Правила решение дробей: Как умножать дроби с разными и одинаковыми знаменателями

Содержание

Действия с дробями: правила, примеры, решения

Данная статья рассматривает действия над дробями. Будут  сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида AB, где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 35, 2,84, 1+2·34·(5-2), 34+782,3-0,8, 12·2, π1-23+π, 20,5ln 3, то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: ad±cd=a±cd, значения a, c и d≠0 являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями.  Буквенно это выглядит таком образом ab±cd=a·p±c·rs, где значения a, b≠0, c, d≠0, p≠0, r≠0, s≠0 являются действительными числами, а b·p=d·r=s. Когда p=d и r=b, тогда ab±cd=a·d±c·db·d.
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим ab·cd=a·cb·d, где a, b≠0, c, d≠0 выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: ab:cd=ab·dc.

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

ad±cd=a·d-1±c·d-1=a±c·d-1=a±cd;ab±cd=a·pb·p±c·rd·r=a·ps±c·es=a·p±c·rs;ab·cd=a·db·d·b·cb·d=a·d·a·d-1·b·c·b·d-1==a·d·b·c·b·d-1·b·d-1=a·d·b·cb·d·b·d-1==(a·c)·(b·d)-1=a·cb·d

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби 82,7 и 12,7, то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида 8+12,7. После выполнения сложения получаем дробь вида 8+12,7=92,7=9027=313. Значит, 82,7+12,7=8+12,7=92,7=9027=313.

Ответ: 82,7+12,7=313

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

82,7+12,7=8027+1027=9027=313

Пример 2

Произведем вычитание из 1-23·log23·log25+1 дроби вида 233·log23·log25+1.

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

1-23·log23·log25+1-233·log23·log25+1=1-2-233·log23·log25+1

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей 235+1 и 12. 

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2·35+1. Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2, а ко второй 35+1. После перемножения дроби приводятся к виду 42·35+1.

Общее приведение 12 будет иметь вид 35+12·35+1. Полученные дробные выражения складываем и получаем, что

235+1+12=2·22·35+1+1·35+12·35+1==42·35+1+35+12·35+1=4+35+12·35+1=5+352·35+1

Ответ: 235+1+12=5+352·35+1

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет.  В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Рассмотрим на примере 16·215 и 14·235, когда их произведение будет равно 6·215·4·235=24·245. Тогда  в качестве общего знаменателя берем 12·235.

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение 2+16 и 2·53·2+1. 

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2+16·2·53·2+12+1·2·56·3·2+1.  Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5·332+1:1093=5·332+1·9310.

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

5·332+1:1093=5·332+1·9310

 После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

5·332+1:1093=5·33·9310·2+1=5·210·2+1=32·2+1==3·2-12·2+1·2-1=3·2-12·22-12=3·2-12

Ответ: 5·332+1:1093=3·2-12

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1, тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 16·74-1·3 видно, что корень из 3 может быть заменен другим 31 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 16·74-1·3=16·74-1·31.

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что A, C и D (D не равное нулю) могут быть любыми выражениями, причем равенство AD±CD=A±CD равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда  А, С, D должны принимать соответственные значения a0, c0 и d0.  Подстановка вида AD±CD приводит разность  вида a0d0±c0d0, где по правилу сложения получаем формулу вида a0±c0d0. Если подставить выражение A±CD, тогда получаем ту же дробь вида a0±c0d0. Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A±CD и AD±CD считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида AD±CD=A±CD.

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это  незаметно, так как необходимо выполнять некоторые преобразования. Например, x23·x13+1 и x13+12 или 12·sin 2α и sin a·cos a. Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить:1) x2+1x+x-2-5-xx+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2), x-1x-1+xx+1.

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x2+1x+x-2-5-xx+x-2=x2+1-5-xx+x-2.  После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, чтоx2+1-5-xx+x-2=x2+1-5+xx+x-2=x2+x-4x+x-2
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg2x+4+4x·(lg x+2)
    Сложение было выполнено. Видно, что можно произвести сокращение дроби.  Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (lg x+2)2из формул сокращенного умножения. Тогда получаем, что
    lg2x+4+2·lg xx·(lg x+2)=(lg x+2)2x·(lg x+2)=lg x+2x
  3.  Заданные дроби вида x-1x-1+xx+1 с разными знаменателями.
    После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

x-1x-1=x-1(x-1)·x+1=1x+1

Значит, x-1x-1+xx+1=1x+1+xx+1=1+xx+1.

В таком случае необходимо избавляться от иррациональности в знаменателе.

Получим:

1+xx+1=1+x·x-1x+1·x-1=x-1+x·x-xx-1

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x-1. Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

x-1x-1+xx+1=x-1x-1+x·x-1x+1·x-1==x-1x-1+x·x-xx-1=x-1+x·x-xx-1

Ответ: 1) x2+1x+x-2-5-xx+x-2=x2+x-4x+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg x+2x, 3)x-1x-1+xx+1=x-1+x·x-xx-1.

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей  с добавлением дополниетльных множителей к числителям.

Пример 7

Вычислить значения дробей: 1) x3+1×7+2·2, 2) x+1x·ln2(x+1)·(2x-4)-sin xx5·ln(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x

Решение

  1.  Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3·x7+2·2, тогда к первой дроби x7+2·2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x3+1×7+2·2=x·x7+2·23·x7+2·2+3·13·x7+2·2==x·x7+2·2+33·x7+2·2=x·x7+2·2·x+33·x7+2·2
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться  произведение вида x5·ln2x+1·2x-4. Отсюда x4
     
    является дополнительным множителем к первой дроби, а ln(x+1) ко второй. После чего производим вычитание и получаем, что:
    x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x+1·x4x5·ln2(x+1)·2x-4-sin x·lnx+1×5·ln2(x+1)·(2x-4)==x+1·x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4)=x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4)
  3.  Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1cos x-x·cos x+x+1(cos x+x)2.  Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x-x·cos x+x2.

После чего получаем, что

1cos2x-x+1cos2x+2·cos x·x+x==1cos x-x·cos x+x+1cos x+x2==cos x+xcos x-x·cos x+x2+cos x-xcos x-x·cos x+x2==cos x+x+cos x-xcos x-x·cos x+x2=2·cos xcos x-x·cos x+x2

Ответ:

1) x3+1×7+2·2=x·x7+2·2·x+33·x7+2·2, 2) x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x=2·cos xcos x-x·cos x+x2.

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей x+2·xx2·ln x2·ln x+1 и 3·x213·x+1-2sin2·x-x.

Решение

Необходимо выполнить умножение. Получаем, что

x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)==x-2·x·3·x213·x+1-2×2·ln x2·ln x+1·sin (2·x-x)

Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x2, тогда получим выражение вида

3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x)

Ответ: x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)=3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x).

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x+2·xx2·ln x2·ln x+1 и разделить на 3·x213·x+1-2sin2·x-x, тогда это можно записать таким образом, как

x+2·xx2·ln x2·ln x+1:3·x213·x+1-2sin(2·x-x), после чего заменить произведением вида x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано  использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида ACr справедливо равенство ACr=ArCr. Результат – дробь, возведенная в степень. Для примера рассмотрим:

x0,7-π·ln3x-2-5x+12,5==x0,7-π·ln3x-2-52,5x+12,5

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять  в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить 1-xcos x-1cos x·1+1x.

Решение

Так как имеем одинаковый знаменатель, то 1-xcos x и 1cos x, но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

1+1x=11+1x=xx+1x=x+1x

При подстановке выражения  в исходное получаем, что 1-xcos x-1cos x·x+1x. При умножении дробей имеем: 1cos x·x+1x=x+1cos x·x. Произведя все подстановки, получим 1-xcos x-x+1cos x·x. Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

x·1-xcos x·x-x+1cos x·x=x·1-x-1+xcos x·x==x-x-x-1cos x·x=-x+1cos x·x

Ответ: 1-xcos x-1cos x·1+1x=-x+1cos x·x.

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

Действия с дробями: правила, примеры, решения

Данная статья рассматривает действия над дробями. Будут  сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида AB, где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.

Правила выполнения действий с числовыми дробями общего вида

Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 35, 2,84, 1+2·34·(5-2), 34+782,3-0,8, 12·2, π1-23+π, 20,5ln 3, то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.

Определение 1

Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:

  • При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: ad±cd=a±cd, значения a, c и d≠0 являются некоторыми числами или числовыми выражениями.
  • При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями.  Буквенно это выглядит таком образом ab±cd=a·p±c·rs, где значения a, b≠0, c, d≠0, p≠0, r≠0, s≠0 являются действительными числами, а b·p=d·r=s. Когда p=d и r=b, тогда ab±cd=a·d±c·db·d.
  • При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим ab·cd=a·cb·d, где a, b≠0, c, d≠0 выступают в роли действительных чисел.
  • При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: ab:cd=ab·dc.

Обоснование правил

Определение 2

Существуют следующие математические моменты, на которые следует опираться при вычислении:

  • дробная черта означает знак деления;
  • деление на число рассматривается как умножение на его обратное значение;
  • применение свойства действий с действительными числами;
  • применение основного свойства дроби и числовых неравенств.

С их помощью можно производить преобразования вида:

ad±cd=a·d-1±c·d-1=a±c·d-1=a±cd;ab±cd=a·pb·p±c·rd·r=a·ps±c·es=a·p±c·rs;ab·cd=a·db·d·b·cb·d=a·d·a·d-1·b·c·b·d-1==a·d·b·c·b·d-1·b·d-1=a·d·b·cb·d·b·d-1==(a·c)·(b·d)-1=a·cb·d

Примеры

В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.

Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.

Пример 1

Даны дроби 82,7 и 12,7, то по правилу необходимо числитель сложить, а знаменатель переписать.

Решение

Тогда получаем дробь вида 8+12,7. После выполнения сложения получаем дробь вида 8+12,7=92,7=9027=313. Значит, 82,7+12,7=8+12,7=92,7=9027=313.

Ответ: 82,7+12,7=313

Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:

82,7+12,7=8027+1027=9027=313

Пример 2

Произведем вычитание из 1-23·log23·log25+1 дроби вида 233·log23·log25+1.

Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что

1-23·log23·log25+1-233·log23·log25+1=1-2-233·log23·log25+1

Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.

Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.

Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.

Пример 3

Рассмотрим на примере сложения дробей 235+1 и 12. 

Решение

В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2·35+1. Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2, а ко второй 35+1. После перемножения дроби приводятся к виду 42·35+1. Общее приведение 12 будет иметь вид 35+12·35+1. Полученные дробные выражения складываем и получаем, что

235+1+12=2·22·35+1+1·35+12·35+1==42·35+1+35+12·35+1=4+35+12·35+1=5+352·35+1

Ответ: 235+1+12=5+352·35+1

Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет.  В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.

Пример 4

Рассмотрим на примере 16·215 и 14·235, когда их произведение будет равно 6·215·4·235=24·245. Тогда  в качестве общего знаменателя берем 12·235.

Рассмотрим примеры умножений дробей общего вида.

Пример 5

Для этого необходимо произвести умножение 2+16 и 2·53·2+1. 

Решение

Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2+16·2·53·2+12+1·2·56·3·2+1.  Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5·332+1:1093=5·332+1·9310.

Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:

5·332+1:1093=5·332+1·9310

 После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что

5·332+1:1093=5·33·9310·2+1=5·210·2+1=32·2+1==3·2-12·2+1·2-1=3·2-12·22-12=3·2-12

Ответ: 5·332+1:1093=3·2-12

Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1, тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 16·74-1·3 видно, что корень из 3 может быть заменен другим 31 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 16·74-1·3=16·74-1·31.

Выполнение действие с дробями, содержащими переменные

Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.

Необходимо доказать, что A, C и D (D не равное нулю) могут быть любыми выражениями, причем равенство AD±CD=A±CD равноценно с его областью допустимых значений.

Необходимо взять набор переменных ОДЗ. Тогда  А, С, D должны принимать соответственные значения a0, c0 и d0.  Подстановка вида AD±CD приводит разность  вида a0d0±c0d0, где по правилу сложения получаем формулу вида a0±c0d0. Если подставить выражение A±CD, тогда получаем ту же дробь вида a0±c0d0. Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A±CD и AD±CD считаются равными.

При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида AD±CD=A±CD.

Примеры сложения и вычитания дробей с переменными

Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это  незаметно, так как необходимо выполнять некоторые преобразования. Например, x23·x13+1 и x13+12 или 12·sin 2α и sin a·cos a. Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.

Пример 6

Вычислить:1) x2+1x+x-2-5-xx+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2), x-1x-1+xx+1.

Решение

  1. Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x2+1x+x-2-5-xx+x-2=x2+1-5-xx+x-2.  После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, чтоx2+1-5-xx+x-2=x2+1-5+xx+x-2=x2+x-4x+x-2
  2. Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:​​​​​​lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg2x+4+4x·(lg x+2)
    Сложение было выполнено. Видно, что можно произвести сокращение дроби.  Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (lg x+2)2из формул сокращенного умножения. Тогда получаем, что
    lg2x+4+2·lg xx·(lg x+2)=(lg x+2)2x·(lg x+2)=lg x+2x
  3.  Заданные дроби вида x-1x-1+xx+1 с разными знаменателями. После преобразования можно перейти к сложению.

Рассмотрим двоякий способ решения.

Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида

x-1x-1=x-1(x-1)·x+1=1x+1

Значит, x-1x-1+xx+1=1x+1+xx+1=1+xx+1.

В таком случае необходимо избавляться от иррациональности в знаменателе.

Получим:

1+xx+1=1+x·x-1x+1·x-1=x-1+x·x-xx-1

Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x-1. Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда

x-1x-1+xx+1=x-1x-1+x·x-1x+1·x-1==x-1x-1+x·x-xx-1=x-1+x·x-xx-1

Ответ: 1) x2+1x+x-2-5-xx+x-2=x2+x-4x+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg x+2x, 3)x-1x-1+xx+1=x-1+x·x-xx-1.

В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей  с добавлением дополниетльных множителей к числителям.

Пример 7

Вычислить значения дробей: 1) x3+1×7+2·2, 2) x+1x·ln2(x+1)·(2x-4)-sin xx5·ln(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x

Решение

  1.  Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3·x7+2·2, тогда к первой дроби x7+2·2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x3+1×7+2·2=x·x7+2·23·x7+2·2+3·13·x7+2·2==x·x7+2·2+33·x7+2·2=x·x7+2·2·x+33·x7+2·2
  2. Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться  произведение вида x5·ln2x+1·2x-4. Отсюда x4 является дополнительным множителем к первой дроби, а ln(x+1) ко второй. После чего производим вычитание и получаем, что:
    x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x+1·x4x5·ln2(x+1)·2x-4-sin x·lnx+1×5·ln2(x+1)·(2x-4)==x+1·x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4)=x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4)
  3.  Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1cos x-x·cos x+x+1(cos x+x)2.  Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x-x·cos x+x2.

После чего получаем, что

1cos2x-x+1cos2x+2·cos x·x+x==1cos x-x·cos x+x+1cos x+x2==cos x+xcos x-x·cos x+x2+cos x-xcos x-x·cos x+x2==cos x+x+cos x-xcos x-x·cos x+x2=2·cos xcos x-x·cos x+x2

Ответ:

1) x3+1×7+2·2=x·x7+2·2·x+33·x7+2·2, 2) x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x=2·cos xcos x-x·cos x+x2.

Примеры умножения дробей с переменными

При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.

Пример 8

Произвести умножение дробей x+2·xx2·ln x2·ln x+1 и 3·x213·x+1-2sin2·x-x.

Решение

Необходимо выполнить умножение. Получаем, что

x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)==x-2·x·3·x213·x+1-2×2·ln x2·ln x+1·sin (2·x-x)

Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x2, тогда получим выражение вида

3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x)

Ответ: x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)=3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x).

Деление

Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x+2·xx2·ln x2·ln x+1 и разделить на 3·x213·x+1-2sin2·x-x, тогда это можно записать таким образом, как

x+2·xx2·ln x2·ln x+1:3·x213·x+1-2sin(2·x-x), после чего заменить произведением вида x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)

Возведение в степень

Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано  использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида ACr справедливо равенство ACr=ArCr. Результат – дробь, возведенная в степень. Для примера рассмотрим:

x0,7-π·ln3x-2-5x+12,5==x0,7-π·ln3x-2-52,5x+12,5

Порядок выполнения действий с дробями

Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять  в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.

Пример 9

Вычислить 1-xcos x-1cos x·1+1x.

Решение

Так как имеем одинаковый знаменатель, то 1-xcos x и 1cos x, но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что

1+1x=11+1x=xx+1x=x+1x

При подстановке выражения  в исходное получаем, что 1-xcos x-1cos x·x+1x. При умножении дробей имеем: 1cos x·x+1x=x+1cos x·x. Произведя все подстановки, получим 1-xcos x-x+1cos x·x. Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:

x·1-xcos x·x-x+1cos x·x=x·1-x-1+xcos x·x==x-x-x-1cos x·x=-x+1cos x·x

Ответ: 1-xcos x-1cos x·1+1x=-x+1cos x·x.

Решение задач от 1 дня / от 150 р. Курсовая работа от 5 дней / от 1800 р. Реферат от 1 дня / от 700 р.

правила, свойства и примеры для 5 класса

Математика

12.11.21

8 мин.

В различных дисциплинах с физико-математическим уклоном встречается операция упрощения выражений. Иногда последние представлены в виде обыкновенных дробей. Правила деления и умножения дробных тождеств нужно знать, чтобы не совершать ошибок при вычислениях. Специалисты рекомендуют изучить теорию, а потом перейти к ее практическому применению.

Оглавление:

  • Общие сведения
  • Подготовительные операции
  • Деление и умножение дробей

Общие сведения

Многие начинающие математики путают правила работы с обыкновенными выражениями, поскольку при делении забывают «переворачивать» делитель. Некоторые не отличают обыкновенное дробное выражение от десятичного. Кроме того, следует также знать правила деления числа на определенное значение. Итак, дроби бывают только двух типов:

  1. Обыкновенными (правильными и неправильными).
  2. Десятичными (конечными и бесконечными).

Правильная — дробное выражение, у которого числитель меньше знаменателя, а у неправильного — числитель больше знаменателя (пример 2/3 и 7/3). У конечной десятичной дробной величины после запятой находится определенное количество знаков. Если же она является бесконечной, то делится на 2 типа: бесконечная периодическая (0,85 (3)) и непериодическая (1,56471238971235). Первая отличается от второй повторяющимися знаками, которые следует выделять круглыми скобками 0,(36) через определенный промежуток.

Обыкновенное дробное выражение записывается в десятичной форме. Кроме того, существует и обратное утверждение: любую десятичную дробь возможно записать в виде обыкновенной. Существует еще определенный вид дробных чисел, называющихся смешанными. Они состоят из целой части и обыкновенной дроби, т. е. 4 (½). Деление дробей в 5 классе требует некоторых подготовительных операций.

Подготовительные операции

Чтобы разделить одну дробную величину на другую, требуется произвести некоторые действия. Для этого следует руководствоваться правилом: любое смешанное число должно быть преобразовано в неправильную обыкновенную дробь. В этом случае математики рекомендуют воспользоваться следующим алгоритмом:

  1. Записать величину: 12 (2/5).
  2. Умножить знаменатель на целую часть, а затем прибавить числитель: 12*5+2=62.
  3. Записать результат в виде неправильной дробной величины: 62/5.

Обратную операцию по преобразованию неправильной дроби в смешанное число математики рекомендуют выполнять на завершающих этапах вычисления. Выполняется конвертация по такой методике:

  1. Записывается искомая величина: 62/5.
  2. Выделяется целая часть при делении: 12.
  3. От числителя искомого значения отнимается произведение знаменателя на величину, полученную во 2 пункте: 62−12*5=62−60=2.
  4. Записывается конечный результат: 12 (2/5).

Правило деления целого числа на дробь: произвести преобразование целого в дробь деление на 1, т. е. 4=4/1. Следует также рассмотреть признаки делимости чисел. Они помогут правильно вычислять выражения и быстро сократить полученный результат. К ним относятся:

  1. На 1 делится любое число без остатка.
  2. Если последняя цифра является четной, величину возможно разделить на 2.
  3. Величина делится на 3, когда сумма ее цифр делится на это значение.
  4. Число делится на 4, когда сумма двух крайних справа цифр можно разделить на последнее.
  5. Если величина заканчивается на 5 или 0, значит, 5 является ее делителем.
  6. Деление на 6 выполняется нацело в том случае, когда выполняются второе и третье правила.
  7. Чтобы разделить величину на 7, нужно от произведения всех цифр, не затрагивая последнюю, отнять двойной разряд единиц. В этом случае результат должен делиться на семерку.
  8. При делении на 8 нужно соблюдение второго и четвертого условий.
  9. Если число делится на 9, то на нее должна делиться и сумма цифр, составляющих искомую величину.

Математики рекомендуют заготовить специальные карточки на плотной бумаге или в виде презентаций на компьютере. Для этих целей может подойти программа PowerPoint, входящая в расширенный выпуск Microsoft Office.

Описанных рекомендаций будет достаточно, чтобы выполнить деление обыкновенных дробей. Правило, которое используется при этой операции, включает в себя преобразование величин, выполнение вычислений, а затем приведение к общему виду.

Деление и умножение дробей

При делении обыкновенных дробей рекомендуется на начальных этапах использовать алгоритм. Последний не понадобится, когда учащийся выполняет операцию большое количество раз. Методика имеет следующий вид:

  1. Записать 2 дроби: 3 (2/5) и 12 (2/5).
  2. Преобразовать их в неправильные дробные выражения: (5*3+2)/5=17/5 и (12*5+2)/5=62/5.
  3. Развернуть делитель (вторую дробь) и сменить знак деления «:» на противоположный (*), сократив на «5»: (17/5)*(5/62)=17/62.
  4. Упростить результат при необходимости.

Деление целого значения на дробь выполняется по такому же алгоритму. При умножении обыкновенных дробных величин нет необходимости их переворачивать. Методика является очень простой и сводится к перемножению числителей и знаменателей, а затем результат упрощается.

Таким образом, для выполнения операций деления и умножения двух обыкновенных дробей рекомендуется изучить признаки делимости, алгоритмы и определения, а затем переходить к практике.

Не успеваете написать работу?

Заполните форму и узнайте стоимость

Вид работыПоиск информацииДипломнаяВКРМагистерскаяРефератОтчет по практикеВопросыКурсовая теорияКурсовая практикаДругоеКонтрольная работаРезюмеБизнес-планДиплом MBAЭссеЗащитная речьДиссертацияТестыЗадачиДиплом техническийПлан к дипломуКонцепция к дипломуПакет для защитыСтатьиЧасть дипломаМагистерская диссертацияКандидатская диссертация

Контактные данные — строго конфиденциальны!

Указывайте телефон без ошибок! — потребуется для входа в личный кабинет.

* Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Подтверждение

Ваша заявка принята.

Ей присвоен номер 0000.
Просьба при ответах не изменять тему письма и присвоенный заявке номер.
В ближайшее время мы свяжемся с Вами.

Ошибка оформления заказа

Кажется вы неправильно указали свой EMAIL, без которого мы не сможем ответить вам.
Пожалуйста проверте заполнение формы и при необходимости скорректируйте данные.

Mathwords: дроби

Mathwords: дроби
индекс: нажмите на букву
индекс: предметные области

Правила дробей

Правила алгебры сочетания дробей. Эти правила применимы как к правильным, так и к неправильным дробям. Они применимы и ко всем рациональным выражениям.

 

A. Особые фракции

1. упрощается до b .

2. дальше не упрощает.

3. упрощается до 0.

4. не определено.

Примеры

не упрощает.

не определено. Так и есть.

Особое примечание: Почему нормально иметь 0 сверху (в числителе), а не внизу (в знаменателе)?

Задумайтесь на мгновение, что означает деление. Причина в том, что 2·5 = 10,

.

Дробь    потому что 2·0 = 0.

Дробь не может равняться ничему. Нет такого числа, которое можно было бы умножить на 0 и получить в ответ 10. Фракция не определена.

Что насчет ? Он тоже не определен, но немного по другой причине. Если умножить 0 в знаменателе на любое число, то получится 0 в числителе. Кажется, что может равняться любому числу. В результате мы говорим, что это неопределенное выражение, которое является особым видом неопределенного выражения.

B. Отрицательные дроби

1. такой же, как и

2. упрощается до  

3. НЕ совпадает с

Примеры

C. Аннулирование ( a ≠ 0, b ≠ 0, c ≠ 0)

1. отменяет на 1

2. отменяет на

3. Отмена на

4. Отмена на

5. Отмена на b

6. Отмена на b

Примеры

D. Дополнение

1.

2.

3.

Примеры

E. Вычитание

1.

2.

3.

4.

Примеры

F. Умножение

1.

2.

3.

Примеры

Осторожно!!

1.

2. Смешанные числа обозначают сложение, а не умножение. Например, значит и НЕ .

Г. Отдел

1.

2.

3.

Примеры

 

См. также

Правила распространения

 


  эта страница обновлена 19 июля 17
Математические слова: термины и формулы от алгебры I до исчисления
написано, проиллюстрировано и создано веб-мастером Брюсом Симмонсом
Авторское право © Брюс Симмонс, 2000 г.
Все права защищены

Сложение дробей – шаги, примеры

Сложение дробей немного отличается от обычного сложения чисел, поскольку дробь имеет числитель и знаменатель, разделенные чертой. сложение дробей можно легко сделать, если знаменатели равны. В то время как одинаковые дроби имеют общие знаменатели, разные дроби преобразуются в одинаковые дроби, чтобы упростить сложение. Давайте подробнее рассмотрим , добавив дроби в этой статье.

1. Как складывать дроби?
2. Сложение дробей с одинаковыми знаменателями
3. Сложение дробей с разными знаменателями
4. Сложение дробей с целыми числами
5. Добавление дробей с переменными
6. Часто задаваемые вопросы о сложении дробей

Как складывать дроби?

Дроби являются частью целого. Прежде чем перейти к сложению дробей, давайте быстро повторим, что такое дроби. Дроби состоят из двух частей, числителя и знаменателя. Общее представление дроби — это a/b, где «a» — числитель, «b» — знаменатель, а «b» не может быть нулевым. Например, 2/3, 14/5, 6/7, 28/9.и 21/43. Как и с другими числами, мы можем выполнять арифметические операции сложения, вычитания, умножения и деления дробей. Сложение дробей означает нахождение суммы двух или более дробей. Теперь давайте изучим основные шагов сложения дробей с помощью следующего примера.

Пример: Сложить 1/4 + 2/4

Решение: Сложим эти дроби, выполнив следующие действия.

  • Шаг 1: Проверить, совпадают ли знаменатели. (Здесь знаменатели совпадают, поэтому переходим к следующему шагу)
  • Шаг 2: Сложите числители и поместите сумму над общим знаменателем. Это означает, что (1 + 2)/4 = 3/4
  • Шаг 3: При необходимости упростите дробь до наименьшей формы. Здесь он не нужен. Итак, сумма данных дробей равна 1/4 + 2/4 = 3/4
  • .

В математике есть разные типы дробей. При добавлении дробей нам нужно проверить, похожи ли они на дроби или не похожи на дроби. Однородные дроби — это группа дробей с общим знаменателем, а разные дроби — это группа дробей с разными знаменателями. Изучая сложение дробей, мы можем столкнуться со следующими сценариями.

  • Сложение дробей с одинаковыми знаменателями: 3/4 + 1/4
  • Сложение дробей с разными знаменателями: 3/5 + 1/2
  • Сложение дробей с целыми числами: 1/2 + 2
  • Сложение дробей с переменными: 3/5г + 1/4г

Теперь давайте подробнее узнаем о вышеупомянутых случаях.

Сложение дробей с одинаковыми знаменателями

Сложение дробей с одинаковыми знаменателями осуществляется путем записи суммы числителей над общим знаменателем. Давайте разберемся в этом с помощью примера.

Пример: Сложите дроби 2/4 + 1/4

Решение: Мы видим, что знаменатели данных дробей одинаковы. Эти дроби называются подобными дробям.

Сложение одинаковых дробей можно произвести, сложив числители данных дробей и сохранив общий знаменатель. В этом случае мы сохраняем знаменатель равным 4 и добавляем числители. Это можно выразить как 2/4 + 1/4 = (2 + 1)/4 = 3/4. Это дает сумму как 3/4.

Сложение дробей с разными знаменателями

Мы только что научились складывать дроби с одинаковыми знаменателями. Теперь давайте разберемся, как складывать дроби с разными или непохожими знаменателями. Когда знаменатели разные, дроби называются непохожими дробями . В таких дробях первым делом нужно преобразовать их в подобные дроби, чтобы знаменатели стали общими. Это делается путем нахождения наименьшего общего кратного (НОК) знаменателей. Давайте разберемся в этом с помощью следующего примера.

Пример: Сложите дроби 1/3 и 3/5.

Решение: Мы будем использовать следующие шаги, чтобы сложить эти дроби.

  • Шаг 1: Поскольку знаменатели в данных дробях разные, мы находим НОК 3 и 5, чтобы сделать их одинаковыми. НОК 3 и 5 = 15,
  • Шаг 2: Теперь умножьте 1/3 на 5/5, (1/3) × (5/5) = 5/15 и 3/5 на 3/3, (3/5) × (3 /3) = 9/15, что преобразует их в одинаковые дроби с одинаковыми знаменателями.
  • Шаг 3: Теперь знаменатели совпадают, поэтому мы просто складываем числители и записываем сумму над общим знаменателем. Новые дроби с общими знаменателями — 5/15 и 9/15. Итак, 5/15 + 9/15 = (5 + 9)/15 = 14/15.

Сложение дробей с целыми числами

Простой способ сложить целое число и правильную дробь состоит в том, чтобы объединить их и представить в виде смешанной дроби. Например, 5 + 1/2 можно объединить и выразить как 5½ = 11/2. Точно так же 3 + 1/7 = \(3\frac{1}{7} \) = 22/7. Однако есть и другой способ сложения дробей с целыми числами. Давайте поймем это с помощью следующего примера.

Пример: Сложить 3 + 4/5

Решение: Сложим эти числа, выполнив следующие шаги:

  • Шаг 1: В этом методе мы преобразуем целое число в дробную форму с помощью запись 1 в качестве его знаменателя. Здесь 3 — это целое число, и его можно записать как 3/1
  • .
  • Шаг 2: Теперь к 4/5 можно прибавить 3/1, то есть 3/1 + 4/5. Мы добавим их, сделав знаменатели одинаковыми, потому что они не похожи на дроби. Отсюда следует, что (3/1) + (4/5) = (3/1) × (5/5) + (4/5) × (1/1) = 15/5 + 4/5 = 19./ 5 = \ (3 \ гидроразрыва {4} {5} \)

Добавление дробей с переменными

Теперь, когда мы увидели сложение дробей с одинаковыми и непохожими дробями, мы можем расширить ту же концепцию для сложения дробей с переменными. Давайте разберемся в этом с помощью следующего примера.

Пример: Добавьте y/5 + 2y/5, где ‘y’ — переменная.

Решение: Складываем эти дроби, используя следующие шаги:

  • Шаг 1: Данные дроби y/5 + 2y/5 подобны дробям, поскольку у них один и тот же знаменатель, и мы видим, что ‘y’ является общим.
  • Шаг 2: Мы можем убрать общий множитель и переписать его как: y/5 + 2y/5 = (1/5 + 2/5)y = 3y/5
  • Шаг 3: Следовательно, сумма y/5 + 2y/5 = 3y/5

Теперь давайте научимся складывать разные дроби на следующем примере.

Пример: Добавить у/2 + у/3

Решение: Давайте сложим дроби, используя следующие шаги.

  • Шаг 1: Поскольку данные дроби y/2 + y/3 не похожи друг на друга, мы возьмем НОК знаменателей и преобразуем их в подобные дроби.
  • Шаг 4: Далее нам нужно взять общую переменную и переписать ее следующим образом: LCM (2, 3) = 6; y/2 = (y/2) × (3/3) = 3y/6 и y/3 = (y/3 × (2/2) = 2y/6
  • Шаг 5: Мы получили две дроби с общими знаменателями, (3y/6) + (2y/6) = (3y + 2y)/6 = 5y/6. Следовательно, сумма y/2 + y/3 = 5y/6

Следует отметить, что в некоторых случаях, когда у нас есть разные переменные, такие как «x» и «y», они рассматриваются как разные термины и не могут быть дополнительно упрощены, например, x/2 + y/3

Советы и рекомендации по сложению дробей

При работе со сложением дробей полезно помнить следующие моменты:

  • В отличие от дробей, мы не складываем числители и знаменатели напрямую. 1/5 + 2/3 ≠ 3/8
  • Чтобы сложить разные дроби, сначала преобразуйте данные дроби в одинаковые дроби, взяв НОК знаменателей.
  • Сложите числители и сохраните общий знаменатель, чтобы получить сумму дробей.

☛ Похожие темы

  • Вычитание дробей
  • Умножение дробей
  • Деление дробей
  • Подобные дроби и отличные дроби
  • Добавление калькулятора дробей

Часто задаваемые вопросы о сложении дробей

Как складывать дроби?

Процесс сложения дробей немного отличается от обычного сложения целых чисел. Первым шагом при сложении дробей является проверка, совпадают ли знаменатели данных дробей. Затем мы используем следующую процедуру, чтобы добавить их.

  • Если дроби имеют общие знаменатели, то мы можем легко сложить числители и сохранить тот же знаменатель, чтобы получить сумму. Например, 2/4 + 1/4 = (2 + 1)/4 = 3/4
  • Если знаменатели разные, мы делаем знаменатели равными, переводя их в эквивалентные дроби, находя НОК знаменателей. После этого можно делать прибавку. Например, 1/2 + 2/3 = (1/2 × 3/3) + (2/3 × 2/2) = 3/6 + 4/6 = (3 + 4)/6 = 7/6. = \(1 \dfrac{1}{6}\)

Каково правило сложения дробей?

Основное правило сложения дробей — знаменатели дробей должны быть одинаковыми. Если дроби имеют одинаковый знаменатель, мы можем просто сложить числители, сохраняя тот же знаменатель. Однако, если знаменатели разные, нам нужно преобразовать их в одинаковые дроби с одинаковыми знаменателями. Это делается путем записи их эквивалентных дробей с использованием НОК знаменателей. Как только они преобразуются в одинаковые дроби, дроби можно легко складывать, потому что нам просто нужно работать с числителями, сохраняя при этом тот же знаменатель.

Как складывать дроби с целыми числами?

Чтобы сложить дробь с целым числом, мы сначала преобразуем целое число в дробь. Например, если нам нужно сложить 3 и 1/2, целое число 3 можно легко преобразовать в дробь, например 3/1, и прибавить к другой дроби. Давайте посмотрим, как это работает. (3/1) + (1/2) = (3/1) × (2/2) + (1/2) = 6/2 + 1/2 = 7/2 = 3½. Другой способ складывать дроби и целые числа — просто комбинировать и представлять их в виде смешанных дробей. Например, 6 + 1/2 можно объединить и записать как \(6 \dfrac{1}{2}\)

Как складывать дроби с разными знаменателями?

Дроби с разными знаменателями можно сложить, сделав знаменатели общими. Это делается путем умножения числителя и знаменателя каждой из дробей на подходящее число так, чтобы все дроби стали как дроби. Чтобы сложить дроби 3/5 + 4/3, нам нужно обе дроби умножить на число, при котором знаменатели равны. Для этого нам понадобится НОК знаменателей, который в данном случае равен 15. Числитель и знаменатель первой дроби 3/5 нужно умножить на 3, а числитель и знаменатель второй дроби 4/3 умножить на 5. Следовательно, мы имеем (3/5 × 3/3) + (4/3 × 5/5) = (9/15) + (20/15) = (9 + 20)/15 = 29/15 = \(1 \dfrac{14}{15}\)

Как сложить три дроби с разными знаменателями?

Сложение трех дробей аналогично сложению двух дробей с разными знаменателями. Прежде всего, нам нужны НОК всех трех знаменателей. Соответственно, знаменатели всех трех дробей становятся общими путем умножения числителя и знаменателя каждой из дробей на подходящее число, чтобы они были преобразованы в одинаковые дроби. Теперь, когда знаменатели являются общими, добавляются числители, чтобы получить сумму дробей. Давайте поймем это с помощью этой задачи на сложение: 2/3 + 4/5 + 1/6. НОК 3, 5 и 6 равен 30. Теперь мы умножим каждую дробь на подходящее число, чтобы их знаменатели были общими: (2/3 × 10/10) + (4/5 × 6/6) + ( 1/6 × 5/5) = (20/30) + (24/30) + (5/30) = (20 + 24 + 5)/30 = 49/30 = \(1 \dfrac{19}{30}\)

Что такое элемент идентификации для сложения дробей?

Идентификационным элементом для сложения является 0, что означает, что для любого действительного числа «а» а + 0 = а. Точно так же для сложения дробей элемент идентичности равен 0. Для дроби вида a/b имеем a/b + 0 = 0 + a/b = a/b. Использование элемента идентичности для сложения не меняет значения дроби.

Что такое вычитание и сложение дробей?

При вычитании и сложении дробей, во-первых, нужно сделать равными знаменатели дробей. Процесс начинается с LCM знаменателей. Затем дроби умножаются на подходящее число, в результате чего все знаменатели становятся равными. Наконец, числители добавляются или вычитаются в соответствии с вопросом, а новый знаменатель остается прежним.

Вычитание и сложение дробей: правила

Предположим, вы выполнили часть домашнего задания вчера и еще часть сегодня. Должен же быть способ подсчитать, сколько домашней работы осталось и сколько всего вы сделали, верно? Вы можете выполнять операции сложения, вычитания, умножения и деления дробей точно так же, как и с целыми числами! В этой статье мы собираемся изучить, как именно выполнять вычитание и сложение дробей.

Правила и шаги: Сложение и вычитание дробей

Дробь — это число, выраженное в виде частного. Многие числа представлены таким образом, и это означает, что они не являются целыми числами. Частное состоит из старшего числа, числителя , и меньшего числа, знаменателя .

Как мы видим ниже, числитель расположен над горизонтальной линией, а знаменатель под ним. В математике эта горизонтальная линия эквивалентна символу деления. Таким образом, дробь представляет собой деление верхнего числа (числителя) на нижнее число (знаменатель).

Пример дроби с обозначением числителя и знаменателя — StudySmarter Originals

Дроби с одинаковым знаменателем

При сложении и вычитании дробей следует помнить одно важное правило: Если дроби нужно складывать или вычитать имеют одинаковые знаменатели, их числители можно складывать или вычитать, сохраняя знаменатель постоянным. Это правило является основой для всех операций сложения и вычитания дробей.

Проиллюстрируем этот процесс более подробно. Предположим, мы хотим вычислить . Поскольку знаменатели идентичны, мы можем просто выполнить вычитание числителей, сохраняя знаменатель постоянным (т. Е. Знаменатель = 9). Другими словами, мы выполняем 5 — 4 = 1 на числителях. Окончательный ответ: Шаги можно записать так:

Дроби с разными знаменателями

Прежде чем складывать или вычитать дроби с разными знаменателями, мы должны манипулировать дробями так, чтобы они имели одинаковые знаменатели. Для этого нам сначала нужно найти наименьший общий знаменатель (LCD).

Наименьший общий знаменатель (LCD) двух дробей — это наименьший возможный знаменатель, который может быть общим для каждой дроби при сохранении числового значения каждой дроби одинаковым.

Чтобы найти наименьший общий знаменатель двух дробей, важно сначала убедиться, что каждая дробь представлена ​​в самой упрощенной форме. Это означает, что все общие множители в числителе и знаменателе исключены. Следующим шагом является рассмотрение или перечисление всех множителей каждого знаменателя. Затем мы можем выбрать наименьшее кратное, общее для обоих списков. Это наименьший общий знаменатель! Рассмотрим подробнее этот процесс на следующем примере.

Найдите наименьший общий знаменатель дробей и

1. Убедитесь, что каждая дробь представлена ​​в самой упрощенной форме.

Первая дробь, которую мы видим, не в самой упрощенной форме. Мы можем упростить эту дробь, убрав коэффициент 32 сверху и снизу.

Вторая дробь уже в самом упрощенном виде, так как нет множителей, которые можно вынести как из верха, так и из низа. Это оставляет нас с дробями и

2. Перечислите кратные каждого знаменателя.

Кратные 2: 2, 4, 6, 8, 10, 12, 14…

Кратные 10: 10, 20, 30, 40, 50, 60, 70…

Из каждого из этих списков видно, что 10 — это наименьшее кратное, общее для обоих знаменателей. Следовательно, это наименьший общий знаменатель .

После нахождения ЖК-дисплея можно использовать следующую процедуру для сложения или вычитания дробей с разными знаменателями:

Шаг 1: Установите знаменатель каждого члена с наименьшим общим знаменателем (LCD).

Шаг 2: Установите числитель каждого члена равным.

Шаг 3: Теперь, когда все знаменатели одинаковы, вы можете складывать или вычитать члены в числителе, чтобы получить ответ.

Сложите дроби и

Из нашего предыдущего примера мы знаем, что наименьшее общее кратное и равно 10.

1. Установите знаменатель каждого члена с наименьшим общим знаменателем (LCD).

и

2. Установить числитель каждого члена равным

Поскольку исходный знаменатель второй дроби уже равен 10, ее числитель не нужно преобразовывать.

У нас остались дроби и

3. Теперь, когда все знаменатели одинаковы, вы можете сложить члены в числителе, чтобы получить ответ.

В этом примере использовался более длинный способ вычисления; однако, как только вы поймете основы, вам будет намного проще выполнять такие вычисления:

Примеры сложения и вычитания дробей

(1) Вычислить

Решение:0 Решение:0 знаменатели одинаковы, мы можем напрямую вычесть числители.

(2) Оценка

Решение:

(20, 12, 30 и 3) равно 60.

Чтобы сложить или вычесть смешанные дроби, сначала преобразуйте их в неправильные дроби, а затем продолжите стандартный процесс.

Сложение и вычитание смешанных дробей

Смешанная дробь – это число, представленное как целое число и частное, например

Сложение и вычитание смешанных дробей требует преобразования их в неправильные дроби. Затем мы можем выполнить стандартный процесс сложения и вычитания дробей, как мы это делали раньше. Неправильная дробь – это дробь, числитель которой больше или равен знаменателю.

Чтобы преобразовать смешанную дробь в неправильную, мы должны преобразовать целую числовую часть смешанной дроби в дробь с тем же знаменателем, что и у частного. Затем мы просто добавляем их. Давайте посмотрим на пример.

Преобразуйте следующую смешанную дробь в неправильную дробь.

Решение:

1. Преобразуйте целую числовую часть неправильной дроби в дробь с тем же знаменателем, что и у частного.

2. Добавьте эту новую дробь к частному исходной смешанной дроби, чтобы получить неправильную дробь.

И так получаем результат:

Оценка

Решение:

Преобразование смешанных фракций в неправильные фракции Мы получаем:

положительных и отрицательных дробей

Как и любое другое число, которое вы встретите, дроби могут быть положительными или отрицательными. К счастью, правила сложения и вычитания положительных и отрицательных дробей такие же, как и для любого другого числа! Давайте посмотрим на несколько примеров, чтобы увидеть, как это работает.

(1) Вычисление

Решение:

Вычитание отрицательного значения аналогично сложению. So, our sum becomes:

(2) Evaluate

Solution:

Since adding a negative is the same as subtracting, our sum becomes:

(3) Evaluate

Решение:

При вычитании отрицательного числа из отрицательного мы складываем числа, но сохраняем знак минус. Итак,

Сложение и вычитание десятичных дробей

Десятичные дроби — это дроби, знаменатель которых несколько кратен десяти, например .

Десятичные дроби складываются и вычитаются почти так же, как и любые другие дроби, рассмотренные ранее. Во-первых, они должны быть преобразованы в форму с наименьшим общим знаменателем, а затем числители могут быть добавлены или вычтены по мере необходимости. Удобная вещь в сложении и вычитании десятичных дробей заключается в том, что наименьший общий знаменатель всегда является наибольшим знаменателем в сумме! Давайте рассмотрим еще несколько примеров.

(1) Оценить

Решение:

Сначала мы приводим каждое к наименьшему общему знаменателю, который, как мы видим, равен 100.

И затем выполняем сложение.

(1) Evaluate

Solution:

First, we convert each to the lowest common denominator, which we can see is 1000.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *