Найдите корни уравнения x2 4 5x: Найдите корни уравнения х2+4=5х — ответ на Uchi.ru

2

Тест с ответами: “Теорема Виета”

1. Составьте уравнение с корнями 2n и -3n:
а) x2+nx-6n2=0 +
б) x2-nx-6n2=0
в) x2-6n2-n=0

2. Разложить квадратный трехчлен на множители x2-5x-14=0:
а) ( x – 7 ) ( x -2)
б) ( x – 7 ) ( x + 2) +
в) ( x + 7 ) ( x + 2)

3. Составьте уравнение с корнями 2n и -3n. Укажите неверный ответ:
а) x2+nx-6n2=0
б) оба варианта неверны
в) x2-nx+6n2=0 +

4. Найдите корни уравнения, используя теорему Виета x2-11x+30=0:
а) 5; 6 +
б) -5; 6
в) -5; -6

5. Если уравнение x+px+q=0 имеет корни x1 и x2, то:
а) x1+x2=p, x1x2=q
б) x1+x2=p, x1x2=-q
в) x1+x2=-p, x1x2=q +

6. Один из корней квадратного уравнения 5×2-2x+3p=0 равен 1. Найдите второй корень:
а) 0,6
б) -0,6 +
в) -1,6

7. Сумма корней приведённого квадратного уравнения равна:
а) сумме всех коэффициентов уравнения
б) свободному члену, взятому с противоположным знаком
в) второму коэффициенту, взятому с противоположным знаком +

8. При каких значениях параметра р сумма корней квадратного уравнения x2+(p2+4p-5)x-p=0 равна нулю:
а) 1 +
б) 0
в) 2

9. Сумма и произведение корней квадратного уравнения х – 9x + 20 = 0 равны соответственно:
а) 20 и 9
б) -20 и 9
в) 9 и 20 +

10. Найдите корни уравнения, используя теорему Виета x2-5x+6=0:
а) -3; 2
б) 2; 3 +
в) -3; -2

11. Если известно, что сумма корней приведённого квадратного уравнения равна 2, а произведение равно – 3, то это уравнение имеет вид:
а) x2-2x-3=0 +
б) x2+2x-3=0
в) x2+2x+3=0

12. Квадратный трехчлен разложен на множители x2+6x-27=(x+9)(x-a). Найдите а:
а) -3
б) 3 +
в) 1

13. Если известно, что сумма корней приведённого квадратного уравнения равна 2, а произведение равно – 3, то это уравнение имеет вид. Укажите неверный ответ:
а) x2-3x+2=0 +
б) x2-2x-3=0
в) оба варианта верны

г) нет верного ответа

14. Пусть x1 и x2 – корни уравнения x2-9x-17=0. Не решая уравнения, вычислите x1/2+x2/2:
а) 81
б) 11,5
в) 115 +

15. Сумма корней приведенного квадратного уравнения x2+px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно:
а) свободному члену +
б) свободному числу
в) рациональному числу

16. Сумма корней приведенного квадратного трехчлена x2+px+q=0 равна его второму коэффициенту p с таким знаком:
а) таким же
б) противоположным +
в) зависит от условия задачи

17. Найти корни приведенного квадратного уравнения x2-x-30=0:
а) -5; 5
б) -6; 5
в) -5; 6 +

18. Значимость теоремы Виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить:
а) их производную
б) их разность
в) их сумму +

19. Найти корни приведенного квадратного уравнения x2+6x+8=0:

а) 4; -2
б) -4; 2
в) -4; -2 +

20. Значимость теоремы Виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить:
а) их разность
б) их произведение +
в) их отрицательное значение

21. Теорема Виета для полного квадратного уравнения:
а) ax2+bx+c=0 +
б) ax2+bx-c=0
в) ax2-bx+c=0

22. Используя теорему Виета, найти корни уравнения x2−5x+6=0:
а) x1=2, x2=1
б) x1=2, x2=3
в) x1=3, x2=2

23. Найти сумму корней квадратного уравнения 2×2-7x-11=0:
а) -3,5
б) 3
в) 3,5 +

24. Если числа x1 и x2 удовлетворяют соотношениям x1+x2=−p, x1x2=q, то они удовлетворяют квадратному уравнению x2+px+q=0, то есть являются:
а) его основанием
б) его корнями +
в) его суммой

25. Найдите произведение корней квадратного уравнения 3×2+8x-21=0:

а) 7
б) -7,7
в) -7 +

26. Зная, что числа x1=3 и x2=−1 – корни некоторого квадратного уравнения, составить само это уравнение:
а) x2+2x−3=0
б) x2−2x−3=0 +
в) x2−2x+3=0

27. Один из корней 3×2+5x+2m=0 равен -1. Найдите второй корень:
а) -2/3 +
б) 2
в) -2

28. Формулы, выражающие коэффициенты многочлена через его корни:
а) формулы Эвклида
б) формулы Архимеда
в) формулы Виета +

29. Уравнение x2+px+q=0 имеет корни -6, 4. Найдите q:
а) – 24 +
б) 12
в) -2

30. Существует ли теорема Виета для кубического уравнения:
а) нет
б) да +
в) неизвестно

3-8 9 Оценить квадратный корень из 12 10
Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 93 6 Решить для ? cos(x)=1/2 7 Найти x
sin(x)=-1/2 8 Преобразование градусов в радианы 225 9 Решить для ? cos(x)=(квадратный корень из 2)/2 10 Найти x cos(x)=(квадратный корень из 3)/2 11 Найти x sin(x)=(квадратный корень из 3)/2 92=9 14 Преобразование градусов в радианы 120 градусов 15 Преобразование градусов в радианы
180 16 Найти точное значение желтовато-коричневый(195) 92-4 38 Найти точное значение грех(255) 39 Оценить лог база 27 из 36 40 Преобразовать из радианов в градусы 2 шт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *