Онлайн калькулятор частных производных: Частные производные онлайн

(2/3)

Частные производные используются, например, при нахождении полного дифференциала и экстремумов функции.

Содержание

Частные производные функции нескольких переменных

Ели одному из аргументов функции z = f(x,y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: Δxz=f(x+Δx,y)-f(x,y) – это частное приращение функции z по аргументу x ; Δyz=f(x,y+Δy)-f(x,y) – это частное приращение функции z по аргументу у .
Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:
– это частная производная функции z по аргументу x ;
– это частная производная функции z по аргументу у .
Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1

Пример 2 . Найти частные производные функции z = f(x;y) в точке A(x0;y0).

Дифференциалом функции называется главная (линейная по ) часть приращения функции. Чтобы понять данное определение, рассмотрим следующий рисунок.

На рисунке изображён график функции и касательной к ней в точке . Дадим аргументу функции некоторое приращение , тогда функция также получит некоторое приращение . Величина называется дифференциалом функции . При этом, из графика следует, что равно приращению ординаты касательной, проведённой в точке к функции . Именно поэтому дифференциалом называют линейную часть приращения функции, т.е. приращение ординаты касательной.

Из рисунка следует, что угол наклона касательной , который она образует с положительным направлением оси и — равны. Кроме того, тангенс угла наклона касательной равен значению производной функции в точке касания:

Из треугольника следует, что:

Таким образом, дифференциал функции выражается следующей формулой:

Рассмотрим ещё такой момент: из рисунка следует, что , причем . Причем, чем меньше , тем меньший вклад в величину вносит значение . Т.е. при достаточно малых значениях , можно считать, что . Данное соотношение позволяет вычислять приближенное значение функции в точке , если известно её значение в точке .

Дифференциал высшего порядка (например порядка ) определяется как дифференциал от дифференциала -ого порядка:

Например, дифференциал второго порядка вычисляется следующим образом:

Аналогичным образом получаем формулу для вычисления дифференциала -ого порядка:

где — -ая производная функции по переменной .

Пару слов стоит сказать о вычислении дифференциала функции многих переменных, который в этом случае называется полным дифференциалом. Полный дифференциал функции, зависящей от -переменных определяется по формуле:

Выражения для дифференциалов высших порядков функции многих переменных можно получить исходя из общей формулы:

В общем случае, для возведения суммы в -ую степень необходимо воспользоваться формулой бинома Ньютона. Рассмотрим процесс получения формулы полного дифференциала второго порядка функции двух переменных:

Наш онлайн калькулятор способен вычислить дифференциалы разных порядков для любых функций одной или нескольких переменных с описанием подробного решения на русском языке.

определены в некоторой окрестности точки M ( x 0 , y 0 ) и непрерывны в этой точке, выполняется равенство:

По аналогии, можно ввести производные более высоких порядков, например, запись

означает, что мы должны продифференцировать функцию по переменной два раза, а затем по переменной три раза, т.е. фактически:

Иногда, для обозначения частных производных некоторой функции z = f ( x , y ) используют запись вида: f x ‘ ( x , y ) и f y ‘ ( x , y ) , указывая переменную по которой происходит дифференцирование. Таким образом можно обозначать и смешанные производные: f xy » ( x , y ) и f yx » ( x , y ) а также вторые производные и производные более высокого порядка: f xx » ( x , y ) и f xxy »’ ( x , y ) соответственно. Следующие обозначения эквиваленты:

В нашем онлайн калькуляторе для обозначения частных производных используются символы:

. Пример подробного решения, выдаваемого нашим онлайн сервисом, можно посмотреть здесь .


Полный дифференциал для функции двух переменных:

Вместе с этим калькулятором также используют следующие:
Точки разрыва функции


Построение графика функции методом дифференциального исчисления

Экстремум функции двух переменных

Вычисление интегралов

Пример . Найти производные и дифференциалы данных функций.
а) y=4 tg2 x
Решение:

дифференциал:
б)
Решение:

дифференциал:
в) y=arcsin 2 (lnx)
Решение:

дифференциал:
г)
Решение:
=
дифференциал:

Читайте также:

      
  • Ты уже который год подряд хочешь приручить меня а зря
  •   
  • Какие буквы алфавита латинского люди любят слушать больше всего игра brain out
  •   
  • Rome 2 total war самая слабая фракция
  •   
  • Земля тысячи крыльев аллоды
  •   
  • Teso исследование алхимика ротгар 2

Кафедры — Механико-математический факультет

Доц. Э.А. Бибердорф Спектральные проблемы для матриц и дифференциальных операторов, задачи устойчивости, численное моделирование сердечно-сосудистой системы, численные методы
Доц. Л.Н. Бондарь
Краевые задачи для квазиэллиптических систем; уравнения, не разрешенные относительно старшей производной
Проф. В.Л. Васкевич Приближенное вычисление многомерных интегралов, кубатурные формулы, вычисления с гарантированной точностью, приближенное решение краевых задач для уравнений с частными производными, теория функциональных пространств
Проф. В.П. Голубятников
Изучение поведения траекторий нелинейных динамических систем, моделирующих кинетику ряда (био)химических процессов, вопросов существования  и (не)единственности осциллирующих траекторий (циклов) таких систем, устойчивость и взаимное расположение циклов, а также другие геометрические особенности фазовых портретов этих динамических систем, в частности, их аттракторы
Доц. Ю.Г. Губарев Газовая динамика, гидродинамика, магнитная гидродинамика, теория плазмы, динамика самогравитирующих сред; математическая теория  газодинамической, гидродинамической, магнитогидродинамической и кинетической устойчивости; дифференциальные и интегро-дифференциальные уравнения
Проф. Г.В. Демиденко
Уравнения, не разрешенные относительно старшей производной; весовые соболевские пространства; квазиэллиптические операторы; теория  устойчивости решений дифференциальных, разностных и функционально-дифференциальных уравнений; системы нелинейных дифференциальных уравнений бесконечного порядка
Почас. А.И. Кожанов   Операторно-дифференциальные уравнения с вырождением, краевые задачи для неклассических уравнений 
Доц. И.И. Матвеева Краевые задачи для систем, не разрешенных относительно старшей производной; теория устойчивости решений дифференциальных, разностных и функционально-дифференциальных уравнений; системы нелинейных  дифференциальных уравнений бесконечного порядка
Доц. Е.В. Мищенко  Анализ сигналов с помощью вейвлетов, численные методы с использованием вейвлетов, гидродинамические
модели переноса зарядов в полупроводниках; реологические модели течения несжимаемых вязкоупругих полимерных сред
Проф. В.В. Остапенко Гиперболические системы законов сохранения и их приложение к теории мелкой воды, применение теории мелкой воды для моделирования волновых течений жидкости, моделирование пленочных течений, разностные схемы сквозного счета, теория монотонности разностных схем
Доц. А.С. Рудометова  Математическое моделирование в гидродинамике, динамике полимерных сред и физике полупроводников. Устойчивость по Ляпунову характерных решений
Доц. Р.Е. Семенко Математические модели гидродинамики; ударные волны, гидродинамика полимерных жидкостей, электрогидродинамика проводящих жидкостей, теория  детонации; исследование устойчивости решений
Доц. Б.В. Семисалов Численное решение краевых задач для дифференциальных уравнений и уравнений в частных производных эллиптического типа; спектральные методы,  алгоритмы без насыщения; математическое моделирование в физике  полупроводников, механике композитов и динамике полимерной жидкости
Проф. Д.Л. Ткачев Задачи обтекания в газовой динамике и гидродинамике; исследование гидродинамических моделей переноса зарядов в полупроводниках; изучение  реологических моделей, описывающих течения растворов и расплавов несжимаемых вязкоупругих полимерных сред; корректность постановок смешанных задач для гиперболических уравнений и систем, в частности, в областях с негладкой границей; устойчивость по Ляпунову характерных решений
Доц. Ю.Л. Трахинин Симметрические гиперболические системы законов сохранения; ударные волны и характеристические сильные разрывы; корректность в пространствах Соболева задач со свободными границами в газах, жидкостях и плазме
Доц. Г.А. Чумаков  Двумерные регулярные квази-изометрические сетки в сложных областях, конформные модули однопараметрических семейств канонических областей; бифуркации и детерминированный хаос, оценки размерности странных аттракторов
Доц. Н.А. Чумакова  Проблемы математического моделирования каталитических реакций и процессов; нелинейная динамика и теория бифуркаций коразмерности
1 и 2 в приложениях к изучению многопиковых автоколебаний и хаотической динамики кинетических систем; системы нелинейных обыкновенных дифференциальных уравнений и уравнений в частных производных

Интегрирующий множитель для уравнение в полных дифференциалах

Уравнением в полных дифференциалах называется уравнение вида
M(x,y)dx + N(x,y)dy = 0)
левая часть которого является полным дифференциалом некоторой функции
U(x,y), то есть dU(x,y) = M(x,y)dx + N(x,y)dy.
Напомним, что полный диференциал функции U находится по формуле
Условие проверки уравнения на соответствие полному дифференциалу имеет вид
(1)

Уравнение сводные к ДР в полных дифференциалах

В некоторых случаях зависимость
M(x,y)dx + N(x,y)dy = 0
не является уравнением в полных дифференциалах, не выполняется условие (1). Однако существует функция «мю» такова, что если на нее умножить первоначальное уравнение то получим уравнением в полных дифференциалах.
Необходимым и достаточным условием этого является равенство между собой частных производных

Функция «мю» называют интегрирующим множителем.
Таким образом кроме ДУ относительно функции u(x,y) на практике приходится решать дифференциальное уравнение в частных производных относительно интегрирующего множителя.
Но до сих пор остается открытым вопрос, как искать интегрирующий множитель?

Как найти интегрирующий множитель?

В теории обычно методика уже разработана и интегрирующий множитель следует искать в виде
где «омега» — известная функция одной или двоих переменных.
В этом случае получаем
После подстановки в условие полного дифференциала получим
Разделим переменные в последней строке
Проинтегрировав и положив постоянную интегрирования равной нулю находим интегрирующий множитель
Рассмотрим частные случаи.
1) Пусть «омега» равна аргументу. Тогда некоторые частные производные равны нулю, а интегрирующий множитель находят по формуле
2) Если «омега» ровна y то формула вычисления интегрирующего множителя имеет вид
3) В случае когда «омега» равна сумме или разности квадратов переменных интегрирующий множитель находим по формуле
4) И вариант когда имеем произведение переменных дает следующую зависимость для определения мю
Вывод формулы интегрирующего множителя без практики Вас ничего не научит, поэтому рассмотрим задачи из контрольной работы на которых Вы увидите суть всех приведенных выше формул. Примеры задавали во Львовском национальном университете им. И. Франка .

Уравнение в полных дифференциалах. Задача Коши.

Пример 1. Решить дифференциальное уравнение и задачу Коши
Решение: Выпишем множители при дифференциалах

и проверим выполняется ли условие полного дифференциала функции двух переменных

Как видим, левая часть уравнения не является полным дифференциалом (условие не выполняется). Проверим допускает ли дифференциальное уравнение интегрирующий множитель

С правой стороны видим, что данное уравнение допускает множитель интегрирования, причем он зависит только от y.
Найдем интегрирующий множитель из дифференциального уравнения с отделенными переменными

После умножения всех членов уравнения на найденный интегрирующий множитель «мю» () получим Ду первого порядка

Если вновь проверить ДУ, то тепер условие на полный дифференциал некоторой функции выполняется

Далее будем решать полученное ДУ, как в случае обычного полного дифференциала. Проинтегрируем второе слагаемое по y

Запомните правило — если интегрирования идет по y, то сталая зависит от «икса», и наоборот.
Сталую которая входит в уравнения определяют вычислением частичной производной найденного решение по «икс» и приравниванием до множителя в ДУ при dx.

Отсюда находим постоянную

Учитывая все вышеизложенное, записываем общий интеграл дифференциального уравнения

В задании необходимо найти частичное решение (задачу Коши). Для этого записываем дополнительное условие на функцию и определяем сталую

Отсюда имеем частичное решение дифференциального уравнения

Оно пока записано в неявной форме, однако в этом случае можем найти зависимость функции от переменной y(x):
— частичное решение дифференциального уравнения.

 

Пример 2.Найти решение задачи Коши
Решение: Записываем заданное дифференциальное уравнение первого порядка в дифференциалах

Далее проверим имеем ли полный дифференциал, выписываем множители

и находим частные производные

Условие на полный дифференциал не выполняется.
Проверим не допускает это уравнение интегрирующего множителя

Видим что данное уравнение допускает интегрирующий множитель который зависит только от y. Найдем его интегрированием уравнения

После умножения всех членов уравнения на найденный интегрирующий множитель исходное ДУ преобразуется к виду

что соответствует уравнению в полных дифференциалах

Как решить такое уравнение Вы уже знаете, поэтому переходим к интегрированию для простоты второго доданка (возле dx)

Чтобы определить постоянную — ищем частную производную функции u по «икс» и приравниваем ко второму множителя в полном дифференциале

На этот раз сталая функции не ровна константе и для ее установки нужно найти несколько интегралов

Общий интеграл дифференциального уравнения при подстановке C(x) примет вид

Решим задачу Коши для ДУ

Отсюда имеем
частичное решение дифференциального уравнения.

 

Пример 3. Найти решение уравнения при условии Коши
Решение: Перепишем ДУ расписав производную дифференциалами

Далее действуем по методике для таких уравнений.
Выписываем множители возле дифференциалов

Проверяем условие на полный дифференциал функции

Условие не выполняется. Проверим, допускает ли интегрирующий множитель данное уравнение ?

Как видим правая сторона зависима от y поэтому уравнение допускает интегрирующий множитель.
Найдем его из ДУ

После умножения всех членов уравнения на интегрирующий множитель «мю» получим следующее уравнение

Условие полного дифференциала подтверждается
().
Далее применяем методику для ДУ в полных дифференциалах. С первого слагаемого уравнения интегрированием находим зависимость u(y)

Далее вычисляем частную производную функции u(x,y) по «икс»

и сравниваем с частичной производной начального уравнения

Нетрудно найти отсюда константу

Возвращаемся и записываем общий интеграл дифференциального уравнения

По условию необходимо найти частичный интеграл уравнения (решить задачу Коши). Для этогоопределяем значение функции в точке

Константа равна 2, а частичное решение ДУ

Для ясности ответа найдем (обратную) зависимость х(у):
— частичное решение уравнения
Красивый ответ несмотря на массу преобразований и интегралов.

Из приведенных ответов Вы получили полезную инструкцию для вычислений. Для проверки полученных знаний самостоятельно найдите решение уравнений, используя интегрирующий множитель
Оставайтесь с нами, впереди еще много готовых примеров дифференциальных уравнений.

Калькулятор производных с шагами | Калькулятор дифференцирования

Определение калькулятора производных с шагами

В исчислении есть два основных понятия, т. е. интегрирование и дифференцирование. Дифференциация обратна интегрированию. Как и интеграция, расчет деривативов носит технический характер и требует надлежащего внимания и внимания.

Калькулятор производных представляет собой онлайн-инструмент, который обеспечивает полное решение дифференцирования. Калькулятор дифференцирования помогает кому-то вычислять производные во время выполнения с помощью нескольких щелчков мыши.

Калькулятор дифференциации предоставляет полезные результаты в виде шагов, которые помогают пользователям и особенно учащимся подробно изучить эту концепцию.

Для вычисления производных по x и y используйте калькулятор неявного дифференцирования с шагами.

Формулы, используемые калькулятором производных

Калькулятор производных обратных функций использует приведенную ниже формулу для нахождения производных функции. Формула производной:

$$ \frac{dy}{dx} = \lim\limits_{Δx \to 0} \frac{f(x+Δx) — f(x)}{Δx} $$ 9{n-1} $$

  • Постоянное множественное правило:
  • $$ \frac{d}{dx}[cf(x)] = c. \frac{d}{dx}f(x) $$

    Здесь c = реальное число

  • Правило суммы и разности:
  • $$ \frac{d}{dx} (f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x) $$

  • Правило продукта:
  • $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x) \frac{d}{dx}[g(x)] + g(x) \frac{d }{dx}[f(x)] $$

    или

    $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x)g'(x) + g(x)f'(x) $$

    Вы также можете использовать калькулятор производных правил произведения для обучения и практики. 92} $$

    Также найдите калькулятор производной частного правила для более точных вычислений.

    Этот веб-сайт предоставляет полное решение для дифференцирования и всех расчетов, связанных с деривативами. Найдите калькулятор частичной дифференцировки и калькулятор производной по направлению на этом веб-сайте, чтобы еще больше укрепить свои представления о дифференцировании.

    Как работает калькулятор производных?

    Калькулятор производных с шагами — это онлайн-инструмент, который использует формулы и правила производных для вычисления точных результатов. Калькулятор дифференциации позволяет пользователям вводить данные в виде уравнения.

    Калькулятор дифференцирования затем решает это уравнение, используя другие правила производных или формулы. Если вы хотите продолжить расчет, используйте калькулятор второй производной с шагами.

    Кроме того, если вы хотите рассчитать его выше, на этом сайте есть другое решение для вас. Вы можете использовать калькулятор третьей производной с шагами на этой платформе, чтобы получить точные результаты.

    Как найти калькулятор производных?

    Онлайн-калькулятор производных найти несложно. Вы можете либо ввести полный URL-адрес этого калькулятора дифференциации в своей поисковой системе, либо выполнить поиск в Google по его названию. Вы можете выполнить поиск в Google с помощью «калькулятора производной» или «калькулятора обратной производной», и вы найдете наш новейший и точный онлайн-инструмент.

    Связанный: На этой платформе вы также можете найти аппроксимацию касательной с помощью калькулятора линеаризации. Вы также можете получить большую помощь от бесплатного онлайн-калькулятора производных цепного правила.

    Как использовать калькулятор производных с шагами?

    Наш дифференциальный калькулятор очень прост в использовании, так как вам необходимо следовать приведенной ниже процедуре:

    1. Напишите свое уравнение в первом поле ввода или загрузите любое уравнение, нажав на кнопку.
    2. Выберите переменную, которую хотите дифференцировать.
    3. Выберите, сколько раз вы хотите различать.
    4. Нажмите кнопку «РАССЧИТАТЬ».

    Сразу после нажатия на кнопку расчета наш калькулятор дифференцирования решит ваше уравнение и предоставит подробные результаты. Эти результаты помогут вам понять и изучить концепцию, практикуясь во время выполнения.

    Для закрепления расчетов относительно нормальной линии уравнения, вам нужно попробовать калькулятор уравнения нормальной линии, предлагаемый этим веб-сайтом.

    Связанные калькуляторы

    Существует множество других калькуляторов, связанных с дифференциальным калькулятором, которые вы можете использовать на этом веб-сайте бесплатно. Эти инструменты:

    • Калькулятор производной в точке
    • Калькулятор n-й производной
    • Калькулятор крайних точек
    • Калькулятор уклона криволинейной линии
    • Калькулятор производных графиков

    Часто задаваемые вопросы

    Как дифференцировать функцию f(x)=5,4x+2,4?

    Данная функция:

    $$ f(x) \;=\; 5,4x+2,4 $$

    Дифференцирование с обеих сторон по «х»

    $$f'(x) \;=\; д/дх(5,4х+2,4)$$

    У нас есть,

    $$ f'(x) \;=\; д/дх(5,4х)+д/дх(2,4) $$ $$ f'(x) \;=\; 5. 4(1)+0 \;=\; 5,4 $$

    Таким образом, мы можем различать эту простую функцию вручную. Кроме того, мы также можем использовать дифференциальный калькулятор функций для онлайн-расчетов.

    Как вычислить производную функции?

    Чтобы вычислить производную функции, необходимо выполнить следующие шаги:

    1. Помните, что производная – это вычисление скорости изменения функции.
    2. Применить производную к функции по независимой переменной, входящей в функцию.
    3. Упростите функцию, чтобы получить точное значение производной.

    Та же процедура использовалась калькулятором производных для расчета скорости изменения функции в режиме онлайн. 9⁡2x $$

    Производная от cos 2 x является производной тригнометрической функции, которая несколько сложна для студентов, которые не могут запомнить тригнометрические тождества. Для таких студентов решатель производных является отличным инструментом для вычисления производной тригонометрической функции.

    Как отличить e

    x ?

    Поскольку производная экспоненциальной функции с основанием «e» равна e x , дифференцирование e в степени x эквивалентно самому e в степени x. Математически это записывается как d/dx (e х ) = е х .

    Это может оцениваться в дифференцирующем решателе для перекрестной проверки ответа и его шагов онлайн.

    Алан Уокер

    Последнее обновление 19 сентября, 2022

    Я математик, технарь и автор контента. Я люблю решать шаблоны различных математических запросов и писать так, чтобы все могли понять. Математика и технология сделали свое дело, и теперь пришло время извлечь из этого пользу.

    Калькулятор производных с шагами | Дифференциальный калькулятор

    Определение калькулятора производных с шагами

    В исчислении есть два основных понятия, т. е. интегрирование и дифференцирование. Дифференциация обратна интегрированию. Как и интеграция, расчет деривативов носит технический характер и требует надлежащего внимания и внимания.

    Калькулятор производных представляет собой онлайн-инструмент, который обеспечивает полное решение дифференцирования. Калькулятор дифференцирования помогает кому-то вычислять производные во время выполнения с помощью нескольких щелчков мыши.

    Калькулятор дифференциации предоставляет полезные результаты в виде шагов, которые помогают пользователям и особенно учащимся подробно изучить эту концепцию.

    Для вычисления производных по x и y используйте калькулятор неявного дифференцирования с шагами.

    Формулы, используемые калькулятором производных

    Калькулятор производных обратных функций использует приведенную ниже формулу для нахождения производных функции. Формула производной:

    $$ \frac{dy}{dx} = \lim\limits_{Δx \to 0} \frac{f(x+Δx) — f(x)}{Δx} $$ 9{n-1} $$

  • Постоянное множественное правило:
  • $$ \frac{d}{dx}[cf(x)] = c. \frac{d}{dx}f(x) $$

    Здесь c = реальное число

  • Правило суммы и разности:
  • $$ \frac{d}{dx} (f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x) $$

  • Правило продукта:
  • $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x) \frac{d}{dx}[g(x)] + g(x) \frac{d }{dx}[f(x)] $$

    или

    $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x)g'(x) + g(x)f'(x) $$

    Вы также можете использовать калькулятор производных правил произведения для обучения и практики. 92} $$

    Также найдите калькулятор производной частного правила для более точных вычислений.

    Этот веб-сайт предоставляет полное решение для дифференцирования и всех расчетов, связанных с деривативами. Найдите калькулятор частичной дифференцировки и калькулятор производной по направлению на этом веб-сайте, чтобы еще больше укрепить свои представления о дифференцировании.

    Как работает калькулятор производных?

    Калькулятор производных с шагами — это онлайн-инструмент, который использует формулы и правила производных для вычисления точных результатов. Калькулятор дифференциации позволяет пользователям вводить данные в виде уравнения.

    Калькулятор дифференцирования затем решает это уравнение, используя другие правила производных или формулы. Если вы хотите продолжить расчет, используйте калькулятор второй производной с шагами.

    Кроме того, если вы хотите рассчитать его выше, на этом сайте есть другое решение для вас. Вы можете использовать калькулятор третьей производной с шагами на этой платформе, чтобы получить точные результаты.

    Как найти калькулятор производных?

    Онлайн-калькулятор производных найти несложно. Вы можете либо ввести полный URL-адрес этого калькулятора дифференциации в своей поисковой системе, либо выполнить поиск в Google по его названию. Вы можете выполнить поиск в Google с помощью «калькулятора производной» или «калькулятора обратной производной», и вы найдете наш новейший и точный онлайн-инструмент.

    Связанный: На этой платформе вы также можете найти аппроксимацию касательной с помощью калькулятора линеаризации. Вы также можете получить большую помощь от бесплатного онлайн-калькулятора производных цепного правила.

    Как использовать калькулятор производных с шагами?

    Наш дифференциальный калькулятор очень прост в использовании, так как вам необходимо следовать приведенной ниже процедуре:

    1. Напишите свое уравнение в первом поле ввода или загрузите любое уравнение, нажав на кнопку.
    2. Выберите переменную, которую хотите дифференцировать.
    3. Выберите, сколько раз вы хотите различать.
    4. Нажмите кнопку «РАССЧИТАТЬ».

    Сразу после нажатия на кнопку расчета наш калькулятор дифференцирования решит ваше уравнение и предоставит подробные результаты. Эти результаты помогут вам понять и изучить концепцию, практикуясь во время выполнения.

    Для закрепления расчетов относительно нормальной линии уравнения, вам нужно попробовать калькулятор уравнения нормальной линии, предлагаемый этим веб-сайтом.

    Связанные калькуляторы

    Существует множество других калькуляторов, связанных с дифференциальным калькулятором, которые вы можете использовать на этом веб-сайте бесплатно. Эти инструменты:

    • Калькулятор производной в точке
    • Калькулятор n-й производной
    • Калькулятор крайних точек
    • Калькулятор уклона криволинейной линии
    • Калькулятор производных графиков

    Часто задаваемые вопросы

    Как дифференцировать функцию f(x)=5,4x+2,4?

    Данная функция:

    $$ f(x) \;=\; 5,4x+2,4 $$

    Дифференцирование с обеих сторон по «х»

    $$f'(x) \;=\; д/дх(5,4х+2,4)$$

    У нас есть,

    $$ f'(x) \;=\; д/дх(5,4х)+д/дх(2,4) $$ $$ f'(x) \;=\; 5. 4(1)+0 \;=\; 5,4 $$

    Таким образом, мы можем различать эту простую функцию вручную. Кроме того, мы также можем использовать дифференциальный калькулятор функций для онлайн-расчетов.

    Как вычислить производную функции?

    Чтобы вычислить производную функции, необходимо выполнить следующие шаги:

    1. Помните, что производная – это вычисление скорости изменения функции.
    2. Применить производную к функции по независимой переменной, входящей в функцию.
    3. Упростите функцию, чтобы получить точное значение производной.

    Та же процедура использовалась калькулятором производных для расчета скорости изменения функции в режиме онлайн. 9⁡2x $$

    Производная от cos 2 x является производной тригнометрической функции, которая несколько сложна для студентов, которые не могут запомнить тригнометрические тождества. Для таких студентов решатель производных является отличным инструментом для вычисления производной тригонометрической функции.

    Как отличить e

    x ?

    Поскольку производная экспоненциальной функции с основанием «e» равна e x , дифференцирование e в степени x эквивалентно самому e в степени x. Математически это записывается как d/dx (e х ) = е х .

    Это может оцениваться в дифференцирующем решателе для перекрестной проверки ответа и его шагов онлайн.

    Алан Уокер

    Последнее обновление 19 сентября, 2022

    Я математик, технарь и автор контента. Я люблю решать шаблоны различных математических запросов и писать так, чтобы все могли понять. Математика и технология сделали свое дело, и теперь пришло время извлечь из этого пользу.

    Калькулятор производных с шагами | Дифференциальный калькулятор

    Определение калькулятора производных с шагами

    В исчислении есть два основных понятия, т. е. интегрирование и дифференцирование. Дифференциация обратна интегрированию. Как и интеграция, расчет деривативов носит технический характер и требует надлежащего внимания и внимания.

    Калькулятор производных представляет собой онлайн-инструмент, который обеспечивает полное решение дифференцирования. Калькулятор дифференцирования помогает кому-то вычислять производные во время выполнения с помощью нескольких щелчков мыши.

    Калькулятор дифференциации предоставляет полезные результаты в виде шагов, которые помогают пользователям и особенно учащимся подробно изучить эту концепцию.

    Для вычисления производных по x и y используйте калькулятор неявного дифференцирования с шагами.

    Формулы, используемые калькулятором производных

    Калькулятор производных обратных функций использует приведенную ниже формулу для нахождения производных функции. Формула производной:

    $$ \frac{dy}{dx} = \lim\limits_{Δx \to 0} \frac{f(x+Δx) — f(x)}{Δx} $$ 9{n-1} $$

  • Постоянное множественное правило:
  • $$ \frac{d}{dx}[cf(x)] = c. \frac{d}{dx}f(x) $$

    Здесь c = реальное число

  • Правило суммы и разности:
  • $$ \frac{d}{dx} (f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x) $$

  • Правило продукта:
  • $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x) \frac{d}{dx}[g(x)] + g(x) \frac{d }{dx}[f(x)] $$

    или

    $$ \frac{d}{dx}[f(x) \cdot g(x)] = f(x)g'(x) + g(x)f'(x) $$

    Вы также можете использовать калькулятор производных правил произведения для обучения и практики. 92} $$

    Также найдите калькулятор производной частного правила для более точных вычислений.

    Этот веб-сайт предоставляет полное решение для дифференцирования и всех расчетов, связанных с деривативами. Найдите калькулятор частичной дифференцировки и калькулятор производной по направлению на этом веб-сайте, чтобы еще больше укрепить свои представления о дифференцировании.

    Как работает калькулятор производных?

    Калькулятор производных с шагами — это онлайн-инструмент, который использует формулы и правила производных для вычисления точных результатов. Калькулятор дифференциации позволяет пользователям вводить данные в виде уравнения.

    Калькулятор дифференцирования затем решает это уравнение, используя другие правила производных или формулы. Если вы хотите продолжить расчет, используйте калькулятор второй производной с шагами.

    Кроме того, если вы хотите рассчитать его выше, на этом сайте есть другое решение для вас. Вы можете использовать калькулятор третьей производной с шагами на этой платформе, чтобы получить точные результаты.

    Как найти калькулятор производных?

    Онлайн-калькулятор производных найти несложно. Вы можете либо ввести полный URL-адрес этого калькулятора дифференциации в своей поисковой системе, либо выполнить поиск в Google по его названию. Вы можете выполнить поиск в Google с помощью «калькулятора производной» или «калькулятора обратной производной», и вы найдете наш новейший и точный онлайн-инструмент.

    Связанный: На этой платформе вы также можете найти аппроксимацию касательной с помощью калькулятора линеаризации. Вы также можете получить большую помощь от бесплатного онлайн-калькулятора производных цепного правила.

    Как использовать калькулятор производных с шагами?

    Наш дифференциальный калькулятор очень прост в использовании, так как вам необходимо следовать приведенной ниже процедуре:

    1. Напишите свое уравнение в первом поле ввода или загрузите любое уравнение, нажав на кнопку.
    2. Выберите переменную, которую хотите дифференцировать.
    3. Выберите, сколько раз вы хотите различать.
    4. Нажмите кнопку «РАССЧИТАТЬ».

    Сразу после нажатия на кнопку расчета наш калькулятор дифференцирования решит ваше уравнение и предоставит подробные результаты. Эти результаты помогут вам понять и изучить концепцию, практикуясь во время выполнения.

    Для закрепления расчетов относительно нормальной линии уравнения, вам нужно попробовать калькулятор уравнения нормальной линии, предлагаемый этим веб-сайтом.

    Связанные калькуляторы

    Существует множество других калькуляторов, связанных с дифференциальным калькулятором, которые вы можете использовать на этом веб-сайте бесплатно. Эти инструменты:

    • Калькулятор производной в точке
    • Калькулятор n-й производной
    • Калькулятор крайних точек
    • Калькулятор уклона криволинейной линии
    • Калькулятор производных графиков

    Часто задаваемые вопросы

    Как дифференцировать функцию f(x)=5,4x+2,4?

    Данная функция:

    $$ f(x) \;=\; 5,4x+2,4 $$

    Дифференцирование с обеих сторон по «х»

    $$f'(x) \;=\; д/дх(5,4х+2,4)$$

    У нас есть,

    $$ f'(x) \;=\; д/дх(5,4х)+д/дх(2,4) $$ $$ f'(x) \;=\; 5. 4(1)+0 \;=\; 5,4 $$

    Таким образом, мы можем различать эту простую функцию вручную. Кроме того, мы также можем использовать дифференциальный калькулятор функций для онлайн-расчетов.

    Как вычислить производную функции?

    Чтобы вычислить производную функции, необходимо выполнить следующие шаги:

    1. Помните, что производная – это вычисление скорости изменения функции.
    2. Применить производную к функции по независимой переменной, входящей в функцию.
    3. Упростите функцию, чтобы получить точное значение производной.

    Та же процедура использовалась калькулятором производных для расчета скорости изменения функции в режиме онлайн. 9⁡2x $$

    Производная от cos 2 x является производной тригнометрической функции, которая несколько сложна для студентов, которые не могут запомнить тригнометрические тождества. Для таких студентов решатель производных является отличным инструментом для вычисления производной тригонометрической функции.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *