ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y x 6: ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=x-6 — Π¨ΠΊΠΎΠ»ΡŒΠ½Ρ‹Π΅ Знания.com

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 50
2ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 45
3Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ5+5
4Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ7*7
5Π Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° простыС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ24
6ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ52/6
7ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ93/8
8ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ34/5
9Π“Ρ€Π°Ρ„ΠΈΠΊy=x+1
10ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 128
11Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхностисфСра (3)ο„΅
12Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ54-6Γ·2+6
13Π“Ρ€Π°Ρ„ΠΈΠΊy=-2x
14Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ8*8
15ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² Π΄Π΅ΡΡΡ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ 5/9
16ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 180
17Π“Ρ€Π°Ρ„ΠΈΠΊy=2
18ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ7/8
19Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ9*9
20Risolvere per CC=5/9*(F-32)
21Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ1/3+1 1/12
22Π“Ρ€Π°Ρ„ΠΈΠΊy=x+4
23Π“Ρ€Π°Ρ„ΠΈΠΊy=-3
24Π“Ρ€Π°Ρ„ΠΈΠΊx+y=3
25Π“Ρ€Π°Ρ„ΠΈΠΊx=5
26Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ6*6
27Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2*2
28Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ4*4
29Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ1/2+(2/3)Γ·(3/4)-(4/5*5/6)
30Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ1/3+13/12
31Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ5*5
32Risolvere per d2d=5v(o)-vr
33ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ3/7
34Π“Ρ€Π°Ρ„ΠΈΠΊy=-2
35ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΊΠ»ΠΎΠ½y=6
36ΠŸΠ΅Ρ€Π΅Π²Π΅ΡΡ‚ΠΈ Π² ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π½ΠΎΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅9
37Π“Ρ€Π°Ρ„ΠΈΠΊy=2x+2
38Π“Ρ€Π°Ρ„ΠΈΠΊy=2x-4
39Π“Ρ€Π°Ρ„ΠΈΠΊx=-3
40Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2+5x+6=0
41ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ1/6
42ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² Π΄Π΅ΡΡΡ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ9%
43Risolvere per n12n-24=14n+28
44Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ16*4
45Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒΠΊΡƒΠ±ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 125
46ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ43%
47Π“Ρ€Π°Ρ„ΠΈΠΊx=1
48Π“Ρ€Π°Ρ„ΠΈΠΊy=6
49Π“Ρ€Π°Ρ„ΠΈΠΊy=-7
50Π“Ρ€Π°Ρ„ΠΈΠΊy=4x+2
51ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΊΠ»ΠΎΠ½y=7
52Π“Ρ€Π°Ρ„ΠΈΠΊy=3x+4
53Π“Ρ€Π°Ρ„ΠΈΠΊy=x+5
54Π“Ρ€Π°Ρ„ΠΈΠΊ3x+2y=6
55Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2-5x+6=0
56Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2-6x+5=0
57Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2-9=0
58ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 192
59ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСнияквадратный ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 25/36
60Π Π°Π·Π»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° простыС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ14
61ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ7/10
62Risolvere per a(-5a)/2=75
63Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒx
64Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ6*4
65Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ6+6
66Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-3-5
67Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-2-2
68Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 1
69Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 4
70Найти ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ1/3
71ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ11/20
72ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ7/9
73Найти НОК11 , 13 , 5 , 15 , 14 , , , ,
74Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2-3x-10=0
75Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2+2x-8=0
76Π“Ρ€Π°Ρ„ΠΈΠΊ3x+4y=12
77Π“Ρ€Π°Ρ„ΠΈΠΊ3x-2y=6
78Π“Ρ€Π°Ρ„ΠΈΠΊy=-x-2
79Π“Ρ€Π°Ρ„ΠΈΠΊy=3x+7
80ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠΌ2x+2
81Π“Ρ€Π°Ρ„ΠΈΠΊy=2x-6
82Π“Ρ€Π°Ρ„ΠΈΠΊy=2x-7
83Π“Ρ€Π°Ρ„ΠΈΠΊy=2x-2
84Π“Ρ€Π°Ρ„ΠΈΠΊy=-2x+1
85Π“Ρ€Π°Ρ„ΠΈΠΊy=-3x+4
86Π“Ρ€Π°Ρ„ΠΈΠΊy=-3x+2
87Π“Ρ€Π°Ρ„ΠΈΠΊy=x-4
88Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(4/3)Γ·(7/2)
89Π“Ρ€Π°Ρ„ΠΈΠΊ2x-3y=6
90Π“Ρ€Π°Ρ„ΠΈΠΊx+2y=4
91Π“Ρ€Π°Ρ„ΠΈΠΊx=7
92Π“Ρ€Π°Ρ„ΠΈΠΊx-y=5
93Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2+3x-10=0
94Π Π΅ΡˆΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корняx^2-2x-3=0
95Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхностиконус (12)(9)ο„²
96ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ3/10
97ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ7/20
98ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ2/8
99Risolvere per wV=lwh
100Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ6/(5m)+3/(7m^2)

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-4
2ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ4x^2+20x+16
3Π“Ρ€Π°Ρ„ΠΈΠΊy=-x^2
4Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2+2
5ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-25
6ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+5x+6
7ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-9
8ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3-8
9Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 12
10Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 20
11Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 50
12ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-16
13Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 75
14ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-1
15ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3+8
16Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-2^2
17Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· (-3)^4
18Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 45
19Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 32
20Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 18
21ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^4-16
22Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 48
23Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 72
24Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· (-2)^4
25ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3-27
26Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-3^2
27ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^4-1
28ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+x-6
29ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3+27
30ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-5x+6
31Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 24
32ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-36
33ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-4x+4
34Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-4^2
35ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-x-6
36ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^4-81
37ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3-64
38Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ4^3
39ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3-1
40Π“Ρ€Π°Ρ„ΠΈΠΊy=x^2
41Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2^3
42Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-12+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -18)/60
43ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-6x+9
44ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-64
45Π“Ρ€Π°Ρ„ΠΈΠΊy=2x
46ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3+64
47Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-8+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -12)/40
48ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-8x+16
49Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ3^4
50Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-5^2
51ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-49
52Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-20+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -75)/40
53ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+6x+9
54ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ4x^2-25
55Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 28
56ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-81
57Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2^5
58Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-8^2
59Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2^4
60ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ4x^2-9
61Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-20+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -50)/60
62Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-8+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -20)/24
63ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+4x+4
64ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-10x+25
65Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -16
66ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-2x+1
67Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-7^2
68Π“Ρ€Π°Ρ„ΠΈΠΊf(x)=2^x
69Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2^-2
70Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 27
71Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 80
72ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^3+125
73Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ-9^2
74ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ2x^2-5x-3
75Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 40
76ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+2x+1
77ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+8x+16
78Π“Ρ€Π°Ρ„ΠΈΠΊy=3x
79ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+10x+25
80Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ3^3
81Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ5^-2
82Π“Ρ€Π°Ρ„ΠΈΠΊf(x)=x^2
83Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 54
84Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-12+ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -45)/24
85ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+x-2
86Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ(-3)^3
87ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-12x+36
88ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+4
89Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· (-8)^2
90ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+7x+12
91Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· -25
92ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-x-20
93Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ5^3
94ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+8x+15
95ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2+7x+10
96ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ2x^2+5x-3
97Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 116
98ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-x-12
99ΠœΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒx^2-x-2
100Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ2^2

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y x 6.

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

К соТалСнию, Π½Π΅ всС студСнты ΠΈ школьники Π·Π½Π°ΡŽΡ‚ ΠΈ Π»ΡŽΠ±ΡΡ‚ Π°Π»Π³Π΅Π±Ρ€Ρƒ, Π½ΠΎ Π³ΠΎΡ‚ΠΎΠ²ΠΈΡ‚ΡŒ домашниС задания, Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΈ ΡΠ΄Π°Π²Π°Ρ‚ΡŒ экзамСны приходится ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ. ОсобСнно Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΠΌ Π΄Π°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° построСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: Ссли Π³Π΄Π΅-Ρ‚ΠΎ Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ Π½Π΅ понял, Π½Π΅ Π΄ΠΎΡƒΡ‡ΠΈΠ», упустил β€” ошибки Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½Ρ‹. Но ΠΊΠΎΠΌΡƒ ΠΆΠ΅ хочСтся ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΠ»ΠΎΡ…ΠΈΠ΅ ΠΎΡ†Π΅Π½ΠΊΠΈ?

НС ΠΆΠ΅Π»Π°Π΅Ρ‚Π΅ ΠΏΠΎΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΊΠΎΠ³ΠΎΡ€Ρ‚Ρƒ хвостистов ΠΈ Π΄Π²ΠΎΠ΅Ρ‡Π½ΠΈΠΊΠΎΠ²? Для этого Ρƒ вас Π΅ΡΡ‚ΡŒ 2 ΠΏΡƒΡ‚ΠΈ: Π·Π°ΡΠ΅ΡΡ‚ΡŒ Π·Π° ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠΈ ΠΈ Π²ΠΎΡΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π΅Π»Ρ‹ Π·Π½Π°Π½ΠΈΠΉ Π»ΠΈΠ±ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊΠΎΠΌ β€” сСрвисом автоматичСского построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ условиям. Π‘ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ Π±Π΅Π·. БСгодня ΠΌΡ‹ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌ вас с нСсколькими ΠΈΠ· Π½ΠΈΡ….

Π›ΡƒΡ‡ΡˆΠ΅Π΅, Ρ‡Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² Desmos.com, это Π³ΠΈΠ±ΠΊΠΎ настраиваСмый интСрфСйс, ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΠΈΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌ ΠΈ бСсплатно Ρ…Ρ€Π°Π½ΠΈΡ‚ΡŒ свои Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² Π±Π°Π·Π΅ рСсурса Π±Π΅Π· ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. А нСдостаток β€” Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ сСрвис Π½Π΅ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Π΅Π½ Π½Π° русский язык.

Grafikus.

ru

Grafikus.ru β€” Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ достойный внимания русскоязычный ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ². ΠŸΡ€ΠΈΡ‡Π΅ΠΌ ΠΎΠ½ строит ΠΈΡ… Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ, Π½ΠΎ ΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС.

Π’ΠΎΡ‚ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ Π·Π°Π΄Π°Π½ΠΈΠΉ, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ этот сСрвис ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ справляСтся:

  • Π§Π΅Ρ€Ρ‡Π΅Π½ΠΈΠ΅ 2D-Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: прямых, ΠΏΠ°Ρ€Π°Π±ΠΎΠ», Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ», тригономСтричСских, логарифмичСских ΠΈ Ρ‚. Π΄.
  • Π§Π΅Ρ€Ρ‡Π΅Π½ΠΈΠ΅ 2D-Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² парамСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: окруТностСй, спиралСй, Ρ„ΠΈΠ³ΡƒΡ€ ЛиссаТу ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ….
  • Π§Π΅Ρ€Ρ‡Π΅Π½ΠΈΠ΅ 2D-Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Π² полярных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ….
  • ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ 3D-повСрхностСй простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.
  • ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ 3D-повСрхностСй парамСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π“ΠΎΡ‚ΠΎΠ²Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ открываСтся Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΎΠΊΠ½Π΅. ΠŸΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŽ доступны ΠΎΠΏΡ†ΠΈΠΈ скачивания, ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ ΠΈ копирования ссылки Π½Π° Π½Π΅Π³ΠΎ. Для послСднСго придСтся Π°Π²Ρ‚ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π½Π° сСрвисС Ρ‡Π΅Ρ€Π΅Π· ΠΊΠ½ΠΎΠΏΠΊΠΈ соцсСтСй.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Grafikus.ru ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈΡ† осСй, подписСй ΠΊ Π½ΠΈΠΌ, шага сСтки, Π° Ρ‚Π°ΠΊΠΆΠ΅ β€” ΡˆΠΈΡ€ΠΈΠ½Ρ‹ ΠΈ высоты самой плоскости ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΡˆΡ€ΠΈΡ„Ρ‚Π°.

Бамая сильная сторона Grafikus.ru β€” Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ построСния 3D-Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ². Π’ ΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π΅ Ρ…ΡƒΠΆΠ΅ ΠΈ Π½Π΅ Π»ΡƒΡ‡ΡˆΠ΅, Ρ‡Π΅ΠΌ рСсурсы-Π°Π½Π°Π»ΠΎΠ³ΠΈ.

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π½Π° плоскости ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π±ΡƒΠ΄Π΅ΠΌ ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° оси абсцисс значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ… , Π° Π½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ — значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = f (Ρ…) .

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) называСтся мноТСство всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… абсциссы ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ€Π°Π²Π½Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ значСниям Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f (Ρ…) — это мноТСство всСх Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ…, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ y = f(x) .

На рис. 45 ΠΈ 46 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρƒ = 2Ρ… + 1 ΠΈ Ρƒ = Ρ… 2 — 2Ρ… .

Π‘Ρ‚Ρ€ΠΎΠ³ΠΎ говоря, слСдуСт Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ матСматичСскоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π±Ρ‹Π»ΠΎ Π΄Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅) ΠΈ Π½Π°Ρ‡Π΅Ρ€Ρ‡Π΅Π½Π½ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ, которая всСгда Π΄Π°Π΅Ρ‚ лишь Π±ΠΎΠ»Π΅Π΅ ΠΈΠ»ΠΈ ΠΌΠ΅Π½Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ эскиз Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (Π΄Π° ΠΈ Ρ‚ΠΎ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π½Π΅ всСго Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π° лишь Π΅Π³ΠΎ части, располоТСнного Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ части плоскости). Π’ дальнСйшСм, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΌΡ‹ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π±ΡƒΠ΄Π΅ΠΌ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ Β«Π³Ρ€Π°Ρ„ΠΈΠΊΒ», Π° Π½Π΅ «эскиз Π³Ρ€Π°Ρ„ΠΈΠΊΠ°Β».

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅. ИмСнно, Ссли Ρ‚ΠΎΡ‡ΠΊΠ° Ρ… = Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) , Ρ‚ΠΎ для нахоТдСния числа f(Π°) (Ρ‚. Π΅. значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ… = Π° ) слСдуСт ΠΏΠΎΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ. НуТно Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ с абсциссой Ρ… = Π° провСсти ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚; эта прямая пСрСсСчСт Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅; ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚, Π² силу опрСдСлСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°Π²Π½Π° f(Π°) (рис. 47).

НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(Ρ…) = Ρ… 2 — 2x с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (рис. 46) Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 ΠΈ Ρ‚. Π΄.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ наглядно ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, ΠΈΠ· рассмотрСния рис. 46 ясно, Ρ‡Ρ‚ΠΎ функция Ρƒ = Ρ… 2 — 2Ρ… ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния ΠΏΡ€ΠΈ Ρ… ΠΈ ΠΏΡ€ΠΈ Ρ… > 2 , ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ — ΠΏΡ€ΠΈ 0 Ρƒ = Ρ… 2 — 2Ρ… ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΡ€ΠΈ Ρ… = 1 .

Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ всС Ρ‚ΠΎΡ‡ΠΊΠΈ плоскости, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ… , Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ y = f(x) . Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв это ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π°ΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ — с большСй ΠΈΠ»ΠΈ мСньшСй Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Π‘Π°ΠΌΡ‹ΠΌ простым являСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎ нСскольким Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ. Он состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ Ρ… ΠΏΡ€ΠΈΠ΄Π°ΡŽΡ‚ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ число Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ — скаТСм, Ρ… 1 , Ρ… 2 , x 3 ,…, Ρ… k ΠΈ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ входят Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Π΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’Π°Π±Π»ΠΈΡ†Π° выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:


Боставив Ρ‚Π°ΠΊΡƒΡŽ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ нСсколько Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) . Π—Π°Ρ‚Π΅ΠΌ, соСдиняя эти Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠ»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ, ΠΌΡ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x).

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎ нСскольким Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ ΠΎΡ‡Π΅Π½ΡŒ Π½Π΅Π½Π°Π΄Π΅ΠΆΠ΅Π½. Π’ самом Π΄Π΅Π»Π΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΈ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π²Π½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΡ€Π°ΠΉΠ½ΠΈΠΌΠΈ ΠΈΠ· взятых Ρ‚ΠΎΡ‡Π΅ΠΊ остаСтся нСизвСстным.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1 . Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) Π½Π΅ΠΊΡ‚ΠΎ составил Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:


Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΡΡ‚ΡŒ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° рис. 48.

На основании располоТСния этих Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΎΠ½ сдСлал Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ прСдставляСт собой ΠΏΡ€ΡΠΌΡƒΡŽ (ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ Π½Π° рис. 48 ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ). МоТно Π»ΠΈ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ этот Π²Ρ‹Π²ΠΎΠ΄ Π½Π°Π΄Π΅ΠΆΠ½Ρ‹ΠΌ? Если Π½Π΅Ρ‚ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сообраТСний, ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… этот Π²Ρ‹Π²ΠΎΠ΄, Π΅Π³ΠΎ вряд Π»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π°Π΄Π΅ΠΆΠ½Ρ‹ΠΌ. Π½Π°Π΄Π΅ΠΆΠ½Ρ‹ΠΌ.

Для обоснования своСго утвСрТдСния рассмотрим Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

.

ВычислСния ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ значСния этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… -2, -1, 0, 1, 2 ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ. Однако Π³Ρ€Π°Ρ„ΠΈΠΊ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ вовсС Π½Π΅ являСтся прямой Π»ΠΈΠ½ΠΈΠ΅ΠΉ (ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° рис. 49). Π”Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ функция y = x + l + sinΟ€x; Π΅Π΅ значСния Ρ‚ΠΎΠΆΠ΅ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ.

Π­Ρ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π² «чистом» Π²ΠΈΠ΄Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎ нСскольким Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ Π½Π΅Π½Π°Π΄Π΅ΠΆΠ΅Π½. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ,ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ свойства Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ эскиз Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. Π—Π°Ρ‚Π΅ΠΌ, вычисляя значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (Π²Ρ‹Π±ΠΎΡ€ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… зависит ΠΎΡ‚ установлСнных свойств Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ), находят ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. И, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Ρ‡Π΅Ρ€Π΅Π· построСнныС Ρ‚ΠΎΡ‡ΠΊΠΈ проводят ΠΊΡ€ΠΈΠ²ΡƒΡŽ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойства Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

НСкоторыС (Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ простыС ΠΈ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅) свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, примСняСмыС для нахоТдСния эскиза Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, ΠΌΡ‹ рассмотрим ΠΏΠΎΠ·ΠΆΠ΅, Π° сСйчас Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто примСняСмыС способы построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ².

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = |f(x)|.

НСрСдко приходится ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(x) |, Π³Π΄Π΅ f(Ρ…) — заданная функция. Напомним, ΠΊΠ°ΠΊ это дСлаСтся. По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ числа ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ

Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y =|f(x)| ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: всС Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = f(Ρ…) , Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹, слСдуСт ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π±Π΅Π· измСнСния; Π΄Π°Π»Π΅Π΅, вмСсто Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

y = f(x) , ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, слСдуСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = -f(x) (Ρ‚. Π΅. Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
y = f(x) , которая Π»Π΅ΠΆΠΈΡ‚ Π½ΠΈΠΆΠ΅ оси Ρ…, слСдуСт симмСтрично ΠΎΡ‚Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Ρ… ).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = |Ρ…|.

Π‘Π΅Ρ€Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Ρ… (рис. 50, Π°) ΠΈ Ρ‡Π°ΡΡ‚ΡŒ этого Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΡ€ΠΈ Ρ… (Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ ΠΏΠΎΠ΄ осью Ρ… ) симмСтрично ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Ρ… . Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΡ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = |Ρ…| (рис. 50, Π±).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3 . ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |x 2 — 2x|.

Π‘Π½Π°Ρ‡Π°Π»Π° построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x 2 — 2x. Π“Ρ€Π°Ρ„ΠΈΠΊ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π²Π΅Ρ‚Π²ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (1; -1), Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось абсцисс Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… 0 ΠΈ 2. На ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ (0; 2) фукция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния, поэтому ΠΈΠΌΠ΅Π½Π½ΠΎ эту Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° симмСтрично ΠΎΡ‚Ρ€Π°Π·ΠΈΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси абсцисс. На рисункС 51 построСн Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρƒ = |Ρ… 2 -2Ρ…| , исходя ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Ρ… 2 — 2x

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) + g(x)

Рассмотрим Π·Π°Π΄Π°Ρ‡Ρƒ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) + g(x). Ссли Π·Π°Π΄Π°Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y = f(x) ΠΈ y = g(x) .

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(x) + g(Ρ…)| являСтся мноТСство всСх Ρ‚Π΅Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ…, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ±Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f{x) ΠΈ Ρƒ = g(Ρ…), Ρ‚. Π΅. эта ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния прСдставляСт собой пСрСсСчСниС областСй опрСдСлСния, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ f{x) ΠΈ g{x).

ΠŸΡƒΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ (Ρ… 0 , y 1 ) ΠΈ (Ρ… 0 , Ρƒ 2 ) соотвСтствСнно ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y = f{x) ΠΈ y = g(Ρ…) , Ρ‚. Π΅. y 1 = f(x 0), y 2 = g(Ρ… 0). Π’ΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠ° (x0;. y1 + y2) ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρƒ = f(Ρ…) + g(Ρ…) (ΠΈΠ±ΠΎ f(Ρ… 0) + g(x 0 ) = y1 +y2 ),. ΠΏΡ€ΠΈΡ‡Π΅ΠΌ любая Ρ‚ΠΎΡ‡ΠΊΠ° Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) + g(x) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = f(Ρ…) + g(x) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y = f(x) . ΠΈ y = g(Ρ…) Π·Π°ΠΌΠ΅Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ (Ρ… n , Ρƒ 1) Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ (Ρ… n , y 1 + y 2), Π³Π΄Π΅ Ρƒ 2 = g(x n ), Ρ‚. Π΅. сдвигом ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ (Ρ… n , Ρƒ 1 ) Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) вдоль оси Ρƒ Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ y 1 = g(Ρ… n ). ΠŸΡ€ΠΈ этом Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ… n для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ±Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) ΠΈ y = g(x) .

Π’Π°ΠΊΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) + g(Ρ… ) называСтся слоТСниСм Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y = f(x) ΠΈ y = g(x)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4 . На рисункС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ слоТСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² построСн Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

y = x + sinx .

ΠŸΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x + sinx ΠΌΡ‹ ΠΏΠΎΠ»Π°Π³Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ f(x) = x, Π° g(x) = sinx. Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ с aбциссами -1,5Ο€, -, -0,5, 0, 0,5,, 1,5, 2. ЗначСния f(x) = x, g(x) = sinx, y = x + sinx вычислим Π² Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ помСстим Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

Π’ Π·ΠΎΠ»ΠΎΡ‚ΠΎΠΉ Π²Π΅ΠΊ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΌΠ°Π»ΠΎ ΠΊΡ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠΊΡƒΠΏΠ°Ρ‚ΡŒ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΊΡƒ ΠΈ Ρ‚Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ часы для рисования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Π΄Π°Π½Π½Ρ‹Ρ…, Π΄Π° ΠΈ Π·Π°Ρ‡Π΅ΠΌ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ ΡΡ‚ΠΎΠ»ΡŒ ΠΌΡƒΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ, ΠΊΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ½Π»Π°ΠΉΠ½. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΠ΄ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Ρ‹ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ выраТСния для ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ отобраТСния практичСски Π½Π΅Ρ€Π΅Π°Π»ΡŒΠ½ΠΎ ΠΈ слоТно, Π΄Π° ΠΈ нСсмотря Π½Π° всС усилия получится ломаная линия, Π° Π½Π΅ кривая. ΠŸΠΎΡ‚ΠΎΠΌΡƒ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ Π² Π΄Π°Π½Π½ΠΎΠΌ случаС – Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ‹ΠΉ ΠΏΠΎΠΌΠΎΡ‰Π½ΠΈΠΊ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Ѐункция – это ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ элСмСнту ΠΎΠ΄Π½ΠΎΠ³ΠΎ мноТСства ставится Π² соотвСтствиС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ элСмСнт Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ мноТСства, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ y = 2x + 1 устанавливаСт связь ΠΌΠ΅ΠΆΠ΄Ρƒ мноТСствами всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ x ΠΈ всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ y, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, это функция. БоотвСтствСнно, Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ.


На рисункС ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x . Π­Ρ‚ΠΎ прямая ΠΈ Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΅Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΅ΡΡ‚ΡŒ свои ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π° оси X ΠΈ Π½Π° оси Y . Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· опрСдСлСния, Ссли ΠΌΡ‹ подставим ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ X Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ этой Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° оси Y .

БСрвисы для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΠ½Π»Π°ΠΉΠ½

Рассмотрим нСсколько популярных ΠΈ Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΏΠΎ сСрвисов, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… быстро Π½Π°Ρ‡Π΅Ρ€Ρ‚ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.


ΠžΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ список самый ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΉ сСрвис, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ ΠΎΠ½Π»Π°ΠΉΠ½. Umath содСрТит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ инструмСнты, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ просмотр ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΌΡ‹ΡˆΡŒ.

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ:

  1. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ вашС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ»Π΅ послС Π·Π½Π°ΠΊΠ° Β«=Β».
  2. НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΒ» .

Как Π²ΠΈΠ΄ΠΈΡ‚Π΅ всС ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎ просто ΠΈ доступно, синтаксис написания слоТных матСматичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: с ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ, тригономСтричСских, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… β€” ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ прямо ΠΏΠΎΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ нСобходимости ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ парамСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠ»ΠΈ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Π² полярной систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.


Π’ Yotx Π΅ΡΡ‚ΡŒ всС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ сСрвиса, Π½ΠΎ ΠΏΡ€ΠΈ этом ΠΎΠ½ содСрТит Ρ‚Π°ΠΊΠΈΠ΅ интСрСсныС нововвСдСния ΠΊΠ°ΠΊ созданиС ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° отобраТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ с Ρ†Π΅Π»Ρ‹ΠΌΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡΠΌΠΈ.

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ:

  1. Π’Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΉ способ задания Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.
  2. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.
  3. Π—Π°Π΄Π°ΠΉΡ‚Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π».
  4. НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒΒ» .


Для Ρ‚Π΅Ρ…, ΠΊΠΎΠΌΡƒ лСнь Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ, ΠΊΠ°ΠΊ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Ρ‚Π΅ ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° этой ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ прСдставлСн сСрвис с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ ΠΈΠ· списка Π½ΡƒΠΆΠ½ΡƒΡŽ ΠΎΠ΄Π½ΠΈΠΌ ΠΊΠ»ΠΈΠΊΠΎΠΌ ΠΌΡ‹ΡˆΠΈ.

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ:

  1. НайдитС Π² спискС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ Π²Π°ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.
  2. Π©Π΅Π»ΠΊΠ½ΠΈΡ‚Π΅ Π½Π° Π½Π΅Π΅ Π»Π΅Π²ΠΎΠΉ ΠΊΠ½ΠΎΠΏΠΊΠΎΠΉ ΠΌΡ‹ΡˆΠΈ
  3. ΠŸΡ€ΠΈ нСобходимости Π²Π²Π΅Π΄ΠΈΡ‚Π΅ коэффициСнты Π² ΠΏΠΎΠ»Π΅ «Ѐункция:Β» .
  4. НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒΒ» .

Π’ ΠΏΠ»Π°Π½Π΅ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π΅ΡΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ†Π²Π΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΈΠ»ΠΈ вовсС ΡƒΠ΄Π°Π»ΡΡ‚ΡŒ.


Desmos бСзусловно – самый Π½Π°Π²ΠΎΡ€ΠΎΡ‡Π΅Π½Π½Ρ‹ΠΉ сСрвис для построСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΎΠ½Π»Π°ΠΉΠ½. ΠŸΠ΅Ρ€Π΅Π΄Π²ΠΈΠ³Π°Ρ курсор с Π·Π°ΠΆΠ°Ρ‚ΠΎΠΉ Π»Π΅Π²ΠΎΠΉ клавишСй ΠΌΡ‹ΡˆΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ всС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ уравнСния с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎ 0,001. ВстроСнная ΠΊΠ»Π°Π²ΠΈΠ°Ρ‚ΡƒΡ€Π° позволяСт быстро ΠΏΠΈΡΠ°Ρ‚ΡŒ стСпСни ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ. Π‘Π°ΠΌΡ‹ΠΌ Π²Π°ΠΆΠ½Ρ‹ΠΌ плюсом являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² любом состоянии, Π½Π΅ приводя ΠΊ Π²ΠΈΠ΄Ρƒ: y = f(x).

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ:

  1. Π’ Π»Π΅Π²ΠΎΠΌ столбцС ΠΊΠ»ΠΈΠΊΠ½ΠΈΡ‚Π΅ ΠΏΡ€Π°Π²ΠΎΠΉ ΠΊΠ½ΠΎΠΏΠΊΠΎΠΉ ΠΌΡ‹ΡˆΠΈ ΠΏΠΎ свободной строкС.
  2. Π’ Π½ΠΈΠΆΠ½Π΅ΠΌ Π»Π΅Π²ΠΎΠΌ ΡƒΠ³Π»Ρƒ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Π½Π° Π·Π½Π°Ρ‡ΠΎΠΊ ΠΊΠ»Π°Π²ΠΈΠ°Ρ‚ΡƒΡ€Ρ‹.
  3. На появившСйся ΠΏΠ°Π½Π΅Π»ΠΈ Π½Π°Π±Π΅Ρ€ΠΈΡ‚Π΅ Π½ΡƒΠΆΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (для написания Π½Π°Π·Π²Π°Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠ΅Ρ€Π΅ΠΉΠ΄ΠΈΡ‚Π΅ Π² Ρ€Π°Π·Π΄Π΅Π» Β«A B CΒ»).
  4. Π“Ρ€Π°Ρ„ΠΈΠΊ строится Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Визуализация просто идСальная, адаптивная, Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ Π΄ΠΈΠ·Π°ΠΉΠ½Π΅Ρ€Ρ‹. Из плюсов ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ ΠΎΠ±ΠΈΠ»ΠΈΠ΅ возмоТностСй, для освоСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π² мСню Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ Π»Π΅Π²ΠΎΠΌ ΡƒΠ³Π»Ρƒ.

Π‘Π°ΠΉΡ‚ΠΎΠ² для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Π΅Π»ΠΈΠΊΠΎΠ΅ мноТСство, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Π²ΠΎΠ»Π΅Π½ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ для сСбя исходя ΠΈΠ· Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π° ΠΈ Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠΉ. Бписок Π»ΡƒΡ‡ΡˆΠΈΡ… Π±Ρ‹Π» сформирован Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚ΡŒ трСбования любого ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΎΡ‚ ΠΌΠ°Π»Π° Π΄ΠΎ Π²Π΅Π»ΠΈΠΊΠ°. УспСхов Π²Π°ΠΌ Π² постиТСнии Β«Ρ†Π°Ρ€ΠΈΡ†Ρ‹ Π½Π°ΡƒΠΊΒ»!

БоблюдСниС Π’Π°ΡˆΠ΅ΠΉ ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²Π°ΠΆΠ½ΠΎ для нас. По этой ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅, ΠΌΡ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠŸΠΎΠ»ΠΈΡ‚ΠΈΠΊΡƒ ΠšΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, которая описываСт, ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΈ Ρ…Ρ€Π°Π½ΠΈΠΌ Π’Π°ΡˆΡƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ. ΠŸΠΎΠΆΠ°Π»ΡƒΠΉΡΡ‚Π°, ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ с нашими ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌΠΈ соблюдСния ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ сообщитС Π½Π°ΠΌ, Ссли Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ ΠΊΠ°ΠΊΠΈΠ΅-Π»ΠΈΠ±ΠΎ вопросы.

Π‘Π±ΠΎΡ€ ΠΈ использованиС ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ

Под ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ Π΄Π°Π½Π½Ρ‹Π΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π»ΠΈΡ†Π° Π»ΠΈΠ±ΠΎ связи с Π½ΠΈΠΌ.

ΠžΡ‚ вас ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π°ΠΏΡ€ΠΎΡˆΠ΅Π½ΠΎ прСдоставлСниС вашСй ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹ ΡΠ²ΡΠ·Ρ‹Π²Π°Π΅Ρ‚Π΅ΡΡŒ с Π½Π°ΠΌΠΈ.

НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΎΠ±ΠΈΡ€Π°Ρ‚ΡŒ, ΠΈ ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ.

ΠšΠ°ΠΊΡƒΡŽ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΌΡ‹ собираСм:

  • Когда Π²Ρ‹ оставляСтС заявку Π½Π° сайтС, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΎΠ±ΠΈΡ€Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ваши имя, Π½ΠΎΠΌΠ΅Ρ€ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Π°, адрСс элСктронной ΠΏΠΎΡ‡Ρ‚Ρ‹ ΠΈ Ρ‚.Π΄.

Как ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π²Π°ΡˆΡƒ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ:

  • БобираСмая Π½Π°ΠΌΠΈ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ информация позволяСт Π½Π°ΠΌ ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с Π²Π°ΠΌΠΈ ΠΈ ΡΠΎΠΎΠ±Ρ‰Π°Ρ‚ΡŒ ΠΎΠ± ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… прСдлоТСниях, акциях ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… мСроприятиях ΠΈ Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… событиях.
  • ВрСмя ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Π°ΡˆΡƒ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ для ΠΎΡ‚ΠΏΡ€Π°Π²ΠΊΠΈ Π²Π°ΠΆΠ½Ρ‹Ρ… ΡƒΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠΉ ΠΈ сообщСний.
  • ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ для Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Ρ†Π΅Π»Π΅ΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ провСдСния Π°ΡƒΠ΄ΠΈΡ‚Π°, Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… исслСдований Π² цСлях ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ услуг прСдоставляСмых Π½Π°ΠΌΠΈ ΠΈ прСдоставлСния Π’Π°ΠΌ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΡˆΠΈΡ… услуг.
  • Если Π²Ρ‹ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚Π΅ участиС Π² Ρ€ΠΎΠ·Ρ‹Π³Ρ€Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΈΠ·ΠΎΠ², конкурсС ΠΈΠ»ΠΈ сходном ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌ мСроприятии, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»ΡΠ΅ΠΌΡƒΡŽ Π²Π°ΠΌΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ для управлСния Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ.

РаскрытиС ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΌ Π»ΠΈΡ†Π°ΠΌ

ΠœΡ‹ Π½Π΅ раскрываСм ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ ΠΎΡ‚ Вас ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΌ Π»ΠΈΡ†Π°ΠΌ.

Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ:

  • Π’ случаС Ссли Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ — Π² соотвСтствии с Π·Π°ΠΊΠΎΠ½ΠΎΠΌ, судСбным порядком, Π² судСбном Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅, ΠΈ/ΠΈΠ»ΠΈ Π½Π° основании ΠΏΡƒΠ±Π»ΠΈΡ‡Π½Ρ‹Ρ… запросов ΠΈΠ»ΠΈ запросов ΠΎΡ‚ государствСнных ΠΎΡ€Π³Π°Π½ΠΎΠ² Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Π Π€ — Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΡŒ Π²Π°ΡˆΡƒ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ. ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π°ΡΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ вас Ссли ΠΌΡ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ раскрытиС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ»ΠΈ умСстно Π² цСлях бСзопасности, поддСрТания правопорядка, ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Ρ… общСствСнно Π²Π°ΠΆΠ½Ρ‹Ρ… случаях.
  • Π’ случаС Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, слияния ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄Π°ΠΆΠΈ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‚ΡŒ ΡΠΎΠ±ΠΈΡ€Π°Π΅ΠΌΡƒΡŽ Π½Π°ΠΌΠΈ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ Π»ΠΈΡ†Ρƒ – ΠΏΡ€Π°Π²ΠΎΠΏΡ€Π΅Π΅ΠΌΠ½ΠΈΠΊΡƒ.

Π—Π°Ρ‰ΠΈΡ‚Π° ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ

ΠœΡ‹ ΠΏΡ€Π΅Π΄ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΠΌΠ΅Ρ€Ρ‹ прСдостороТности — Π²ΠΊΠ»ΡŽΡ‡Π°Ρ административныС, тСхничСскиС ΠΈ физичСскиС — для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ вашСй ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎΡ‚ ΡƒΡ‚Ρ€Π°Ρ‚Ρ‹, ΠΊΡ€Π°ΠΆΠΈ, ΠΈ нСдобросовСстного использования, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ нСсанкционированного доступа, раскрытия, измСнСния ΠΈ уничтоТСния.

БоблюдСниС вашСй ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ ваша ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ информация находится Π² бСзопасности, ΠΌΡ‹ Π΄ΠΎΠ²ΠΎΠ΄ΠΈΠΌ Π½ΠΎΡ€ΠΌΡ‹ соблюдСния ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ бСзопасности Π΄ΠΎ Π½Π°ΡˆΠΈΡ… сотрудников, ΠΈ строго слСдим Π·Π° исполнСниСм ΠΌΠ΅Ρ€ соблюдСния ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

ΠœΡΡ‚ΡƒΡΠΉ | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

92+5Ρ…+6=0 92-9=0 92+2x-8=0 93-8
1 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 50
2 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 45
3 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 5+5
4 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 7*7
5 Найти ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ 24
6 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 52/6
7 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 93/8
8 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 34/5
9 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=Ρ…+1
10 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 128
11 НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности сфСра (3) ο„΅
12 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 54-6Γ·2+6
13 Π“Ρ€Π°Ρ„ΠΈΠΊ Π³=-2x
14 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 8*8
15 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² дСсятичноС число 5/9
16 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 180
17 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=2
18 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 7/8
19 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 9*9
20 Π Π΅ΡˆΠΈΡ‚Π΅ для C Π‘=5/9*(Π€-32)
21 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ 1/3+1 1/12
22 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=Ρ…+4
23 Π“Ρ€Π°Ρ„ΠΈΠΊ Π³=-3
24 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…+Ρƒ=3
25 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…=5
26 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 6*6
27 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 2*2
28 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 4*4
29 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 1/2+(2/3)Γ·(3/4)-(4/5*5/6)
30 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 1/3+13/12
31 ΠžΡ†Π΅Π½ΠΊΠ° 5*5
32 Π Π΅ΡˆΠΈΡ‚ΡŒ для d 2Π΄=5Π²(ΠΎ)-Π²Ρ€
33 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 3/7
34 Π“Ρ€Π°Ρ„ΠΈΠΊ Π³=-2
35 НайдитС склон Ρƒ=6
36 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Ρ‹ 9
37 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=2Ρ…+2
38
41 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 1/6
42 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² дСсятичноС число 9%
43 Найти n 12Π½-24=14Π½+28
44 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 16*4
45 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ кубичСский ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 125
46 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ 43%
47 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…=1
48 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=6
49 Π“Ρ€Π°Ρ„ΠΈΠΊ Π³=-7
50 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=4Ρ…+2
51 НайдитС склон Ρƒ=7
52 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=3Ρ…+4
53 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=Ρ…+5
54 Π“Ρ€Π°Ρ„ΠΈΠΊ
58 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 192
59 ΠžΡ†Π΅Π½ΠΊΠ° с использованиСм Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 25/36
60 Найти ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ 14
61 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 7/10
62 Π Π΅ΡˆΠΈΡ‚Π΅ для (-5Π°)/2=75
63 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Ρ…
64 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 6*4
65 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ 6+6
66 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ -3-5
67 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ -2-2
68 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 1
69 Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 4
70 Найди ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ 1/3
71 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 20. 11.
72 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 7/9
73 Найти LCM 11, 13, 5, 15, 14 , , , ,
76 Π“Ρ€Π°Ρ„ΠΈΠΊ 3x+4y=12
77 Π“Ρ€Π°Ρ„ΠΈΠΊ 3x-2y=6
78 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=-Ρ…-2
79 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=3Ρ…+7
80 ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ 2x+2
81 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=2Ρ…-6
82 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=2Ρ…-7
83 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=2Ρ…-2
84 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=-2Ρ…+1
85 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=-3Ρ…+4
86 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=-3Ρ…+2
87 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρƒ=Ρ…-4
88 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ (4/3)Γ·(7/2)
89 Π“Ρ€Π°Ρ„ΠΈΠΊ 2x-3y=6
90 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…+2Ρƒ=4
91 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…=7
92 Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ…-Ρƒ=5
93 РСшСниС с использованиСм свойства ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня 92-2x-3=0
95 НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности конус (12)(9) ο„²
96 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 3/10
97 ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΉ Π½ΠΎΠΌΠ΅Ρ€ 7/20
9 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 12
10 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 20
11 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 50 94
18 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 45
19 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 32
20 ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 18 92

ΠΠ°ΠΏΠΈΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ прямой | КоллСдТ АлгСбра |

Вспомним, Ρ‡Ρ‚ΠΎ Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ Β«Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» ΠΌΡ‹ написали ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ наши знания ΠΎ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ для Π±ΠΎΠ»Π΅Π΅ Ρ‚Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ². НачнитС с рассмотрСния рисунка 8. ΠœΡ‹ сразу Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось y Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0, 4), Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ это Π³ -ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚.

Рисунок 8

Π—Π°Ρ‚Π΅ΠΌ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π°ΠΊΠ»ΠΎΠ½, найдя подъСм ΠΈ ΡƒΠΊΠ»ΠΎΠ½. ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½ΠΎ Π΄Π°Π²Π°ΠΉΡ‚Π΅ посмотрим Π½Π° Ρ‚ΠΎΡ‡ΠΊΡƒ (-2, 0). Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ этой Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚Π° y- , ΠΌΡ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒΡΡ Π½Π° 4 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π²Π²Π΅Ρ€Ρ… (подъСм) ΠΈ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 2 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ (Π±Π΅Π³). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π°ΠΊΠ»ΠΎΠ½ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ

м = подъСм = 42 = 2 м = \ frac {\ text {подъСм}} {\ text {run}} = \ frac {4} {2} = 2 м = подъСм = 24 = 2

ΠŸΠΎΠ΄ΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния y- Π² Ρ„ΠΎΡ€ΠΌΡƒ пСрСсСчСния Π½Π°ΠΊΠ»ΠΎΠ½Π° Π»ΠΈΠ½ΠΈΠΈ Π΄Π°Π΅Ρ‚

Π³.

Ρƒ=2Ρ…+4Ρƒ=2Ρ…+4Ρƒ=2Ρ…+4

Как ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ: ИмСя Π³Ρ€Π°Ρ„ΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅Π΅ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

  1. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния y- уравнСния.
  2. Π’Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ для опрСдСлСния ΡƒΠΊΠ»ΠΎΠ½Π°.
  3. Π—Π°ΠΌΠ΅Π½ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния y- ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½ Π½Π° линию с пСрСсСчСниСм Π½Π°ΠΊΠ»ΠΎΠ½Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4: сопоставлСниС Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ с ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ

Π‘ΠΎΠΏΠΎΡΡ‚Π°Π²ΡŒΡ‚Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ с ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π»ΠΈΠ½ΠΈΠΉ Π½Π° рисункС 9.

  1. f(x)=2x+3f\Π²Π»Π΅Π²ΠΎ(x\Π²ΠΏΡ€Π°Π²ΠΎ)=2x+3f(x)=2x+3

  2. g(x)=2xβˆ’3g\left(x\right)=2x — 3g(x)=2xβˆ’3

  3. h(x)=βˆ’2x+3h\Π²Π»Π΅Π²ΠΎ(x\Π²ΠΏΡ€Π°Π²ΠΎ)=-2x+3h(x)=βˆ’2x+3

  4. j(x)=12x+3j\left(x\right)=\frac{1}{2}x+3j(x)=21​x+3

Рис. 9

РСшСниС

ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

  1. Π­Ρ‚Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΊΠ»ΠΎΠ½ 2 ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния y 3. Она Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ (0, 3) ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½ΡΡ‚ΡŒΡΡ Π²Π²Π΅Ρ€Ρ… слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ. ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½, ΠΈΠ»ΠΈ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΅Π³ΠΎ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ пСрСчислСнными функциями. Ѐункция Π³ Β ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‚ ΠΆΠ΅ Π½Π°ΠΊΠ»ΠΎΠ½, Π½ΠΎ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния ΠΈ . Π›ΠΈΠ½ΠΈΠΈ I ΠΈ III ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ Π½Π°ΠΊΠ»ΠΎΠ½, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ Π½Π°ΠΊΠ»ΠΎΠ½. Линия III Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· (0, 3), поэтому f Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ прСдставлСно Π»ΠΈΠ½ΠΈΠ΅ΠΉ I.
  2. Π­Ρ‚Π° функция Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΊΠ»ΠΎΠ½ 2, Π½ΠΎ y -пСрСсСчСниС –3. Он Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ (0, –3) ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½ΡΡ‚ΡŒΡΡ Π²Π²Π΅Ρ€Ρ… слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ. Он Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ прСдставлСн Π»ΠΈΠ½ΠΈΠ΅ΠΉ III.
  3. Π­Ρ‚Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΊΠ»ΠΎΠ½ –2 ΠΈ y- Π³. пСрСсСчСниС 3. Π­Ρ‚ΠΎ СдинствСнная функция, указанная с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΊΠ»ΠΎΠ½ΠΎΠΌ, поэтому ΠΎΠ½Π° Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ прСдставлСна ​​линиСй IV, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½Π° Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Π° Π²Π½ΠΈΠ· слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ.
  4. Π­Ρ‚Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΊΠ»ΠΎΠ½

    12\frac{1}{2}21​

    ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния y- 3. Она Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ (0, 3) ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½ΡΡ‚ΡŒΡΡ Π²Π²Π΅Ρ€Ρ… слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ. Π›ΠΈΠ½ΠΈΠΈ I ΠΈ II проходят Ρ‡Π΅Ρ€Π΅Π· (0, 3), Π½ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½ j мСньшС, Ρ‡Π΅ΠΌ Π½Π°ΠΊΠ»ΠΎΠ½ f , поэтому линия для j Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ плоской. Π­Ρ‚Π° функция прСдставлСна ​​линиСй II.
  5. Π³.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ°Ρ€ΠΊΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π»ΠΈΠ½ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рисункС 10.

Рисунок 10

НахоТдСниС Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π»ΠΈΠ½ΠΈΠΈ x

Π”ΠΎ сих ΠΏΠΎΡ€ ΠΌΡ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния y- Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ пСрСсСкаСт ось y-. Ѐункция Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ x -пСрСсСчСниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ являСтся ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ x Ρ‚ΠΎΡ‡ΠΊΠΈ, Π³Π΄Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ пСрСсСкаСт x -ось. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, это Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния x , установитС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ f ( x ) Ρ€Π°Π²Π½ΠΎΠΉ Π½ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x . НапримСр, рассмотрим ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

f(x)=3xβˆ’6f\Π²Π»Π΅Π²ΠΎ(x\Π²ΠΏΡ€Π°Π²ΠΎ)=3x — 6f(x)=3xβˆ’6

УстановитС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ€Π°Π²Π½ΠΎΠΉ 0 ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ x .

{0=3xβˆ’66=3×2=xx=2\begin{case}0=3x — 6\qquad \\ 6=3x\qquad \\ 2=x\qquad \\ x=2\qquad \end{cases }⎩

⎨

βŽ§β€‹0=3xβˆ’66=3×2=xx=2​

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ пСрСсСкаСт ось x Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (2, 0).

Вопросы ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹

ВсС Π»ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния x ?

НСт. Однако Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° yΒ  = c , Π³Π΄Π΅ c β€” Π½Π΅Π½ΡƒΠ»Π΅Π²ΠΎΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, ΡΠ²Π»ΡΡŽΡ‚ΡΡ СдинствСнными ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π±Π΅Π· пСрСсСчСния x . НапримСр, yΒ  = 5 β€” это Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ линия Π½Π° 5 Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Ρ‹ΡˆΠ΅ x — ось. Π­Ρ‚Π° функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ x -ΠΏΠ΅Ρ€Π΅Ρ…Π²Π°Ρ‚ΠΎΠ² .

Рисунок 11

ΠžΠ±Ρ‰Π°Ρ ΠΏΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅:

x -ΠΈΠ½Ρ‚Π΅Ρ€Ρ†Π΅ΠΏΡ‚

Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ 0 = m x + b .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5: НахоТдСниС Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния

x

НахоТдСниС Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния x

f(x)=12xβˆ’3f\left(x\right)=\frac{1}{2}x — 3f(x)=21​xβˆ’3

.

РСшСниС

УстановитС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ€Π°Π²Π½ΠΎΠΉ Π½ΡƒΠ»ΡŽ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ x .

{0=12xβˆ’33=12×6=xx=6\begin{case}0=\frac{1}{2}x — 3\\ 3=\frac{1}{2}x\\ 6=x \\ x=6\end{cases}⎩

⎨

βŽ§β€‹0=21​xβˆ’33=21​x6=xx=6​

Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСсСкаСт ось x Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (6 , 0).

Рис. 12.Β  Π“Ρ€Π°Ρ„ΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

f(x)=12xβˆ’3f\left(x\right)=\frac{1}{2}x — 3f(x)=21​xβˆ’3

.

ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ 4

НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния x

f(x)=14xβˆ’4f\left(x\right)=\frac{1}{4}x — 4f(x)=41​ Ρ…βˆ’4

. РСшСниС

ОписаниС Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ

Π•ΡΡ‚ΡŒ Π΄Π²Π° особых случая Π»ΠΈΠ½ΠΈΠΉ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ β€” Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ. Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ линия ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ постоянный Π²Ρ‹Ρ…ΠΎΠ΄ ΠΈΠ»ΠΈ y -Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. На рисункС 13 ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 2 для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ значСния. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ объСма производства ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ€Π°Π²Π½ΠΎ 0. Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π½Π°ΠΊΠ»ΠΎΠ½Π° Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Ρ€Π°Π²Π΅Π½ 0, поэтому Π½Π°ΠΊΠ»ΠΎΠ½ Ρ€Π°Π²Π΅Π½ 0. Если ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ m = 0 Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ

f(x)=mx+bf\left(x\right)=mx+bf(x)=mx+b

, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ упрощаСтся Π΄ΠΎ

f(x)=bf\left (Ρ…\справа)=bf(x)=b

. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся константой. Π­Ρ‚ΠΎΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ прСдставляСт Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

f(x)=2f\left(x\right)=2f(x)=2

.

Рис. 13.Β  Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ линия, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

f(x)=2f\left(x\right)=2f(x)=2

.

Рисунок 14

А Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ линия ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π²Π²ΠΎΠ΄ константы ΠΈΠ»ΠΈ x — Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π»ΠΈΠ½ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 2, Π½ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ мСняСтся. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ это Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ сопоставляСтся Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ с ΠΎΠ΄Π½ΠΈΠΌ Π²Ρ‹Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ, Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ линия Π½Π΅ прСдставляСт Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ Π»ΡŽΠ±Ρ‹ΠΌΠΈ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π½Π°ΠΊΠ»ΠΎΠ½Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, поэтому Π½Π°ΠΊΠ»ΠΎΠ½ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ линия, такая ΠΊΠ°ΠΊ Π½Π° рис. 15 , ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния x , Π½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния y- , Ссли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ это Π½Π΅ линия x = 0. Π­Ρ‚ΠΎΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊ прСдставляСт линию x = 2.

Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ линия 91 Рис. , x = 2, Ρ‡Ρ‚ΠΎ Π½Π΅ прСдставляСт Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

A ΠžΠ±Ρ‰Π΅Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ

Π›ΠΈΠ½ΠΈΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ линия β€” это линия, заданная ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π² Ρ„ΠΎΡ€ΠΌΠ΅

f(x)=bf\left(x\right)=bf(x)=b

.

Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ линия β€” это линия, заданная ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π°

x=ax=ax=a

.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6. НаписаниС уравнСния Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ

ΠΠ°ΠΏΠΈΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° рисункС 16.

Рис. 16

РСшСниС

Для любого значСния x Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y Ρ€Π°Π²Π½ΠΎ –4, поэтому ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ yΒ  = –4.

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *