Интеграл синуса
Согласно формулам интегрирования интеграл от синуса sin (x) равен косинусу, причем со знаком минус. Многие часто допускает ошибки потому что не может запомнить, что производная от синуса равна минус косинусу, а от косинуса — синусу со знаком плюс.
Те кто изучает первоначальную должны помнить что к правой стороне следует добавить постоянную
Ету постоянную определяют с дополнительной условия.
График синуса имеет вид
Синус нечетная, а косинус — четная функция, поэтому при интегрировании появляется знак минус. В начале всем кажется все простым и понятным. Но рано или поздно наступает время усложнять интеграл, то есть интегрировать синус двойного угла, тройного аргумента и т.д. И во многих возникают трудности с интегрированием. Для вывода формулы интеграла для sin (k*x) проведем все выкладки сначала. Для того чтобы свести интеграл к табличной формулы надо внести коэффициент под дифференциал, но это изменит сам интеграл. Поэтому одновременно делим на коэффициент
Зная эту формулу, интеграл от синуса двойного угла записываем одной строкой
Далее можем проинтегрировать синус тройного угла
и т. д.
int(sin(k*x)=-1/k*cos(k*x).
По такой же формуле выводят интеграл от синуса половины угла, который равен минус 2 косинус половины угла.
Интеграл от синуса одной третьей х равен
Пример 1. Найти интеграл от sin(4*x).
Решение: По формуле интегрирования находим
Пример 2. Вычислить интеграл от sin(5*x).
Решение: Выполняем интегрирования
Пример 3. Проинтегрировать выражение sin(7*x).
Решение: Находим неопределенный интеграл
Пример 4. Найти интеграл функции y=sin(x/5).
Решение: Находим неопределенный интеграл
Как только Вы научитесь вычислять простые интегралы от синуса можете переходить к определенному интегралу
Пример 5. Найти первоначальную от sin(x) которая в нуле равна 2.
Решение: Вычисляем первоначальную
Из условия на первоначальную находим постоянную
-cos(0)+C=2;
C=2+cos(0)=3.
Возвращаемся к первоначальной и подставляем найденную постоянную
Это и есть ответ к задаче.
Пример 7. Проинтегрировать синус двойного угла y=sin(2*x) от 0 до 45 градусов.
Решение: Записываем интеграл от синуса и подставляем пределы интегрирования
По физическому содержанию определенный интеграл равен площади фигуры ограниченной функцией sin (x) и осью абсцисс.
Но определенный интеграл и площадь, это не одно и то же. Интеграл может быть отрицательным, а площадь нет. Если функция большую площадь имеет под осью абсцисс, то ее определенный интеграл отрицательный.
Площадь криволинейной трапеции равна интегралу от разницы уравнения верхней кривой и нижней.
В данном случае верхняя кривая это ось абсцисс или y = 0. Нижняя — это график синуса. Поэтому формула площади синус функции равна 1, или определенному интегралу по модулю.
Если функция антисимметрична относительно оси абсцисс то ее интеграл равен нулю, а площадь равна двойному интегралу графика над осью абсцисс. Например, интеграл синуса двойного угла от -45 до 45 градусов равен нулю
В то же время площадь заштрихованной фигуры равна единице.
На графике это будет выглядеть.
Из следующих материалов Вы узнаете, как найти интеграл от функции вида
какие формулы свертки и замены переменных при этом следует использовать. Также Вы овладеете методикой вычисления интегралов вида полином умноженый на синус функцию
где — полином от переменной. В таких случаях применяют интегрирования по частям, но об этом пойдет речь позже.
На этом знакомство с интегрированием синуса завершается. Интегралы от других тригонометрических и обратных к ним функций Вы найдете на страницах категории «Интегрирование функций».
1 | Trovare la Derivata — d/dx | натуральный логарифм x | |
2 | Вычислим интеграл | интеграл натурального логарифма x по x | |
3 | Trovare la Derivata — d/dx | e^x | |
4 | Вычислим интеграл | интеграл e^(2x) по x | |
5 | Trovare la Derivata — d/dx | 1/x | |
6 | Trovare la Derivata — d/dx | x^2 | |
7 | Trovare la Derivata — d/dx | 1/(x^2) | |
8 | Trovare la Derivata — d/dx | sin(x)^2 | |
9 | Trovare la Derivata — d/dx | sec(x) | |
10 | Вычислим интеграл | интеграл e^x по x | |
11 | Вычислим интеграл | интеграл x^2 по x | |
12 | Вычислим интеграл | интеграл квадратного корня из x по x | |
13 | Trovare la Derivata — d/dx | cos(x)^2 | |
14 | Вычислим интеграл | интеграл 1/x по x | |
15 | Вычислим интеграл | интеграл sin(x)^2 по x | |
16 | Trovare la Derivata — d/dx | x^3 | |
17 | Trovare la Derivata — d/dx | sec(x)^2 | |
18 | Вычислим интеграл | интеграл cos(x)^2 по x | |
19 | Вычислим интеграл | интеграл sec(x)^2 по x | |
20 | Trovare la Derivata — d/dx | e^(x^2) | |
21 | Вычислим интеграл | интеграл в пределах от 0 до 1 кубический корень из 1+7x по x | |
22 | Trovare la Derivata — d/dx | sin(2x) | |
23 | Trovare la Derivata — d/dx | tan(x)^2 | |
24 | Вычислим интеграл | интеграл 1/(x^2) по x | |
25 | Trovare la Derivata — d/dx | 2^x | |
26 | График | натуральный логарифм a | |
27 | Trovare la Derivata — d/dx | cos(2x) | |
28 | Trovare la Derivata — d/dx | xe^x | |
29 | Вычислим интеграл | интеграл 2x по x | |
30 | Trovare la Derivata — d/dx | ( натуральный логарифм от x)^2 | |
31 | Trovare la Derivata — d/dx | натуральный логарифм (x)^2 | |
32 | Trovare la Derivata — d/dx | 3x^2 | |
33 | Вычислим интеграл | интеграл xe^(2x) по x | |
34 | Trovare la Derivata — d/dx | 2e^x | |
35 | Trovare la Derivata — d/dx | натуральный логарифм 2x | |
36 | Trovare la Derivata — d/dx | -sin(x) | |
37 | Trovare la Derivata — d/dx | 4x^2-x+5 | |
38 | Trovare la Derivata — d/dx | y=16 корень четвертой степени из 4x^4+4 | |
39 | Trovare la Derivata — d/dx | 2x^2 | |
40 | Вычислим интеграл | интеграл e^(3x) по x | |
41 | Вычислим интеграл | интеграл cos(2x) по x | |
42 | Trovare la Derivata — d/dx | 1/( квадратный корень из x) | |
43 | Вычислим интеграл | интеграл e^(x^2) по x | |
44 | Вычислить | e^infinity | |
45 | Trovare la Derivata — d/dx | x/2 | |
46 | Trovare la Derivata — d/dx | -cos(x) | |
47 | Trovare la Derivata — d/dx | sin(3x) | |
48 | Trovare la Derivata — d/dx | 1/(x^3) | |
49 | Вычислим интеграл | интеграл tan(x)^2 по x | |
50 | Вычислим интеграл | интеграл 1 по x | |
51 | Trovare la Derivata — d/dx | x^x | |
52 | Trovare la Derivata — d/dx | x натуральный логарифм от x | |
53 | Trovare la Derivata — d/dx | x^4 | |
54 | Оценить предел | предел (3x-5)/(x-3), если x стремится к 3 | |
55 | Вычислим интеграл | интеграл x^2 натуральный логарифм x по x | |
56 | Trovare la Derivata — d/dx | f(x) = square root of x | |
57 | Trovare la Derivata — d/dx | x^2sin(x) | |
58 | Вычислим интеграл | интеграл sin(2x) по x | |
59 | Trovare la Derivata — d/dx | 3e^x | |
60 | Вычислим интеграл | интеграл xe^x по x | |
61 | Trovare la Derivata — d/dx | y=x^2 | |
62 | Trovare la Derivata — d/dx | квадратный корень из x^2+1 | |
63 | Trovare la Derivata — d/dx | sin(x^2) | |
64 | Вычислим интеграл | интеграл e^(-2x) по x | |
65 | Вычислим интеграл | интеграл натурального логарифма квадратного корня из x по x | |
66 | Trovare la Derivata — d/dx | e^2 | |
67 | Trovare la Derivata — d/dx | x^2+1 | |
68 | Вычислим интеграл | интеграл sin(x) по x | |
69 | Trovare la Derivata — d/dx | arcsin(x) | |
70 | Оценить предел | предел (sin(x))/x, если x стремится к 0 | |
71 | Вычислим интеграл | интеграл e^(-x) по x | |
72 | Trovare la Derivata — d/dx | x^5 | |
73 | Trovare la Derivata — d/dx | 2/x | |
74 | Trovare la Derivata — d/dx | натуральный логарифм 3x | |
75 | Trovare la Derivata — d/dx | x^(1/2) | |
76 | Trovare la Derivata — d/d@VAR | f(x) = square root of x | |
77 | Trovare la Derivata — d/dx | cos(x^2) | |
78 | Trovare la Derivata — d/dx | 1/(x^5) | |
79 | Trovare la Derivata — d/dx | кубический корень из x^2 | |
80 | Вычислим интеграл | интеграл cos(x) по x | |
81 | Вычислим интеграл | интеграл e^(-x^2) по x | |
82 | Trovare la Derivata — d/d@VAR | f(x)=x^3 | |
83 | Вычислим интеграл | интеграл 4x^2+7 в пределах от 0 до 10 по x | |
84 | Вычислим интеграл | интеграл ( натуральный логарифм x)^2 по x | |
85 | Trovare la Derivata — d/dx | логарифм x | |
86 | Trovare la Derivata — d/dx | arctan(x) | |
87 | Trovare la Derivata — d/dx | натуральный логарифм 5x | |
88 | Trovare la Derivata — d/dx | 5e^x | |
89 | Trovare la Derivata — d/dx | cos(3x) | |
90 | Вычислим интеграл | интеграл x^3 по x | |
91 | Вычислим интеграл | интеграл x^2e^x по x | |
92 | Trovare la Derivata — d/dx | 16 корень четвертой степени из 4x^4+4 | |
93 | Trovare la Derivata — d/dx | x/(e^x) | |
94 | Оценить предел | предел arctan(e^x), если x стремится к 3 | |
95 | Вычислим интеграл | интеграл (e^x-e^(-x))/(e^x+e^(-x)) по x | |
96 | Trovare la Derivata — d/dx | 3^x | |
97 | Вычислим интеграл | интеграл xe^(x^2) по x | |
98 | Trovare la Derivata — d/dx | 2sin(x) | |
99 | Вычислить | sec(0)^2 | |
100 | Trovare la Derivata — d/dx | натуральный логарифм x^2 |
— Как получить тождество двойного угла.

Второе следует из $$ \sin 2\theta = \sin(\theta +\theta) = \sin \theta \cos \theta + \cos \theta \sin\theta. $$
$\endgroup$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя адрес электронной почты и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
исчисление — Получение производных от триггерных функций
спросил
Изменено 4 года, 6 месяцев назад
Просмотрено 255 раз
$\begingroup$
92(х)$ = $-4\sin(x)\cos(x)$Производная от $-3\sin(x)$ =$-3\cos(x)$
Окончательный результат = $-4\sin(x)\cos(x)-3\cos(x)$
Правильный ответ: $-2\sin(2x)-3\cos(x)$.
У меня такое чувство, что мне не следует использовать формулу двойного угла, но я не уверен, почему? Насколько я знаю, упрощение использования алгебры допускается перед дифференцированием/интегрированием.
Любая помощь приветствуется!
- исчисление
- тригонометрия
- производные
$\endgroup$
7
$\begingroup$
Зачем использовать формулу двойного угла, если она усложняет вашу дифференциацию, имея квадрат и произведение?
Достаточно просто:
$$[\cos(2x)-3\sin(x)-1]’ = (\cos(2x))’ — (3\sin(x))’-(1)’ $$
$$=$$
$$-2\sin(2x) — 3\cos(x)$$
Что касается ваших вычислений, это правильно, и благодаря подстановке формулы двойного угла, которую вы используемый, первый член вашего выражения, использующий тригонометрическое тождество $\sin(2x) = 2\sin(x)\cos(x)$ , равен:
$$-4\sin(x)\cos(x) = -2(2\sin(x)\cos(x)) = -2\sin(2x)$$
Таким образом, это означает, что вы вычислили правильный результат, но это зависит от знания тригонометрического тождества, чтобы упростить его форму.