будет найдено значение производной функции f ( x ) = 2 x - x 2 в точке (0,5, 0,75) с использованием метода, аналогичного тому, который вы использовали для найти мгновенные скорости.

    1. Найдите наклоны нескольких секущих линий и используйте их, чтобы оценить наклон касательной как x = 0,5.
    2. Затем определите предел наклона секущих линий, чтобы найти производную.

    На приведенном ниже графике показано f ( x ) = 2 x - x 2 в окне [-1, 3, 1] x [-1, 2, 1] с тремя секущими линиями через фиксированные точка (0,5, 0,75), которая приближается к касательной в точке (0,5, 0,75).

    Нахождение наклонов секущих линий

    Первый шаг в описанной выше процедуре - найти наклон секущих линий, которые будут использоваться для оценки производной.Чтобы найти уклоны, вам нужно ввести функцию f ( x ) = 2 x - x 2 в редакторе Y =.

    Наклон секущей линии через точки (0,5, f (0,5)) и (0,5 + h , f (0,5 + h )) можно найти, оценив коэффициент разности

    .

    Нас интересуют значения h , которые настолько малы, что две точки находятся близко друг к другу.Результирующая секущая линия будет приближаться к касательной.

    Вы можете оценить коэффициент разницы для h = 0,1 на TI-83, используя команду, состоящую из двух частей. Первая часть команды сохранит 0,1 в h , а вторая часть команды будет оценивать коэффициент разницы. Две команды будут объединены вместе с символом двоеточия.

    Наклон секущей линии, содержащей (0.5, f (0,5)) и (0,6, f (0,6)) составляет 0,9.

    Использование меньших значений h

    Когда точка (0,5 + h , f (0,5 + h )) приближается к точке (0,5, f (0,5)), h приближается к 0, и секущие линии сходятся к касательной.

    Чтобы оценить коэффициент разницы для меньших значений х , измените значение H в последнем выражении на главном экране с 0.От 1 до 0,01 и оцените коэффициент разницы.

    Наклон соответствующей секущей линии равен 0,99.

    • Оцените коэффициент разницы с h = 0,001 и с h = 0,0001.

    Наклон секущих линий равен 0,999 и 0,9999 соответственно.

    10.1.1 Предскажите производную в (0,5, f (0,5)). Нажмите здесь, чтобы получить ответ.

    Коэффициенты левой разности

    В описанной выше процедуре использовались правые разностные коэффициенты. Коэффициенты левой разности могут быть найдены, если h быть отрицательным числом.

    • Оцените коэффициент разницы: h = -0,01 и h = -0.001.
      Вставьте отрицательный знак, а затем используйте чтобы удалить нули в предыдущем выражении.
    Коэффициенты левой разности

    Наклон соответствующих секущих линий равен 1,01 и 1,001. С фиксированной точкой (0,5, 0,75) одна секущая проходит через (0,49, f (0,49)), а другая через (0,499, f (0,499)).

    Нахождение производной в точке

    Как указывалось ранее, производная x = 0.5 определяется как предел

    .

    Прежде чем этот предел можно будет оценить, выражение должны быть расширены и упрощены. Напомним, что интересующая функция: f ( x ) = 2 x - x 2 .

    Следовательно, и производная от f ( x ) = 2 x - x 2 при x = 0.5 равно 1.

    Использование числовой производной команды

    Вы также можете аппроксимировать производную функции в точке с помощью числовой производной команды nDeriv (, которая находится в меню Math. Синтаксис для поиска производной в точке: nDeriv (выражение, переменная, значение ).

    • Перейдите на главный экран, нажав [ПОКИДАТЬ].
    • Откройте меню Math, нажав . nDeriv ( - восьмой пункт в меню.
    • Вставьте nDeriv ( на главный экран, нажав .
    • Завершите команду nDeriv (Y 1 , X, 0.5).
    • Выполните команду, нажав .

    Команда nDeriv

    nDeriv ( фактически вычисляет коэффициент симметричной разности и приближает производную.Вы можете добавить необязательный четвертый параметр, чтобы изменить значение по умолчанию h , которое установлено на 0,001. Например, чтобы оценить коэффициент симметричной разности при x = 0,5 с h = 0,01, введите команду

    nDeriv (Y 1 , X, 0,5, 0,01)

    Рисование касательной линии

    Поскольку точка на кривой и производная в этой точке известны, уравнение для касательной можно найти с помощью

    Уравнение для прямой, проходящей через точку (x1, y1) с уклоном м : y - y 1 = м ( x - x 1).
    точечно-наклонная форма линии. Если наклон касательной в точке (0,5, 0,75) равен 1, то уравнение для касательной линии будет y - 0,75 = 1 ( x - 0,5).

    График f ( x ) = 2 x - x 2 и его касательная линия в точке (0.5, 0,75).

    • Установить Y 1 = 2 X - X 2 .
    • Установите Y 2 = (X-0,5) + 0,75.
    • Постройте график функции и касательной в окне [-1, 3, 1] x [-1, 2, 1].

    Линия кажется касательной к кривой при x = 0,5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *