Примеры нахождения суммы числового ряда: Как найти сумму ряда: примеры решений, определение

1: &3A+B=1 \end{cases}\Rightarrow \begin{cases} A=\frac{1}{2} \\ B=-\frac{1}{2} \end{cases} $$

После разложения общий член ряда записывается следующим образом:

$$ a_n =\frac{1}{(2n+1)(2n+3)}=\frac{1}{2} \frac{1}{2n+1} — \frac{1}{2} \frac{1}{2n+3} $$

Далее составим частичную сумму ряда: $$ S_n = a_1 + a_2 + a_3 + a_4 + … + a_n $$

$$ a_1 = \frac{1}{2} \bigg (\frac{1}{3}-\frac{1}{5}\bigg ) $$

$$ a_2 = \frac{1}{2} \bigg (\frac{1}{5}-\frac{1}{7}\bigg ) $$

$$ a_3 = \frac{1}{2} \bigg (\frac{1}{7}-\frac{1}{9}\bigg ) $$

$$ …………………………………. $$

$$ a_{n-1}=\frac{1}{2} \bigg (\frac{1}{2n-1}-\frac{1}{2n+1} \bigg ) $$

$$ a_n = \frac{1}{2} \bigg (\frac{1}{2n+1}-\frac{1}{2n+3} \bigg ) $$

Замечание

Достаточно часто читатели нам присылают просьбы найти суммы своих рядов по причине того, что они не понимают, откуда получается $ a_{n-1} $.

Обратите внимание, чтобы составить $ a_{n-1} $ необходимо подставить в $ a_n $ вместо буковки $ n $ выражение $ n-1 $. После выполнить раскрытие скобок.

Итого, получаем:

$$ S_n = \frac{1}{2} \bigg (\frac{1}{3}-\frac{1}{5}\bigg ) + \frac{1}{2} \bigg (\frac{1}{5}-\frac{1}{7}\bigg ) + \frac{1}{2} \bigg (\frac{1}{7}-\frac{1}{9}\bigg ) + … $$

$$ … + \frac{1}{2} \bigg (\frac{1}{2n-1}-\frac{1}{2n+1} \bigg ) + \frac{1}{2} \bigg (\frac{1}{2n+1}-\frac{1}{2n+3} \bigg ) = $$

Выносим дробь одну вторую $ \frac{1}{2} $ за скобки:

$$ = \frac{1}{2} \bigg (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9} … + $$

$$ + … \frac{1}{2n-1} — \frac{1}{2n+1} + \frac{1}{2n+1} — \frac{1}{2n+3} \bigg) = $$

Замечаем, что в скобках есть подобные слагаемые, которые взаимно уничтожаются. Остаются только лишь два из них:

$$ S_n = \frac{1}{2}\bigg (\frac{1}{3}-\frac{1}{2n+3} \bigg ) $$

Теперь осталось вычислить предел частичной суммы $ S_n $. Если он существует и конечен, то он является суммой ряда, а сам ряд сходится:

$$ S=\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{2}\bigg (\frac{1}{3}-\frac{1}{2n+3} \bigg ) = $$

$$ = \frac{1}{2} \lim_{n\to\infty} \bigg (\frac{1}{3}-\frac{1}{2n+3} \bigg ) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} $$

Сумма ряда — как найти и вычислить с примерами решения

Содержание:

  1. Понятие суммы ряда
  2. Вычисление суммы ряда почленным интегрированием
  3. Вычисление суммы ряда почленным дифференцированием

Понятие суммы ряда

Постановка задачи. Найти сумму ряда

где — целые числа.

План решения. Суммой ряда называется предел последовательности его частичных сумм , т.е.

где

1. По условию задачи

Если корни знаменателя различаются на целое число, т.е. где — натуральное число, то члены последовательности частичных сумм ряда легко найти, так как в выражении многие слагаемые взаимно уничтожаются.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Высшая математика: лекции, формулы, теоремы, примеры задач с решением

2. Разлагаем общий член ряда на элементарные дроби:

и выписываем несколько членов ряда так, чтобы было видно, какие слагаемые сокращаются при вычислении частичных сумм ряда.

3. Находим -ю частичную сумму ряда:

,

сократив соответствующие слагаемые.

4. Вычисляем сумму ряда по формуле (1)

и записываем ответ.

Пример:

Найти сумму ряда

Решение:

1. Корни знаменателя и различаются на целое число, т.е. Следовательно, члены последовательности частичных сумм ряда легко найти, так как в выражении многие слагаемые взаимно уничтожаются.

2. Разлагаем общий член ряда на элементарные дроби

и выписываем несколько членов ряда:

3. Сокращая все слагаемые, какие возможно, находим -ю частичную сумму ряда:

4. Вычисляем сумму ряда по формуле (1):

Ответ:

Возможно вам будут полезны данные страницы:

Полное исследование функции

Исследование графика функции

Найти производную функцию

Уравнение прямой

Вычисление суммы ряда почленным интегрированием

Постановка задачи. Найти сумму функционального ряда вида

и указать область сходимости ряда к этой сумме.

План решения.

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством

Если , ряд расходится. Если , ряд сходится условно (по признаку Лейбница). Следовательно, область сходимости определяется неравенствами

2. Делаем в исходном ряде замену , получим степенной ряд

с областью сходимости .

3. Известна формула для вычисления суммы членов бесконечно убывающей геометрической прогрессии

4. Кроме того, имеем очевидное равенство

5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем

Заметим, что так как ряд (1) сходится в граничной точке , то сумма ряда непрерывна в этой точке (справа). Следовательно,

6. Вычисляем интеграл, делаем замену на и записываем ответ: сумму ряда и область его сходимости.

Замечание. Если ряд имеет вид

то применяем теорему о почленном интегрировании степенного ряда дважды или разлагаем дробь на элементарные:

и вычисляем сумму каждого ряда почленным интегрированием.

Пример:

Найти сумму ряда

и указать область сходимости ряда к этой сумме.

Решение:

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством

В граничных точках при ряд расходится, при ряд сходится условно.

Следовательно, данный ряд сходится при всех .

2. Сделаем замену Получим геометрический ряд (1) с областью сходимости

3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии

4. Кроме того, имеем очевидное равенство

5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, и используя формулу (4), получаем

Заметим, что так как ряд (1) сходится в граничной точке , то его сумма непрерывна в этой точке (справа). Следовательно, формула (5) справедлива при всех .

6. Заменяя на , получаем при

Ответ.

Вычисление суммы ряда почленным дифференцированием

Постановка задачи. Найти сумму функционального ряда вида

и указать область сходимости ряда к этой сумме.

План решения.

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством

Если , ряд расходится (не выполнено необходимое условие сходимости). Следовательно, область сходимости определяется неравенствами .

2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов

Следовательно, достаточно найти суммы рядов

и

3. Известна формула для суммы членов бесконечно убывающей геометрической прогрессии

4. Кроме того, имеем очевидное равенство

5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (1), получаем

6. Вычисляем производную и делаем замену на . Записываем ответ: сумму ряда и область его сходимости.

Замечание. Если ряд имеет вид

то вычисляем сумму трех рядов, причем при вычислении суммы ряда

применяем теорему о почленном дифференцировании степенного ряда дважды.

Пример:

Найти сумму ряда

и указать область сходимости ряда к этой сумме.

Решение:

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством . Отсюда . В граничных точках ряд расходится, так как не выполнено необходимое условие сходимости. Следовательно, ряд сходится в интервале .

2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов

Следовательно, достаточно найти суммы рядов

3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии:

Следовательно, при всех .

4. Кроме того, имеем очевидное равенство

5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (2), получаем

Таким образом,

Заменяя на , получим

Ответ.

Сумма первых n членов арифметической прогрессии

Горячая математика

Предположим, последовательность чисел арифметика (то есть увеличивается или уменьшается на постоянную величину каждый член), и вы хотите найти сумму первого н условия.

Обозначим эту частичную сумму через С н . затем

С н знак равно н ( а 1 + а н ) 2 ,
где н это количество терминов, а 1 является первым термином и а н это последний срок.

Сумма первого н членов арифметической прогрессии называется

арифметический ряд .

Пример 1:

Найдите сумму первых 20 члены арифметического ряда, если а 1 знак равно 5 а также а 20 знак равно 62 .

С 20 знак равно 20 ( 5 + 62 ) 2 С 20 знак равно 670

Пример 2:

Найдите сумму первых 40 условия арифметики последовательность 2 , 5 , 8 , 11 , ⋯ .

Сначала найдите 40 й срок:

а 40 знак равно а 1 + ( н − 1 ) д знак равно 2 + 39( 3 ) знак равно 119

Затем найдите сумму:

С н знак равно н ( а 1 + а н ) 2 С 40 знак равно 40 ( 2 + 119) 2 знак равно 2420

Пример 3:

Найдите сумму:

∑ к знак равно 1 50 ( 3 к + 2 )

Первая находка а 1 а также а 50 :

а 1 знак равно 3 ( 1 ) + 2 знак равно 5 а 50 знак равно 3 ( 50 ) + 2 знак равно 152

Затем найдите сумму:

С к знак равно к ( а 1 + а к ) 2 С 50 знак равно 50 ( 5 + 152 ) 2 знак равно 3925

Смотрите также: сигма-обозначение ряда а также n-й член арифметической прогрессии

Mathwords: арифметические ряды

Mathwords: арифметические ряды
индекс: нажмите на букву
индекс: предметные области

Арифметический ряд

А ряды типа 3+7+11+ 15 + ··· + 99 или 10 + 20 + 30 + ··· + 1000, что имеет постоянную разницу между терминами. Первый член a 1 , общая разница д , а количество терминов n . Сумма арифметический ряд получается путем умножения числа термины раз среднее значение первого и последнего членов.

 

Формула:    или    
 

 

Пример:

3 + 7 + 11 + 15 + ··· + 99 имеет a 1 = 3 и d = 4. Чтобы найти n , используйте явную формулу для арифметической прогрессии.

Решаем 3 + ( n – 1)·4 = 99, чтобы получить n = 25.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта