Как найти производную степенной функции: формула, примеры
Sign in
Password recovery
Восстановите свой пароль
Ваш адрес электронной почты
MicroExcel.ru Математика Алгебра Нахождение производной степенной функции
В данной публикации мы рассмотрим, чему равна производная степенной функций (в т.ч. сложной), а также разберем примеры решения задач для закрепления изложенного материала.
- Формула производной степенной функции
- Производная сложной степенной функции
- Примеры задач
Формула производной степенной функции
Для функции f(x) = x n, где n – действительное число, справедливо следующее выражение:
f ‘(x) = (x n)‘ = nx n-1
Т.е. производная степенной функции равняется произведению показателя степени на основание в степени, уменьшенной на единицу.
n – может быть как положительным, так и отрицательным числом (в т.ч. дробным):
Производная сложной степенной функции
В сложной функции вместо x представлено более сложное выражение. Производная такой функции определяется по формуле:
(y n)‘ = ny n-1 ⋅ y ‘
Примеры задач
Задание 1:
Вычислите производную функцию f(x) = x3/5.
Решение:
Согласно правилам дифференцирования константу в виде дроби можно вынести за знак производной:
Применив формулу производной, рассмотренную выше, получаем:
Задание 2:
Найдите производную функции f(x) = x2 + √x – 6.
Решение:
Первоначальный вид производной функции:
f ‘(x) = (x2 + √x – 6)‘.
С учетом правила дифференцирования суммы получаем:
f ‘(x) = (x2)‘ + (√x)‘ – (6)‘.
Остается только вычислить производные по отдельности:
(x2)‘ = 2x2-1 = 2x
(-6)‘ = 0 (производная константы равна нулю)
Таким образом получаем:
ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ
Таблица знаков зодиака
Нахождение площади трапеции: формула и примеры
Нахождение длины окружности: формула и задачи
Римские цифры: таблицы
Таблица синусов
Тригонометрическая функция: Тангенс угла (tg)
Нахождение площади ромба: формула и примеры
Нахождение объема цилиндра: формула и задачи
Тригонометрическая функция: Синус угла (sin)
Геометрическая фигура: треугольник
Нахождение объема шара: формула и задачи
Тригонометрическая функция: Косинус угла (cos)
Нахождение объема конуса: формула и задачи
Таблица сложения чисел
Нахождение площади квадрата: формула и примеры
Что такое тетраэдр: определение, виды, формулы площади и объема
Нахождение объема пирамиды: формула и задачи
Признаки подобия треугольников
Нахождение периметра прямоугольника: формула и задачи
Формула Герона для треугольника
Что такое средняя линия треугольника
Нахождение площади треугольника: формула и примеры
Нахождение площади поверхности конуса: формула и задачи
Что такое прямоугольник: определение, свойства, признаки, формулы
Разность кубов: формула и примеры
Степени натуральных чисел
Нахождение площади правильного шестиугольника: формула и примеры
Тригонометрические значения углов: sin, cos, tg, ctg
Нахождение периметра квадрата: формула и задачи
Теорема Фалеса: формулировка и пример решения задачи
Сумма кубов: формула и примеры
Нахождение объема куба: формула и задачи
Куб разности: формула и примеры
Нахождение площади шарового сегмента
Что такое окружность: определение, свойства, формулы
2}$ в своем ответе и немного объедините термины.Использование übercool JavaScript-порта Gnuplot по адресу http://gnuplot.respawned.com/, куда я вставил
set terminal svg увеличенный размер 400 300 установить вывод 'out.svg' установить сетку plot [0:2][-0.5:1.5] exp(x*x*log(x)) title "y", exp((x*x+1) * log(x)) \ * (2 * log(x) + 1) заголовок "y", 2 * log(x) + 1 заголовок "n"
Я получаю этот прекрасный график:
Если вы дочитали до этого места, я благодарю вас. Для меня это был мой первый пост здесь, и я поражен выразительными функциями (формулы, графики) здесь.
$\endgroup$
8
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.