Random converter |
Калькулятор мощности постоянного токаЭлектрическая схема с резистивной нагрузкой и источником питания постоянного тока Этот калькулятор потребляемой мощности постоянного тока определяет электрическую мощность по известным значениям напряжения, тока и сопротивления. Можно ввести любые два значения и получить два неизвестных значения. Пример 1: Рассчитайте сопротивление нагрузки и мощность, потребляемую 12-вольтовой галогенной ксеноновой лампой, потребляющей ток 5,5 А. Пример 2: Рассчитайте мощность, потребляемую смартфоном, подключенным к зарядному устройству, и его сопротивление нагрузки, если напряжение зарядного устройства 5,05 В и зарядный ток 45 мА (см. рисунок ниже). Пример 3: Рассчитайте ток в нагрузке и напряжение на ее выводах, если нагрузка потребляет 2 Вт мощности и ее сопротивление 10 Ом. Напряжение Uмикровольт (мкВ)милливольт (мВ)вольт (В)киловольт (кВ)мегавольт (МВ) Ток Iмикроампер (мкА)миллиампер (мА)ампер (А)килоампер (кА) Сопротивление Rмиллиом (мОм)ом (Ом)килоом (кОм)мегаом (МОм) Мощность Pмикроватт (мкВт)милливатт (мВт)ватт (Вт)киловатт (кВт)мегаватт (МВт) Для расчета введите любые две величины и нажмите на кнопку Рассчитать. Поделиться Поделиться ссылкой на этот калькулятор, включая входные параметры Twitter Facebook Google+ VK Закрыть Определения и формулы Электрический разряд Сила тока Электрическое напряжение Электрическое сопротивление Электрическая мощность Расчет электрической мощности на постоянном токе Определения и формулыЭтот калькулятор используется для расчета мощности постоянного тока и всё, о чем тут говорится, относится, в основном, к постоянному току. Намного более сложный случай расчета мощности в цепях переменного тока рассматривается в нашем Калькуляторе мощности переменного тока. См. также Калькулятор пересчета ВА в ватты. Электрический разрядЛиния электропередачи — пример устройства для передачи энергии от места, где она вырабатывается, до места, где она потребляется. Электрический заряд или количество электричества — скалярная физическая величина, определяющая способность тел создавать электромагнитные поля и принимать участие в электромагнитном взаимодействии. На электрически заряженное тело, помещенное в электромагнитное поле, действует сила, при этом заряды противоположного знака притягиваются друг к другу, а одноименные заряды — отталкиваются. Единицей измерения электрического заряда в системе СИ является кулон, равный заряду, проходящему через поперечное сечение проводника с током один ампер в течение одной секунды. Несмотря на то, что мы наблюдаем перемещение зарядов в любой электрической схеме, количество заряда не изменяется, так как электроны не создаются и не разрушаются. Электрический заряд в движении представляет собой электрический ток, рассматриваемый ниже. При перемещении заряда из одного места в другое мы осуществляем передачу электрической энергии. Подробнее об электрическом заряде, линейной плотности заряда, поверхностной плотности заряда и объемной плотности заряда и единицах их измерения. Сила токаСила тока — физическая величина, представляющая собой скорость перемещения заряженных частиц или носителей заряда (электронов, ионов или дырок) через некоторое сечение проводящего материала, который может быть металлом (например, проводом), электролитом (например, нейроном) или полупроводником (например транзистором). Если говорить более конкретно, это скорость потока электронов, например в схеме, показанной на рисунке выше. В системе СИ единицей измерения силы тока является ампер (символ А). Один ампер — это ток, возникающий при движении заряженных частиц со скоростью один кулон в секунду. Обозначается электрический ток символом I и происходит от французского intensité du courant («интенсивность тока»). Электрический ток может протекать в любом направлении — от отрицательной к положительной клемме электрической схемы и наоборот, в зависимости от типа заряженных частиц. Положительные частицы (положительные ионы в электролитах или дырки в полупроводниках) движутся от положительного потенциала к отрицательному и это направление произвольно принято за направление электрического тока. Такое направление можно рассматривать как движение заряженных частиц от более высокого потенциала к более низкому потенциалу или более высокой энергии к более низкой энергии. Это определение направления электрического тока сложилось исторически и стало популярным до того, как стало понятно, что электрический ток в проводах определяется движением отрицательных зарядов. Такое произвольно принятое направление электрического тока можно также использовать для объяснения электрических явлений с помощью гидравлической аналогии. Мы понимаем, что вода движется из точки с более высоким давлением в точку с более низким давлением. Между точками с одинаковыми давлениями потока воды быть не может. Поведение электрического тока аналогично — он движется от точки с более высоким электрическим потенциалом (положительной клеммы) к точке с более низким потенциалом (отрицательной клемме). Труба с водой ведет себя как проводник, а вода в ней — как электрический ток. Давление в трубе можно сравнить с электрическим потенциалом. Мы также можем сравнить основные элементы электрических схем с их гидравлическими аналогами: резистор эквивалентен сужению в трубе (например, из-за застрявших там волос), конденсатор можно сравнить с установленной в трубе гибкой диафрагмой. Катушку индуктивности можно сравнить с тяжелой турбиной, помещенной в поток воды, а диод можно сравнить с шариковым обратным клапаном, который позволяет потоку жидкости двигаться только в одном направлении. В системе СИ сила тока измеряется в амперах (А) и названа в честь французского физика Андре Ампера. Ампер — одна из семи основных единиц СИ. В мае 2019 г. было принято новое определение ампера, основанное на использовании фундаментальных физических констант. Ампер также можно определить как один кулон заряда, проходящий через определенную поверхность в одну секунду. Подробную информацию об электрическом токе можно найти в наших конвертерах Электрический ток и Линейная плотность тока. Скорость передачи заряда можно изменять, и эта возможность используется для передачи информации. Все системы передачи связи, такие как радио (конечно, сюда относятся и смартфоны) и телевидение, основаны на этом принципе. Электрическое напряжениеЭлектрическое напряжение или разность потенциалов в статическом электрическом поле можно определить как меру работы, требуемой для перемещения заряда между выводами элемента электрической схемы. Элементом может быть, например, лампа, резистор, катушка индуктивности или конденсатор. Напряжение может существовать между двумя выводами элемента независимо от того протекает между ними ток или нет. Например, у 9-вольтовой батарейки имеется напряжение между клеммами даже если к ней ничего не присоединено и ток не протекает. Единицей напряжения в СИ является вольт, равный одному джоулю работы по переносу одного кулона заряда. Вольт назван в честь итальянского физика Алессандро Вольта. В Северной Америке для обозначения напряжения обычно используется буква V, что не слишком удобно. Фактически, это так же неудобно, как и использование футов и дюймов. Сравните, например, V = 5 V or U = 5 V. Что бы вы выбрали? Во многих других странах, считают, что для обозначения напряжения лучше использовать букву U — потому что так удобнее. В немецких, французских и русских учебниках используется U. Считается, что эта буква происходит от немецкого слова Unterschied, означающего разницу или разность (напряжение — разность потенциалов). Мы знаем, что энергия, которая была использована для перемещения заряда через элемент схемы, не может исчезнуть и должна где-то появиться в той или иной форме. Это называется принципом сохранения энергии. Например, если этим элементом был конденсатор или аккумулятор, то энергия будет храниться в форме электрической энергии, готовой для немедленного использования. Если же этот элемент был, например, нагревательным элементом в духовке, то электроэнергия была преобразована в тепловую. В громкоговорителе электрическая энергия преобразуется в акустическую, то есть механическую энергию, и тепловую энергию. Практически вся энергия, которую потребляет работающий компьютер, превращается в тепло, которое нагревает помещение, в котором он находится. Теперь рассмотрим электрический элемент в форме автомобильной аккумуляторной батареи, подключенной к генератору для зарядки. В этом случае энергия подается в элемент. Если же двигатель не работает, но работает акустическая система автомобиля, то энергия подается самим элементом (батареей). Если ток входит в одну из двух клемм аккумулятора и внешний источник тока (в нашем случае — генератор) должен расходовать энергию, чтобы получить этот ток, то такая клемма называется положительной по отношению к другой клемме аккумулятора, которая называется отрицательной. Отметим, что эти знаки «плюс» и «минус» выбраны условно и позволяют нам обозначить напряжение, существующее между двумя клеммами. Подробнее об электрическом потенциале и напряжении USB тестер с соединителями типа USB-C, подключенный к зарядному устройству и смартфону (см. Пример 2 выше) На рисунке выше показан рассмотренный в Примере 2 USB тестер с соединителями USB Type C, подключенный к зарядному устройству USB (слева). Справа к тестеру подключен заряжаемый смартфон. Тестер измеряет потребляемый смартфоном ток. Красной стрелкой на тестере показано текущее направление тока. Иными словами, на дисплее тестера показано, что нагрузка (смартфон) подключена к правому порту и заряжается. Отметим, что если вместо зарядного устройства к левому порту подключить какое-нибудь USB-устройство, например, флэш-накопитель (флэшку), то данный тестер покажет обратное направление движения тока и потребляемый флэшкой ток. Электрическое сопротивлениеЭлектрическое сопротивление — физическая величина, характеризующая свойство тел препятствовать прохождению электрического тока. Оно равно отношению напряжения на выводах элемента к протекающему через него току: Эта формула называется законом Ома. Многие проводящие материалы имеют постоянную величину сопротивления R, поэтому U и I связаны прямой пропорциональной зависимостью. Сопротивление материалов определяется, в основном, двумя свойствами: самим материалом и его формой и размерами. Например, электроны могут свободно двигаться через золотой или серебряный проводник и не так легко через стальной проводник. Они совсем не могут двигаться по изоляторам любой формы. Конечно, и другие факторы влияют на сопротивление, однако в значительной меньшей мере. Такими факторами являются, например, температура, чистота проводящего материала, механическое напряжение проводящего материала (используется в тензорезистивных датчиках) и его освещение (используется в фоторезисторах). Подробнее об электрическом сопротивлении, проводимости and удельной проводимости and удельном сопротивлении. Электрическая мощностьМощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды. Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности. Расчет электрической мощности на постоянном токеМощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома. Лабораторный блок питания, показывающий напряжение на нагрузке и протекающий через нее ток Автор статьи: Анатолий Золотков Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:Калькулятор резистивно-емкостной цепи Калькулятор параллельных сопротивлений Калькулятор параллельных индуктивностей Калькулятор емкости последовательного соединения конденсаторов Калькулятор импеданса конденсатора Калькулятор импеданса катушки индуктивности Калькулятор взаимной индукции Калькулятор взаимоиндукции параллельных индуктивностей Калькулятор взаимной индукции — последовательное соединение индуктивностей Калькулятор импеданса параллельной RC-цепи Калькулятор импеданса параллельной LC-цепи Калькулятор импеданса параллельной RL-цепи Калькулятор импеданса параллельной RLC-цепи Калькулятор импеданса последовательной RC-цепи Калькулятор импеданса последовательной LC-цепи Калькулятор импеданса последовательной RL-цепи Калькулятор импеданса последовательной RLC-цепи Калькулятор аккумуляторных батарей Калькулятор литий-полимерных аккумуляторов для дронов Калькулятор индуктивности однослойной катушки Калькулятор индуктивности плоской спиральной катушки для устройств радиочастотной идентификации (RFID) и ближней бесконтактной связи (NFC) Калькулятор расчета параметров коаксиальных кабелей Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов Калькулятор цветовой маркировки резисторов Калькулятор максимальной дальности действия РЛС Калькулятор зависимости диапазона однозначного определения дальности РЛС от периода следования импульсов Калькулятор радиогоризонта и дальности прямой радиовидимости РЛС Калькулятор радиогоризонта Калькулятор эффективной площади антенны Симметричный вибратор Калькулятор частоты паразитных субгармоник (алиасинга) при дискретизации Калькулятор мощности переменного тока Калькулятор пересчета ВА в ватты Калькулятор мощности трехфазного переменного тока Калькулятор преобразования алгебраической формы комплексного числа в тригонометрическую Калькулятор коэффициента гармонических искажений Калькулятор законов Ома и Джоуля — Ленца Калькулятор времени передачи данных Калькулятор внутреннего сопротивления элемента питания батареи или аккумулятора Калькуляторы Электротехнические и радиотехнические калькуляторы |
формулы расчета на 220в и 380в
Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.
Содержание
Для чего нужен расчет тока
Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.
Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.
Расчет тока для однофазной сети
Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.
Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:
Электрические приборы и оборудование | Потребляемая мощность (кВт) | Сила тока (А) |
Стиральные машины | 2,0 – 2,5 | 9,0 – 11,4 |
Электрические плиты стационарные | 4,5 – 8,5 | 20,5 – 38,6 |
Микроволновые печи | 0,9 – 1,3 | 4,1 – 5,9 |
Посудомоечные машины | 2,0 – 2,5 | 9,0 – 11,4 |
Холодильники, морозильные камеры | 0,14 – 0,3 | 0,6 – 1,4 |
Электрический подогрев полов | 0,8 – 1,4 | 3,6 – 6,4 |
Мясорубка электрическая | 1,1 – 1,2 | 5,0 – 5,5 |
Чайник электрический | 1,8 – 2,0 | 8,4 – 9,0 |
Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.
Диаметры жил проводников (мм) | Сечение жил проводников (мм2) | Медные жилы | Алюминиевые жилы | ||
Сила тока (А) | Мощность (кВт) | Сила (А) | Мощность (кВт) | ||
0,8 | 0,5 | 6 | 1,3 | ||
0,98 | 0,75 | 10 | 2,2 | ||
1,13 | 1,0 | 14 | 3,1 | ||
1,38 | 1,5 | 15 | 3,3 | 10 | 2,2 |
1,6 | 2,0 | 19 | 4,2 | 14 | 3,1 |
1,78 | 2,5 | 21 | 4. 6 | 16 | 3,5 |
2,26 | 4,0 | 27 | 5,9 | 21 | 4,6 |
2,76 | 6,0 | 34 | 7,5 | 26 | 5,7 |
3,57 | 10,0 | 50 | 11,0 | 38 | 8,4 |
4,51 | 16,0 | 80 | 17,6 | 55 | 12,1 |
5,64 | 25,0 | 100 | 22,0 | 65 | 14,3 |
Расчет тока для трехфазной сети
В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.
Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.
Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.
Диаметры жил проводников (мм) | Сечение жил проводников (мм2) | Медные жилы | Алюминиевые жилы | ||
Сила тока (А) | Мощность (кВт) | Сила (А) | Мощность (кВт) | ||
0,8 | 0,5 | 6 | 2,25 | ||
0,98 | 0,75 | 10 | 3,8 | ||
1,13 | 1,0 | 14 | 5,3 | ||
1,38 | 1,5 | 15 | 5,7 | 10 | 3,8 |
1,6 | 2,0 | 19 | 7,2 | 14 | 5,3 |
1,78 | 2,5 | 21 | 7,9 | 16 | 6,0 |
2,26 | 4,0 | 27 | 10,0 | 21 | 7,9 |
2,76 | 6,0 | 34 | 12,0 | 26 | 9,8 |
3,57 | 10,0 | 50 | 19,0 | 38 | 14,0 |
4,51 | 16,0 | 80 | 30,0 | 55 | 20,0 |
5,64 | 25,0 | 100 | 38,0 | 65 | 24,0 |
В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.
Как рассчитать мощность тока
Как определить сечение провода по диаметру: формулы и готовые таблицы
Расчет сечения кабеля — примеры расчета, таблицы, калькулятор
Расчет сечения провода по потребляемой мощности
Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром
Пример расчета сечения кабеля: как правильно рассчитать проводку
Какой антенный кабель нужен для цифрового телевидения — Выбираем коаксиальный кабель
Калькулятор электроэнергии
Этот калькулятор электроэнергии поможет вам рассчитать мощность, потребляемую электрическими устройствами . Хотите знать, как рассчитать электрическую мощность? Вы задаетесь вопросом: что такое коэффициент мощности ? Просто прочитайте текст ниже, чтобы узнать.
Как рассчитать электрическую мощность
Электрическая мощность, как и механическая, представляет собой количество работы, выполняемой в единицу времени . В электрических цепях работа совершается электрическим током. Мощность зависит от «количества рабочих, доступных в единицу времени» – тока III и энергии «одного рабочего» – напряжения VVV.
В цепи постоянного тока мощность равна:
P=I V,P = I\,V,P=IV,
где:
- I [A]I\ \rm [A]I [A] – сила тока в амперах;
- В [В]В\ \rm [В]В [В] – напряжение в вольтах; и
- P[W]P [W]P[W] – мощность в ваттах.
В цепях переменного тока уравнение выглядит следующим образом:
P=I Vpf,P = I\, V \rm pf,P=IVpf,
где новый символ pf\rm pfpf означает коэффициент мощности .
Что такое коэффициент мощности?
В токах переменного тока ток и напряжение периодически изменяются во времени. Значения III или VVV соответствуют среднеквадратичному значению (RMS).
RMS — это квадратный корень из среднего квадрата чисел (дополнительные сведения см. в калькуляторе среднеквадратичного значения). Обычно упоминаемое напряжение электрических розеток ( 230 В в ЕС и Австралии, 110 В в США и Канаде, 100 В в Японии) соответствует напряжению RMS .
В цепях переменного тока ток и напряжение может не находиться в фазе . Максимальное значение тока может опережать или отставать от максимального значения напряжения. Это делает передачу власти менее эффективной. В худшем случае, когда ток и напряжение полностью не синхронизированы, передаваемая мощность равна нулю.
Коэффициент мощности говорит нам насколько ток синхронизирован с напряжением . Если они синхронизированы, коэффициент мощности равен 1 . В противном случае он меньше единицы и достигает нуля в случае полной рассинхронизации.
Коэффициент мощности зависит от устройства. Для устройства с чисто резистивным сопротивлением , такого как электрический чайник или электронагреватель, коэффициент мощности равен 1 . Устройство с индуктивными или емкостными элементами ставит ток и напряжение не в фазе. Это делает его коэффициент мощности меньше 1. Чтобы узнать больше, воспользуйтесь калькулятором коэффициента мощности.
Калькулятор электрической мощности
Для расчета электрической мощности необходимо указать ток, напряжение и коэффициент мощности элемента. Для устройств, подключенных к электрическим розеткам, напряжение — это просто напряжение бытовой электросети. Ток, потребляемый устройством, обычно можно найти либо на вилке, либо где-то на устройстве.
Коэффициент мощности определить немного сложнее, если только у вас нет под рукой анализатора качества электроэнергии. Проверьте этот список для коэффициентов мощности нескольких типичных бытовых устройств:
- Лампы со стандартной колбой: pf=1\rm pf = 1pf=1;
- Лампы люминесцентные: pf=0,93\rm pf=0,93pf=0,93;
- Обычный асинхронный двигатель при половинной нагрузке: pf=0,73\rm pf = 0,73pf=0,73, при полной нагрузке: pf=0,85\rm pf = 0,85pf=0,85;
- Электрическая духовка (с резистивным нагревательным элементом): pf=1,0\rm pf = 1,0pf=1,0; и
- Индуктивная печь: pf=0,85\rm pf = 0,85pf=0,85.
Точное значение коэффициента мощности зависит от деталей конструкции, поэтому относитесь к этим значениям с недоверием.
Мощность прибора
Вы также можете воспользоваться нашим калькулятором мощности прибора, чтобы узнать, как рассчитать потребляемую мощность.
Калькулятор мощности, напряжения, тока и сопротивления
Этот калькулятор основан на простом законе Ома. Как мы уже поделились Калькулятор закона Ома (P,I,V,R) В котором также можно рассчитать трехфазный ток. Но мы разработали его специально для цепей постоянного тока (а также для работы с однофазными цепями переменного тока без коэффициента мощности… (Мы поделимся другим калькулятором для расчета коэффициента мощности). , 4, 5 и 6-полосные резисторы Расчет
Калькулятор мощности, напряжения, тока и сопротивления
Введите любые два из следующих значений и нажмите кнопку расчета. В результате отобразятся рассчитанные значения.