Правило суммы комбинаторика: Комбинаторика. Правила суммы и произведения. Решение задач

Комбинаторика правило суммы и правило произведения Дискретная…

Привет, сегодня поговорим про комбинаторика правило суммы, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое комбинаторика правило суммы, правило произведения , настоятельно рекомендую прочитать все из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика..

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными правилами. Комбинаторика изучает комбинации и перестановки предметов, расположение элементов, обладающее заданными свойствами. Обычный вопрос в комбинаторных задачах: сколькими способами….

К комбинаторным задачам относятся также задачи построения магических квадратов, задачи расшифровки и кодирования.

Рождение комбинаторики как раздела математики связано с трудами великих французских математиков 17 века Блеза Паскаля (1623–1662) и Пьера Ферма (1601–1665) по теории азартных игр.

Эти труды содержали принципы определения числа комбинаций элементов конечного множества. С 50-х годов 20 века интерес к комбинаторике возрождается в связи с бурным развитием кибернетики.

Основные правила комбинаторики – это правило суммы и правило произведения.

  • Правило суммы

Если некоторый элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то выбор «либо А, либо В» можно сделать m способами.

Например, Если на тарелке лежат 5 яблок и 6 груш, то один плод можно выбрать 5 + 6 = 11 способами.

  • правило произведения

Если элемент А можно выбрать n способами, а элемент В можно выбрать способами, то пару А и В можно выбрать 

n • m способами.

Например, если есть 2 разных конверта и 3 разные марки, то выбрать конверт и марку можно 6 способами (2 • 3 = 6).

Правило произведения верно и в том случае, когда рассматривают элементы нескольких множеств.

Например, если есть 2 разных конверта, 3 разные марки и 4 разные открытки, то выбрать конверт, марку и открытку можно 24 способами (2 • 3 • 4 = 24).

Произведение всех натуральных чисел от 1 до n включительно называется n – факториалом и обозначается символом n!

n! = 1 • 2 • 3 • 4 •…• n.

Например, 5! = 1 • 2 • 3 • 4 • 5 = 120.

Принято считать 0! равным 1.
Число перестановок из n равна n!

Например, если есть 3 шарика – красный, синий и зеленый, то выложить их в ряд можно 6 способами (3 • 2 • 1 = 3! = 6).

Иногда комбинаторная задача решается с помощью построения дерева возможных вариантов.

Например, решим предыдущую задачу о 3-х шарах построением дерева.

Практикум по решению задач по комбинаторике.

ЗАДАЧИ и решения

1. В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?

6 + 5 + 4 = 15

Ответ: 15 вариантов.

2. Сколько существует вариантов покупки одной розы, если продают 3 алые, 2 алые и 4 желтые розы?

3 + 2 + 4 = 9

Ответ: 9 вариантов.

3. Из города А в город В ведут пять дорог, а из города В в город С ведут три дороги. Сколько путей, проходящих через В, ведут из А в С?

5 • 3 = 15

Ответ: 15 путей.

4. Сколькими способами можно составить пару из одной гласной и одной согласной букв слова «платок»?

гласные: а, о – 2 шт.
согласные: п, л, т, к – 4 шт.

2 • 4 = 8

Ответ: 8 способами.

5. Сколько танцевальных пар можно составить из 8 юношей и 6 девушек?

6 • 8 = 48

Ответ: 48 пар.

6 . Об этом говорит сайт https://intellect.icu . В столовой есть 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать?

4 • 8 = 28

Ответ: 28 вариантов.

7. Сколько различных двузначных чисел можно составить, используя цифры 1, 4 и 7, если цифры могут повторяться?

1 цифра – 3 способа

2 цифра – 3 способа
3 цифра – 3 способа

3 • 3 = 9

Ответ: 9 различных двузначных чисел.

8. Сколько различных трехзначных чисел можно составить, используя цифры 3 и 5, если цифры могут повторяться?

1 цифра – 2 способа 
2 цифра – 2 способа
3 цифра – 2 способа

2 • 2 • 2 = 8

Ответ: 8 различных чисел.

9. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 4 способа

3 • 4 = 12

Ответ: 12 различных чисел.

10. Сколько существует трехзначных чисел, у которых все цифры четные?

Четные цифры – 0, 2, 4, 6, 8.

1 цифра – 4 способа
2 цифра – 5 способов 

3 цифра – 5 способов

4 • 5 • 5 = 100

Ответ: существует 100 чисел.

11. Сколько существует четных трехзначных чисел?

1 цифра – 9 способов (1, 2, 3, 4, 5, 6, 7, 8, 9)
2 цифра – 10 способов (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3 цифра – 5 способов (0, 2, 4, 6, 8)

9 • 10 • 5 = 450

Ответ: существует 450 чисел.

12.Сколько различных трехзначных чисел можно составить из трех различных цифр 4, 5, 6?

1 цифра – 3 способа
2 цифра – 2 способа
3 цифра – 1 способ

3 • 2 • 1 = 6

Ответ: 6 различных чисел.

13. Сколькими способами можно обозначить вершины треугольника, используя буквы А, В, С, D?

1 вершина – 4 способа
2 вершина – 3 способа

3 вершина – 2 способа

4 • 3 • 2 = 24

Ответ: 24 способа.

14. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,при условии, что ни одна цифра не повторяется?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа

5 • 4 • 3 = 60

Ответ: 60 различных чисел.

15. Сколько различных трехзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая из этих цифр может быть использована только один раз?

1 цифра – 2 способа
2 цифра – 4 способа
3 цифра – 3 способа

2 • 4 • 3 = 24

Ответ: 24 различных числа.

16. Сколькими способами можно составить флаг, состоящий из трех горизонтальных полос различных цветов, если имеется материал шести цветов?

1 полоса – 6 способов
2 полоса – 5 способов

3 полоса – 4 способа

6 • 5 • 4 = 120

Ответ: 120 способов.

17. Из класса выбирают 8 человек, имеющих лучшие результаты по бегу. Сколькими способами можно составить из них команду из трех человек для участия в эстафете?

1 человек – 8 способов
2 человек – 7 способов
3 человек – 6 способов

8 • 7 • 6 = 336

Ответ: 336 способов.

18. В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?

1 урок – 4 способа
2 урок – 3 способа 
3 урок – 2 способа 
4 урок – 1 способ

4 • 3 • 2 • 1 = 24

Ответ: 24 варианта.

19. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки разные?

1 урок – 8 вариантов
2 урок – 7 вариантов
3 урок – 6 вариантов
4 урок – 5 вариантов
5 урок – 4 варианта

8 • 7 • 6 • 5 • 4 = 6720

Ответ: 6720 вариантов.

20. Шифр для сейфа составляется из пяти различных цифр. Сколько различных вариантов составления шифра?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
4 цифра – 2 способа
5 цифра – 1 способ

5 • 4 • 3 • 2 • 1 = 120

Ответ: 120 вариантов.

21. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

6 • 5 • 4 • 3 • 2 • 1 = 720

Ответ: 720 способов.

22. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с нуля и 9?

1 цифра – 8 способов
2 цифра – 10 способов
3 цифра – 10 способов 
4 цифра – 10 способов
5 цифра – 10 способов
6 цифра – 10 способов 
7 цифра – 10 способов

8 • 10 • 10 • 10 • 10 • 10 • 10 = 8.000.000

Ответ: 8. 000.000 вариантов.

23. Телефонная станция обслуживает абонентов, у которых номера телефонов состоят из 7 цифр и начинаются с 394. На сколько абонентов рассчитана эта станция?

№ телефона 394 

10 • 10 • 10 • 10 = 10.000

Ответ: 10.000 абонентов.

24. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну перчатку на правую руку так, чтобы эти перчатки были различных размеров?

Левые перчатки – 6 способов
Правые перчатки – 5 способов (6 перчатка того же размера, что и левая)

6 • 5 = 30

Ответ: 30 способов.

25 . Из цифр 1, 2, 3, 4, 5 составляют пятизначные числа, в которых все цифры разные. Сколько таких четных чисел?

5 цифра – 2 способа (две четные цифры)
4 цифра – 4 способа
3 цифра – 3 способа
2 цифра – 2 способа
1 цифра – 1 способ

2 • 4 • 3 • 2 • 1 = 48

Ответ: 48 четных чисел.

26. Сколько существует четырехзначных чисел, составленных из нечетных цифр и делящихся на 5?

Нечетные цифр – 1, 3, 5, 7, 9.
Из них делятся на 5 – 5.

4 цифра – 1 способ (цифра 5)
3 цифра – 4 способа
2 цифра – 3 способа
1 цифра – 2 способа

1 • 4 • 3 • 2 = 24

Ответ: 24 числа.

27. Сколько существует пятизначных чисел, у которых третья цифра – 7, последняя цифра – четная?

1 цифра – 9 способов (все, кроме 0)
2 цифра – 10 способов
3 цифра – 1 способ (цифра 7)
4 цифра – 10 способов
5 цифра – 5 способов (0, 2, 4, 6, 8)

9 • 10 • 1 • 10 • 5 = 4500

Ответ: 4500 чисел.

28. Сколько существует шестизначных чисел, у которых вторая цифра – 2, четвертая – 4, шестая – 6, а все остальные – нечетные?

1 цифра – 5 вариантов (из 1, 3, 5, 7, 9)
2 цифра – 1 вариант (цифра 2)
3 цифра – 5 вариантов
4 цифра – 1 вариант (цифра 4) 
5 цифра – 5 вариантов
6 цифра – 1 вариант (цифра 6)

5 • 1 • 5 • 1 • 5 • 1 = 125

Ответ: 125 чисел.

29.Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?

Однозначных – 2
Двузначных – 2 • 2 = 4
Трехзначных – 2 • 2 • 2 = 8
Четырехзначных – 2 • 2 • 2 • 2 =16
Пятизначных – 2 • 2 • 2 • 2 • 2 = 32
Шестизначных – 2 • 2 • 2 • 2 2 • 2 = 64

Всего: 2 + 4 + 8 + 16 + 32 + 64 = 126

Ответ: 126 чисел.

30. В футбольной команде 11 человек. Нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Капитан – 11 способов
Заместитель – 10 способов

11 • 10 = 110

Ответ: 110 способов.

31.В классе учатся 30 человек. Сколькими способами из них можно выбрать старосту и ответственного за проездные билеты?

Староста – 30 способов
Ответ. за билеты – 29 способов

30 • 29 = 870

Ответ: 870 способов.

32. В походе участвуют 12 мальчиков, 10 девочек и 2 учителя. Сколько вариантов групп дежурных из трех человек (1 мальчик, 1 девочка, 1 учитель) можно составить?

12 • 10 • 2 = 240

Ответ: 240 способов.

33. Сколько комбинаций из четырех букв русского алфавита (в алфавите всего 33 буквы) можно составить при условии, что 2 соседние буквы будут разными?

1 буква – 33 способа
2 буква – 32 способа 
3 буква – 32 способа
4 буква – 32 способа

33 • 32 • 32 • 32 = 1.081.344

Ответ: 1.081.344 комбинаций.

Напиши свое отношение про комбинаторика правило суммы. Это меня вдохновит писать для тебя всё больше и больше интересного. Спасибо Надеюсь, что теперь ты понял что такое комбинаторика правило суммы, правило произведения и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика.

Комбинаторика. Правило суммы. Правило произведения

Похожие презентации:

Элементы комбинаторики ( 9-11 классы)

Применение производной в науке и в жизни

Проект по математике «Математика вокруг нас. Узоры и орнаменты на посуде»

Знакомство детей с математическими знаками и монетами

Тренажёр по математике «Собираем урожай». Счет в пределах 10

Методы обработки экспериментальных данных

Лекция 6. Корреляционный и регрессионный анализ

Решение задач обязательной части ОГЭ по геометрии

Дифференциальные уравнения

Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи

1. КОМБИНАТОРИКА

2. Оглавление

Что
такое комбинаторика?
Факториал
Перестановки. Размещения. Комбинации
Правила суммы, произведения
Примеры решения задач
Выбор формулы
Термин «комбинаторика» происходит от латинского слова
«combina», что в переводе на русский означает – «сочетать»,
«соединять».
Комбинаторика — раздел математики, посвящённый
решению задач выбора и расположения элементов в
соответствии с данными условиями.
Знание комбинаторики необходимо представителям самых разных специальностей.
С комбинаторными задачами приходится иметь дело физикам, химикам, биологам,
лингвистам, криптографам и другим специалистам.
Читаем:
n!
n (эн) — факториал
Произведение всех последовательных натуральных
чисел от 1 до n обозначается n!
n! = 1 · 2 · 3 · … · n

5. Перестановки. Размещения. Комбинации

Определение
Перестановкой з n элементов называется любое
упорядоченное множество (порядок элементов
существенен), которое состоит из n элементов.
Рn=n! ,
где Рn — число перестановок из n элементов.
Пример
Сколькими способами можно расставить на полке 5
книжек?
P5=5!=1*2*3*4*5=120
Размещением из m элементов по n называется любое Сколькими способами можно выбрать старосту класса
упорядоченное подмножество из n элементов данного и его заместителя, если в классе учатся 20 человек?
множества, которое содержит m элементов (n≤m).
m!
Amn
(m n)!
20!
20! 18! 19 20
A202
19 20 380
n
A m-число размещений m элементов по n ячейкам
(20 2)! 18!
18!
Комбинацией из m элементов по n называется любое Сколькими способами можно выбрать 2-х дежурный,
подмножество из n элементов (порядок элементов
если в классе учится 20 учеников?
несущественен) данного множества, которое
содержит m элементов (n≤m).
m!
20!
20! 18! 19 20
C mn
C 202
19 10 190
n!(m n)!
2!(20 2)! 2! 18!
2 18!
где Сnm- число комбинаций из m элементов по n
ячейкам

6. Правило суммы. Правило произведения

Определение
Пример
Правило суммы. Если элемент А можно
выбрать m способами, а элемент В – n
способами (при этом выбор элемента А
исключает выбор и элемента В), то А и В
можно выбрать (m+n) способами.
Если в тарелке лежат 5 груш и 4 яблока, то
выбрать один фрукт можно 9 способами
(4+5=9).
Правило произведения. Если элемент А
можно выбрать m способами, а после этого
элемент В – n способами, то А и В можно
выбрать (m*n) способами.
Если в канцелярском магазине продают ручки
5 видов и тетради 4 видов, то выбрать набор
из ручки и тетради (т.е. пару – ручку и
тетрадь) можно 5*4=20 способами,
поскольку для каждой из 5 ручек можно взять
любую из 4 тетрадей.
Задача 1
На завтрак Вова может выбрать: плюшку, бутерброд,
пряник, или кекс, а запить он может: кофе, соком,
кефиром. Сколько возможных вариантов завтрака?
Переберем все возможные
варианты
Ответ:15.
Задача 2
Несколько стран в качестве символа своего
государства решили использовать флаг в виде трёх
горизонтальных полос одинаковых по ширине, но
разных по цвету: белый, синий, красный. Сколько
стран могут использовать такую символику, при
условии, что у каждой страны свой отличный от
других стран флаг?
P3 3! 2 3 6
?
?
?
?
?
?
Ответ:6.
?
?
?
?
?
?
?
?
?

11. Задача 3

На соревнование по легкой
атлетике приехала команда из 12ти спортсменок. Сколькими
способами тренер может
определить, кто из них побежит в
эстафете 4 по 100 м на первом,
втором, третьем и четвертом
местах?

12. Поскольку тренеру важно, в каком порядке будут бежать спортсменки, то порядок при выборе элементов учитывается. Количество

способов
выбрать из 12 спортсменок 4 для участия в
эстафете равна количеству размещений из 12
элементов по 4 (без повторений), т.е.
A124
Ответ: 11 880.
12!
12!
12 11 10 9 11880.
(12 4)! 8!

13. Задача 4

Сколько четных двузначных чисел можно составить
из цифр 0,1,2,4,5,9?
І способ
Переберем все возможные
варианты
0
2
4
1
10
12
14
2
20
22
24
4
40
42
44
5
50
52
9
Ответ: 15 чисел.
90
92
54
94
ІI способ
Воспользуемся формулой
комбинаций без повторений
Поскольку нам необходимо составить двузначные числа, то они не
1
могут начинаться на 0. Выбрать первую цифру из 5-ти можно C5
способами.
Чтобы число было четным, оно должно заканчиваться на 0, 2 или 4, т.е.
четное число можно выбрать C31 способами .
Тогда по правилу произведения четные двузначные числа можно
составить C 1 C 1 .
5
3
Получаем
C51 C31
Ответ:15 чисел.
5!
3!
5! 3!
5 3 15
1!(5 1)! 3!(3 1)! 1! 4! 1! 2!

16. В коридоре висят три лампочки. Сколько имеется различных способов освещения коридора?

Задача 5
В коридоре висят три лампочки. Сколько имеется различных
способов освещения коридора?
І способ
Переберем все возможные
варианты
Ответ: 8 способов.
ІІ способ
Воспользуемся правилом
умножения
Для каждой лампочки возможны два исхода, а лампочек три,
значит:
2 2 2 8
Воспользуемся формулой
размещений с повторениями
ІІІ способ
Нам необходимо разместить 2 предмета по трем ячейкам,
причем они могут повторяться. Имеем:
~
A n k 23 8
Ответ:8.

19. Выберите правило

№1. Из города А а город В ведут 5 дорог, а из города В в
город С – 3 дороги. Сколькими способами можно проехать
из города А в город С?
5*3=15
№2. На книжной полке стоят 3 книги по алгебре, 4 по
геометрии и 5 по литературе. Сколькими способами можно
взять с полки одну книгу по математике?
4+3=7
№3. В меню имеется 4 первых блюда, 3 – вторых, 2 –
десерта. Сколько различных обедов можно из них
составить?
4*3*2=24
Выбор формулы
Учитывается ли
порядок элементов?
Да
Все ли элементы
входят в соединение?
Да
Нет
Перестановки
Нет
Комбинации
Размещения
Без повторений
Без повторений
Pm m!
Amn
С повторениями
С повторениями
~
Pm
m!
k1 k 2 …k n
, где
k1 k 2 … k n m
~
n
m
m!
(m n)!
A m
n
Без повторений
C mn
m!
n!(m n)!
С повторениями
~
n
m
C Cm n 1
n

English     Русский Правила

Правило суммы | Brilliant Math & Science Wiki

Правило суммы применяется только к взаимоисключающим вариантам выбора, то есть можно выбрать только один из вариантов. Чтобы определить, когда использовать правило суммы (в отличие от правила произведения), попробуйте перефразировать вопрос. Если вопрос можно перефразировать словом «или», это обычно указывает на то, что применяется правило суммы.

Мэри сегодня надела свою счастливую рубашку, и ей нужно выбрать одну из 3 красных и 4 синих юбок, которые она наденет с этой рубашкой. Сколько различных вариантов одежды для одной юбки у нее есть в течение дня?


Поскольку Мэри может носить одну из 3 красных юбок или одну из 4 синих юбок, выбор является взаимоисключающим и применяется правило суммы. Это дает в общей сложности 3 + 4 = 7 3 + 4 = 7 3 + 4 = 7 различных вариантов одежды. □ _\квадрат □​

12 16 23 28

В местном кинотеатре показывают 555 боевиков, 777 комедий и 161616 драм. Если вы идете в кинотеатр, чтобы посмотреть один фильм, сколько у вас есть вариантов, какой фильм посмотреть?

Рави идет в зоомагазин и обнаруживает, что в зоомагазине 333 рептилии, 444 птицы, 555 кроликов и 666 рыб. Если Рави может выбрать только одно животное в качестве питомца, сколько у него есть вариантов для питомца?


Поскольку Рави может выбрать рептилию, или птицу, или кролика, или рыбу, применяется правило суммы. Затем

  • есть 333 способа выбрать рептилию;
  • есть 444 способа выбрать птицу;
  • есть 555 способов выбрать кролика;
  • есть 666 способов выбрать рыбу.

По правилу суммы существует 3+4+5+6=183+4+5+6=183+4+5+6=18 способов выбрать питомца. □_\квадрат□​

Крис играет в карточную игру, и в его руке есть три пятерки, два валета, два туза, одна девятка и один король. Если ему нужно выбрать одну карту для игры в следующем раунде, сколько у него есть вариантов выбора карты?


Так как Крис может играть 5,5,5, или валет, или туз, или 9, или король, применяется правило суммы. Затем

  • есть 333 способа выбрать 5;5;5;
  • есть 222 способа выбрать Джека;
  • есть 222 способа выбрать туз;
  • есть 111 способов выбрать 9;9;9;
  • есть 111 способов выбрать короля.

По правилу суммы существует 3+2+2+1+1=93+2+2+1+1=93+2+2+1+1=9 способов выбрать карту для игры в следующий раунд. □_\квадрат□​

Когда брошено 666 неразличимых монет, сколько различных исходов?

Детали и предположения:

  • Два исхода одинаковы, если они содержат одинаковое количество решек.

В дилерском центре в городе Исаака продаются 10 красных грузовиков, 5 синих грузовиков, 3 красных автомобиля и 2 синих автомобиля. Если Исаак собирается купить ровно одну красную машину, сколько вариантов у него есть?


Красные автомобили — это 10 красных грузовиков и 3 красных автомобиля. Следовательно, всего 10+3=13 10+3= 13 10+3=13 красных автомобилей. □ _\квадрат □​

Учитывая полную колоду карт, сколько карт с черными лицами или красными и четными?


Поскольку есть 3 лицевых карты (валет, дама и король) и 5 ​​четных карт (2, 4, 6, 8, 10), у нас есть следующее, соответствующее нашим критериям:

  • 3 лицевые карты пиками
  • 3 лицевые карты в трефах
  • 5 четных в червах
  • 5 пар в бриллиантах.

Таким образом, по правилу суммы существует 3+3+5+5=16 3 + 3 + 5 + 5 = 16 3+3+5+5=16 возможных вариантов. □_\квадрат□​

Сколько неотрицательных целочисленных решений существует для следующего:

−5


Рассматривая каждое неравенство отдельно, мы видим, что существует 4−(−4)+1=9 4 — (-4) + 1 = 9 4−(−4)+1=9 целочисленных решений −5

Существует 99−13+1=87 99-13+1 = 87 99−13+1=87 целочисленных решений задачи 12

Таким образом, по правилу суммы имеем 5+87=92 5+87=925+87=92 возможных ответа. □_\квадрат□​

Дискретная математика — Нужна помощь в визуализации правила комбинаторики суммы и произведения

Я работаю над некоторыми заданиями в своем классе дискретной математики для правил комбинаторики суммы и произведения, и мне трудно понять их определения и то, как они работают. Я надеюсь, что кто-то может помочь мне немного визуализировать вещи, чтобы понять это немного больше. Вот мои текущие рабочие определения:

Определение правила суммирования Правило суммы является еще одним основным принципом подсчета. Проще говоря, это идея о том, что если у нас есть а способов сделать что-то и b способов сделать что-то другое, и мы не можем сделать и то, и другое одновременно, то есть а + b способов выбрать одно из действий.

Вот формальная формулировка правила сумм, выраженная через множества:

Рассмотрим n множеств, $A_{1}, A_{2},\cdots,A_{n}$. Если множества взаимно не пересекаются $(A_{i} \cap A_{j} = ∅$ для $i \ne j)$, то
$|A_{1}\cup A_{2}\cup \cdots \cup A_{n} | = |А_{1} | + |А_{2} | + … + |A_{n} |$

Определение правила продукта В комбинаторике правило произведения или принцип умножения является основным принципом подсчета (также известным как фундаментальный принцип подсчета). Проще говоря, это идея о том, что если существует 90 138 a 90 139 способов сделать что-то и 90 138 b 90 139 способов сделать другое, то существует 90 138 a ∙ b 90 139 способов выполнить оба действия.

В теории множеств этот принцип умножения часто принимается за определение произведения количественных чисел.[1] Таким образом, мы имеем:

Пусть $A_{1}, A_{2},\cdots,A_{n}$ — конечные множества. Затем,
$|A_{1} × A_{2} × … × A_{n}| = |A_{1}|\bullet|A_{2}| \bullet\cdots\bullet |A_{n}|$

, где $×$ — оператор декартова произведения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *