Плотность чугуна: кг/м3 и г/см3. Удельная плотность чугуна СЧ15 и ВЧ40, жидкого и ковкого твердого, ДМ3 и ЧХ1, ЧХ16 и СЧ18

Содержание

Теплоемкость чугуна, теплопроводность чугуна, плотность, энтальпия, состав и свойства

Удельная теплоемкость чугуна

В таблице представлены значения средней удельной теплоемкости чугуна и энтальпия (теплосодержание) серых чугунов различного состава в зависимости от температуры.

Теплоемкость чугуна выражена в кДж/(кг·град) и указана в диапазоне от 100 до 1350°С.
Из таблицы видно, что с повышением температуры значения массовой теплоемкости чугуна и его энтальпия возрастают.

То же можно сказать и про энтальпию серых чугунов. Значения удельной теплоемкости чугунов и их энтальпия имеют различие в зависимости от состава чугуна. Например, при температуре 200°С теплоемкость чугуна в зависимости от состава изменяется от 290,1 до 460,5 Дж/(кг·град). При нагревании чугуна до температуры 1300°С эта величина увеличивается и становится равной 800…900 Дж/(кг·град).

Теплопроводность чугуна

В таблице даны значения теплопроводности чугуна в зависимости от температуры и состава. Также указана теплопроводность жидкого чугуна при температуре 1400°С.

Представлены значения теплопроводности для следующих марок чугуна: обыкновенный чугун, чугун молибденохромистый, молибденовый, хромоникелевый, марганцевоникелевый, чугун никельрезист, никросилал, хромоалюминиевый, медистый, обыкновенный чистый, серый чугун, отожженый ковкий чугун, жидкий чугун.

Теплопроводность чугуна дана в зависимости от температуры в диапазоне от 0 до 400°С. По данным таблицы видно, что с ростом температуры теплопроводность чугуна уменьшается. Значения теплопроводности чугуна распространенных марок указаны также в этой таблице.

Плотность чугуна, температура плавления и коэффициент линейного расширения

В таблице представлена плотность чугуна различных сортов, а также температура плавления чугуна и его коэффициент теплового линейного расширения (КТлР).

Следует отметить что плотность чугуна в зависимости от сорта находится в диапазоне от 6600 до 7700 кг/м3. Температура плавления чугуна составляет от 1095 до 1315°С, а его КТлР от 10,5 до 18·10-6 1/град.

Плотность чугуна, температура плавления и коэффициент расширения
Плотность чугуна, кг/м3
Серый чугун наименее плотный высокоуглеродистый6600-6950
Серый чугун обычный средней плотности7000-7300
Высококачественный чугун малоуглеродистый7400-7500
Жаростойкий, жаропрочный7500-7600
Чугун высоколегированный аустенитного класса7500-7700
Температура плавления чугуна, °С
Обычный серый чугун1095-1315
Жаростойкий чугун1300
Коэффициент линейного расширения чугуна (КТлР), 1/град
Обычный серый при температуре 20…450°С10,5·10-6
Обычный серый при температуре 20…750°С14·10-6
Высоколегированный аустенитного класса при температуре 20…150°С(16…18)·10-6
Жаростойкий чугун при температуре 20…250°С16,7·10-6
Жаростойкий чугун при температуре 250…750°С17,6·10-6

Источники:

  1. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  2. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Плотность чугуна, значение и примеры

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Плотность чугуна и другие его физические свойства

Углерод в составе чугуна может присутствовать в различных формах: в виде соединения состава Fe3C, называемого цементитом или в виде графита (пластинчатого, хлопьевидного или сферического), причем от формы графита в значительной мере зависят свойства чугуна.

Он в очень малой степени способен к пластической деформации (в обычных условиях не поддается ковке), но обладает хорошими литейными свойствами. Чугун дешевле стали.

Выделяют белый, серый, высокопрочный и ковкий чугун. Плотность чугуна показана ниже:

Чугун

белый

серый

(СЧ 10 ГОСТ 1412-85)

высокопрочный

(ВЧ 35 ГОСТ 7293-85

ковкий

(КЧ 70-2 ГОСТ 1215-79)

7400 – 7750

6800

7200

7000

Белый чугун содержит весь углерод в виде цементите. Он обладает высокой твердостью, хрупок и поэтому имеет ограниченное применение.

В основном он выплавляется для передела на сталь.

В сером чугуне углерод содержится главным образом в виде пластинок графита. Серый чугун (рис. 1) характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Кроме углерода, серый чугун содержит другие элементы. Важнейшие из них – это кремний и марганец. В большинстве марок серого чугуна содержание углерода лежит в пределах 2,4-3,8%, кремния 1-4% и марганца до 1,4%.

Рис. 1. Серый чугун. Внешний вид.

Высокопрочный чугун получают присадкой к жидкому чугуну некоторых элементов, в частности магния, под влиянием которого графит при кристаллизации принимает сферическую форму. Сферический графит улучшает механические свойства чугуна. Из высокопрочного чугуна изготовляют коленчатые валы, крышки цилиндров, детали прокатных станов, прокатные валки, насосы, вентили.

Ковкий чугун получают длительным нагреванием отливок из белого чугуна. Его применяют для изготовления деталей, работающих при ударных и вибрационных нагрузках. Пластичность и прочность ковкого чугуна обусловлены тем, что углерод находится в нем в форме хлопьевидного графита.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Как определить плотность металла – Примечания Канадского института охраны природы (CCI) 9/10

  • Введение
  • Процедура: определение плотности металла
  • Наука, стоящая за измерением плотности
  • Благодарности
  • Ссылки

Введение

Плотность объекта равна массе объекта, деленной на его объем. Плотность характеризует материал, из которого сделан объект, и ее значение может помочь идентифицировать материал.

За исключением объектов простой формы, трудно определить объем напрямую. Простой способ определить плотность металлического предмета — взвесить его в воздухе, а затем снова взвесить, когда он будет погружен в жидкость, как описано в разделе Наука об измерении плотности. Вода является наиболее удобной жидкостью для использования, но если предмет нельзя погружать в воду, можно использовать органические растворители, такие как этанол или ацетон. Плотность объекта можно рассчитать по двум измерениям веса и плотности жидкости.

При правильном балансе и подходящем контейнере этот метод можно использовать для самых разных объектов: больших или малых, металлических и неметаллических. Этот метод работает для сложных форм, даже для объектов с отверстиями, если жидкость может проникнуть в отверстия и заполнить их. После того, как плотность определена, ее можно сравнить с плотностью известных материалов, чтобы сузить круг вопросов, из которых может быть сделан объект.

В этом примечании описывается процедура и необходимые материалы для определения плотности металлического предмета. Первым шагом является проведение процедуры на одном или нескольких металлических объектах известного состава, будь то чистый металл или сплав, чтобы получить опыт использования метода и убедиться, что он используется правильно. Затем можно определить плотность неизвестных металлов.

Процедура: определение плотности металла

Оборудование и материалы, необходимые для определения плотности

  • Небольшие металлические предметы, которые можно погружать в воду
  • Весы с возможностью взвешивания ниже баланса (то есть могут взвешивать предметы, подвешенные под ним) и которые могут измерять с разрешением не менее 0,01 грамма (см. раздел Весы без возможности взвешивания ниже баланса, чтобы узнать, как адаптировать процедуру взвешивания ниже баланс)
  • Металлическая проволока для крепления к крючку внутри баланса (хорошо подойдет изогнутая скрепка)
  • Подставка или платформа для удержания баланса, чтобы предметы можно было подвешивать под ней с помощью крючка
  • Стаканы достаточно большие, чтобы предметы могли быть полностью погружены в воду без перелива жидкости
  • Опоры для удержания стаканов на нужной высоте под весами
  • Водопроводная вода
  • Калькулятор     
  • Нейлоновая нить (например, леска или аналогичный легкий материал) для подвешивания предметов под весами
  • Одноразовые нитриловые перчатки
  • Дополнительно: зажимы для крепления опоры весов к краю стойки

Процедура определения плотности с возможностью взвешивания ниже баланса

  1. Снимите крышку с нижней стороны весов, чтобы открыть внутренний крючок.
  2. Поместите весы на опору с отверстием для доступа к внутреннему крюку.
  3. Прикрепите проволочный крюк к внутреннему крюку, а затем тарируйте весы (установите их на ноль).
  4. Подвесьте предмет на крючок под весами с помощью нейлоновой нити или аналогичного материала и взвесьте его в воздухе. Надевайте перчатки при работе с металлическими предметами, особенно с подозрениями на содержание свинца.
  5. Наполните стакан водой и поставьте его под весы.
  6. Поднимите стакан, пока объект полностью не погрузится в него. Поместите подставку под стакан, чтобы удерживать его на нужной высоте. Убедитесь, что под объектом или в пустотах внутри объекта нет пузырьков.
  7. Взвесьте погруженный объект.
  8. Рассчитайте плотность, используя приведенное ниже уравнение.
  9. Сравните расчетную плотность с известной плотностью металлов и сплавов, используя приведенную ниже таблицу или более подробные списки, доступные в справочных материалах.
  10. Повторите шаги 4–9 с остальными объектами.

Расчет плотности

Плотность ρ объекта или материала определяется как масса m, деленная на объем V; в символах ρ = m/V. Если предмет взвешивают в воздухе, чтобы определить его фактическую массу, и взвешивают в жидкости, чтобы определить его (кажущуюся) массу в жидкости, то плотность предмета определяется как:0017

Плотность воды 0,998 г/см 3 при 20°С и 0,997 г/см 3 при 25°С.

Результаты этой процедуры

Примеры объектов

На рис. 1 показаны примеры восьми различных металлических образцов, использованных для демонстрации этой процедуры.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0358

Рисунок 1. Металлические предметы, используемые для демонстрации процедуры.

Ниже приведены измеренные значения плотности образцов металлов на рис. 1.

В верхнем ряду слева направо:

  1. Вероятно, чугун (7,13 г/см 3 )
  2. Алюминий высокой чистоты (2,70 г/см 3 )
  3. Красноватый медный сплав (возможно, 85 % меди и 15 % цинка, 8,23 г/см 3 )
  4. Медь высокой чистоты (8,88 г/см 3 )

В нижнем ряду слева направо:

  1. Литой цинк (сплав неизвестен, 7,09 г/см 3 )
  2. Свинец высокой чистоты (11,20 г/см 3 )
  3. Олово высокой чистоты (7,27 г/см 3 )
  4. Желтый картридж из латуни (70 % меди и 30 % цинка, 8,45 г/см 3 )

В каждом образце плотность определяли по приведенной выше формуле. Например, для алюминиевого предмета (b) масса оказалась равной 110,18 г в воздухе и 69,45 г в воде, что дает плотность 2,70 г/см 3 . Для чугунного предмета (а) масса была 2090,47 г в воздухе и 180,13 г в воде, что дает 7,13 г/см 3 . Для свинцового объекта (f) масса в воздухе составляла 102,44 г, а в воде — 93,31 г, что дает 11,20 г/см 3 .

Измеренные плотности алюминия, чугуна и свинца (2,70, 7,13 и 11,20 г/см 3 ) близки к известным плотностям (2,71, 7,20 и 11,33 г/см 3 из таблицы 1). Таким образом, алюминиевые и свинцовые предметы легко идентифицируются по плотности.

Для предмета из чугуна одной плотности недостаточно, чтобы исключить другие металлы, такие как цинк (известная плотность 7,13 г/см 3 ). Когда плотность неизвестного металла близка к нескольким металлам и сплавам (например, цинку, железу и олову), тогда необходимо определить другие свойства, такие как магнетизм и цвет, чтобы помочь идентифицировать его.

Известная плотность отдельных металлов и сплавов

Известная плотность выбранных металлов и сплавов приведена в таблице 1 в порядке возрастания плотности (ASTM 2006, Lide 1998).

Таблица 1: известная плотность выбранных металлов и сплавов
Металл или сплав Плотность (г/см 3 )
Алюминий 2,71
Алюминиевые сплавы 2,66–2,84
Цинк 7,13
Железо (серое литье) 7,20
Олово 7,30
Сталь (углеродистая) 7,86
Нержавеющая сталь 7,65–8,03
Латунь (картридж: 70 % меди, 30 % цинка) 8,52
Латунь (красная: 85 % меди, 15 % цинка) 8,75
Нейзильбер (65 % меди, 18 % никеля, 17 % цинка) 8,75
Бронза (85 % меди, 5 % олова, 5 % цинка, 5 % свинца) 8,80
Никель 8,89
Медь 8,94
Серебро 10,49
Свинец 11,33
Золото 19. 30

Детали баланса

Весы с возможностью взвешивания ниже нормы обычно поставляются с крышкой под внутренним крюком. На рис. 2 показан пример расположения крышки на дне весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0359
Рис. 2. Весы с возможностью взвешивания ниже баланса.

На рис. 3 показан увеличенный вид с закрытой крышкой; на рис. 4 крышка открывается, открывая внутренний крючок.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0360
Рис. 3. Фрагмент нижней стороны весов, показывающий подвижную металлическую крышку, закрывающую внутренний крюк.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0361
Рис. 4. Фрагмент нижней стороны весов, показывающий внутренний крючок после поворота металлической крышки.

На рис. 5 показана металлическая проволока, согнутая в виде крючков на обоих концах. На рис. 6 показан крючок на одном конце проволоки, прикрепленный к внутреннему крючку внутри весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0363
Рисунок 5. Проволока с концами, загнутыми в форме крючка.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0362
Рисунок 6. Деталь проволоки, загнутой в крюки на обоих концах. Верхний конец крючка прикреплен к другому крючку внутри весов.

На рис. 7 показаны весы, размещенные на подставке из плексигласа с прорезанным в верхней части отверстием. Отверстие позволяет получить доступ к крючку на нижней стороне весов.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0365
Рис. 7. Весы помещаются на подставку из плексигласа, при этом крюк вот-вот пройдет через отверстие в подставке.

На рис. 8 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым на воздухе. На рис. 9 показаны весы на штативе из плексигласа с прямоугольным образцом из чистой меди, взвешиваемым в воде. Меньшая подставка из плексигласа используется для поддержки стакана на нужной высоте.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0366
Рис. 8. Взвешивание прямоугольного образца чистой меди на воздухе.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0367
Рис. 9. Прямоугольный образец из чистой меди, погруженный в воду.

На рис. 10 показан пример объекта с отверстием, в которое попали пузырьки воздуха. Будьте осторожны, чтобы пузырьки воздуха не попали в объект, так как это приведет к неточным показаниям.

© Правительство Канады, Канадский институт охраны природы. ТПП 120260-0375
Рисунок 10. Три пузырька воздуха, застрявшие в отверстии.

Дополнительная информация

Использование других растворителей, кроме воды

Если нецелесообразно погружать объект в воду, например, из железа, из-за того, что он очень восприимчив к ржавчине, можно использовать органический растворитель, такой как ацетон или безводный этанол. Необходимо использовать надлежащую вентиляцию и соответствующие средства индивидуальной защиты. Рекомендуемое оборудование см. в паспорте безопасности (SDS) конкретного растворителя. Плотность ацетона 0,790 г/см 3 и плотность безводного этанола 0,789 г/см 3 , оба при 20°С. Для тех, кому может понадобиться использовать одну из этих других жидкостей, попробуйте измерить плотность объекта, используя как воду, так и одну из этих жидкостей, и сравните результаты.

Советы по адаптации весов
Альтернативная подставка для весов

Лист фанеры с отверстием можно прикрепить к краю стойки, если нет подставки для балансировки (Рисунок 11).

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0296
Рисунок 11: Платформа для весов из фанеры и зажимов.

Весы без возможности взвешивания ниже баланса

Весы без крюка для взвешивания можно использовать для определения плотности, но для этого требуется рама, чтобы подвешивать объект под весами и передавать вес объекта на весы. Баланс должен быть установлен на платформе; можно использовать установку, подобную показанной на рис. 11. (В этом случае отверстие в дереве, показанное на рис. 11, не требуется.) Затем вокруг весов и платформы устанавливается четырехгранная рама (в форме фоторамки), которая опирается только на чашу весов и не соприкасается ни с одной из сторон. другая часть баланса (рис. 12). Весы тарируются с рамой и крюком на месте, а затем объект прикрепляется к крюку на раме и взвешивается в воздухе и в жидкости, как в шагах 4–9.Методика: определение плотности металла.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0298
Рис. 12. Вид спереди (левая сторона рисунка) и вид сбоку (правая сторона), демонстрирующие весы без возможности взвешивания ниже баланса. Верхний сегмент прямоугольной рамы опирается на чашу весов, а предмет крепится к нижнему сегменту.

Наука, стоящая за измерением плотности

Плавучесть и закон Архимеда

Методы этой процедуры восходят к третьему веку до нашей эры. В своей книге «О плавающих телах» Архимед Сиракузский предположил, что если объект погрузить в жидкость и взвесить, он будет измерен как легче, чем его истинный вес, на вес жидкости, которую он вытесняет. История гласит, что Архимед использовал эту идею, чтобы показать, что корона — это не чистое золото, а скорее смесь золота и серебра (Heath 1920).

Объект кажется легче в жидкости, потому что на объект действует сила, называемая выталкивающей силой. Сила возникает из-за того, что давление в жидкости увеличивается с глубиной, поэтому давление на нижнюю часть объекта (толкающее объект вверх) выше, чем давление на верхнюю часть (толкающее его вниз). Разница между давлением вверх и вниз создает выталкивающую силу. Выталкивающая сила, толкающая предмет вверх, действует против силы тяжести, которая тянет предмет вниз. Если выталкивающая сила меньше силы тяжести, объект утонет, но в жидкости будет казаться, что он весит меньше, чем в воздухе. Если выталкивающая сила больше силы тяжести, объект всплывет на поверхность жидкости.

Плотность объекта рассчитывается по приведенной ранее формуле

Когда плотность известна, ее можно использовать для расчета объема объекта по следующей формуле:

Объем объекта = (масса в воздухе) / (плотность объекта)

Как и вода, воздух создает выталкивающую силу. (Вот почему воздушные шары с гелием всплывают вверх.) Выталкивающая сила воздуха слишком мала, чтобы иметь значение в этой процедуре, но ее следует учитывать, когда требуется высокая точность взвешивания (Skoog et al. 2014).

Плотность определяется по перемещенному объему

Более простой, но менее точный способ измерения плотности состоит в том, чтобы поместить объект в жидкость и измерить объем вытесненной жидкости. Это можно использовать для небольших объектов, которые помещаются в градуированный цилиндр, например, чтобы решить, сделан ли объект из свинца или менее плотного металла.

Процедура следующая. Найдите градуированный цилиндр диаметром не намного больше предмета. Определите массу предмета с помощью подходящих весов. Добавьте воду в мерный цилиндр и запишите первоначальный объем. Полностью погрузите предмет в воду, стараясь не допустить появления пузырьков, а затем запишите объем еще раз. Объем объекта равен разности конечного и начального объемов, отсчитанных от градуированного цилиндра, а плотность — это масса, деленная на объем объекта.

В качестве примера была измерена фигурка лося. Масса составила 4,088 г. На рис. 13 фигурка изображена снаружи градуированного цилиндра, а на рис. 14 — в погруженном состоянии. Объем воды в градуированном цилиндре увеличился с 5,0 мл до 5,6 мл, когда фигурка была погружена в воду, что дало изменение объема на 0,6 мл. Игнорируя любые ошибки в измерении объема, вычисленная плотность составляет 4,088 г/0,6 мл = 6,8 г/см 3 . (Примечание: 1 мл = 1 см 3 .) Это меньше плотности цинка и может свидетельствовать о сплаве цинка и более легкого металла, возможно, магния или алюминия. Но учитывая небольшой объем, есть погрешности в измерении. Объем можно измерить только с точностью до 0,1 мл с помощью мерного цилиндра, поэтому объем может составлять примерно от 0,5 мл до 0,7 мл. Таким образом, плотность может варьироваться от 4,088 г/0,7 мл = 5,8 г/см 3 до 4,088 г/0,5 мл = 8,2 г/см 3 . Из этого диапазона размеров фигурка может быть из цинка, железа, олова, стали или других сплавов, но это не чистый алюминий или чистый свинец. На самом деле анализ показал, что это олово с плотностью 7,30 г/см 3 .

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0373
Рис. 13. Небольшой металлический предмет перед погружением в воду в градуированном цилиндре объемом 25 мл. Обратите внимание на уровень воды.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0374
Рисунок 14. Небольшой металлический предмет после погружения в воду в градуированном цилиндре объемом 25 мл. Уровень воды примерно на 0,6 мл выше, чем до погружения объекта.

Другое использование

Описанные выше процедуры можно использовать не только для идентификации металлов по их плотности.

Груз для литья металлов

При отливке скульптуры необходимо оценить количество металла, необходимого для заполнения формы модели скульптуры. Если отливаемая модель может быть погружена в воду, объем модели можно определить с помощью описанных выше методов. Тогда необходимую массу m металла можно рассчитать по объему V модели и плотности ρ металла по формуле m = ρV. (Имейте в виду, что дополнительный металл обычно требуется для заполнения каналов, направляющих расплавленный металл в форму.)

Благодарности

Особая благодарность Миган Уолли, Люси ‘т Харт и Кэтрин Мачадо, бывшим стажерам CCI, за их помощь в подготовке этой заметки.

Ссылки

ASTM G1-03. «Стандартная практика подготовки, очистки и оценки образцов для испытаний на коррозию». В Ежегодном сборнике стандартов ASTM, vol. 03. 02. Вест Коншохокен, Пенсильвания: Американское общество испытаний и материалов, 2006 г., стр. 17–25.

Хит, Т.Л. Архимед. Нью-Йорк, штат Нью-Йорк: Макмиллан, 19 лет.20.

Лиде, Д.Р., изд. Справочник CRC по химии и физике, 79-е изд. Бока-Ратон, Флорида: CRC Press, 1998, стр. 12-191–12-192.

Скуг, Д.А., Д.М. Уэст, Ф.Дж. Холлер и С.Р. Присесть. Основы аналитической химии, 9-е изд. Бельмонт, Калифорния: Брукс/Коул, 2014 г., стр. 22–23.

Автор Линдси Селвин

Également publié во французской версии.

© Правительство Канады, Канадский институт охраны природы, 2016 г.

ISSN 1928-1455

Лист технических данных сплава

ASTM A536 65-45-12 Ковкий чугун

Опубликовано Penticton Foundry on 10 февраля 2016 г.

Ковкий чугун ASTM A536

Ковкий чугун ASTM A536, класс 65-45-12 (связанные стандарты — SAE J434C D4512; ISO 1083 400-12)

ASTM A536 65-45-12 представляет собой шаровидный чугун с ферритной и перлитной микроструктурой и механическими легированные стали. Ковкий чугун 65-45-12 – одна из многих марок. Требования к химическому составу не указаны в стандарте ASTM A536. Химический состав и твердость, указанные в этой спецификации, являются типичными для класса 65-45-12.

Состав

 

С

Мн

Си

Кр

Никель

Медь

мг

Мин.%

3,4

 

2,35

 

 

 

0,025

Макс. %

3,8

0,4

2,75

0,08

0,5

0,4

0,055

Физические и механические свойства

UTS (psi)

65000

YS (psi)

45000

%Удлинение

12%

Твердость

 

Плотность фунт/дюйм 3 (г/см 3 )

0,256(7,1)

Теплопроводность   БТЕ/ч·фут·F (Вт/м·K)

250(36) для ферритных марок, изменится с увеличением содержания перлита, ок. На 20% меньше

Удельная теплоемкость при 70F БТЕ/фунт·Ф (Дж/кг·к)

0,110(461)

Coefficient of Thermal Expansion Ɛ /F( Ɛ / C) X10 6 average between 68-212F

6,4 (11,5)

Температура плавления (F)

2100 Ф

Прочность на сжатие Ksi (МПа)

429 (2960)

Ударные свойства
Ударные свойства ковкого чугуна зависят от микроструктуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *