Производная x 3 arcsin x: Производная арксинуса (arcsinx)’

Содержание

Чему равна производная arcsin 1 sqrt 3. Производная e в степени x и показательной функции

Навигация по странице.

Производная постоянной.

При выводе самой первой формулы таблицы будем исходить из определения производной функции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не является , так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Пример.

Найти производные следующих постоянных функций

Решение.

В первом случае мы имеем производную натурального числа 3 , во втором случае нам приходится брать производную от параметра а , который может быть любым действительным числом, в третьем — производную иррационального числа , в четвертом случае имеем производную нуля (ноль является целым числом), в пятом – производную рациональной дроби .

Ответ:

Производные всех этих функций равны нулю для любого действительного x (на всей области определения)

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле :

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Следует рассмотреть два случая: при положительных x и отрицательных x .

Сначала будем полагать . В этом случае . Выполним логарифмирование равенства по основанию e и применим свойство логарифма:

Пришли к неявно заданной функции. Находим ее производную:

Осталось провести доказательство для отрицательных x .

Когда показатель p представляет собой четное число, то степенная функция определена и при , причем является четной (смотрите раздел ). То есть, . В этом случае и также можно использовать доказательство через логарифмическую производную.

Когда показатель p представляет собой нечетное число, то степенная функция определена и при , причем является нечетной. То есть, . В этом случае и логарифмическую производную использовать нельзя. Для доказательства формулы в этом случае можно воспользоваться правилами дифференцирования и правилом нахождения производной сложной функции:

Последний переход возможен в силу того, что если p — нечетное число, то p-1 либо четное число, либо нуль (при p=1 ), поэтому, для отрицательных x справедливо равенство .

Таким образом, формула производной степенной функции доказана для любого действительного p .

Пример.

Найти производные функций .

Решение.

Первую и третью функцию приведем к табличному виду , используя свойства степени, и применим формулу производной степенной функции:

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.


При решении задач дифференцирования мы будем постоянно обращаться к таблице производных основных функций, иначе зачем мы ее составляли и доказывали каждую формулу. Рекомендуем запомнить все эти формулы, в дальнейшем это сэкономит Вам массу времени.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя. 2 — 4x + 7 $$

Задача нахождения производной от заданной функции является одной из основных в курсе математики старшей школы и в высших учебных заведениях. Невозможно полноценно исследовать функцию, построить ее график без взятия ее производной. Производную функции легко можно найти, зная основные правила дифференцирования, а также таблицу производных основных функций. Давайте разберемся, как найти производную функции.

Производной функции называют предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Понять это определение достаточно сложно, так как понятие предела в полной мере не изучается в школе. Но для того, чтобы находить производные различных функций, понимать определение не обязательно, оставим его специалистам математикам и перейдем сразу к нахождению производной.

Процесс нахождения производной называется дифференцированием. При дифференцировании функции мы будем получать новую функцию.

Для их обозначения будем использовать латинские буквы f, g и др.

Существует много всевозможных обозначений производных. Мы будем использовать штрих. Например запись g» означает, что мы будем находить производную функции g.

Таблица производных

Для того чтобы дать ответ на вопрос как найти производную, необходимо привести таблицу производных основных функций. Для вычисления производных элементарных функций не обязательно производить сложные вычисления. Достаточно просто посмотреть ее значение в таблице производных.

  1. (sin x)»=cos x
  2. (cos x)»= –sin x
  3. (x n)»=n x n-1
  4. (e x)»=e x
  5. (ln x)»=1/x
  6. (a x)»=a x ln a
  7. (log a x)»=1/x ln a
  8. (tg x)»=1/cos 2 x
  9. (ctg x)»= – 1/sin 2 x
  10. (arcsin x)»= 1/√(1-x 2)
  11. (arccos x)»= — 1/√(1-x 2)
  12. (arctg x)»= 1/(1+x 2)
  13. (arcctg x)»= — 1/(1+x 2)
Пример 1. Найдите производную функции y=500.

Мы видим, что это константа. По таблице производных известно, что производная константы, равна нулю (формула 1).

Пример 2. Найдите производную функции y=x 100 .

Это степенная функция в показателе которой 100 и чтобы найти ее производную нужно умножить функцию на показатель и понизить на 1 (формула 3).

(x 100)»=100 x 99

Пример 3. Найдите производную функции y=5 x

Это показательная функция, вычислим ее производную по формуле 4.

Пример 4. Найдите производную функции y= log 4 x

Производную логарифма найдем по формуле 7.

(log 4 x)»=1/x ln 4

Правила дифференцирования

Давайте теперь разберемся, как находить производную функции, если ее нет в таблице. Большинство исследуемых функций, не являются элементарными, а представляют собой комбинации элементарных функций с помощью простейших операций (сложение, вычитание, умножение, деление, а также умножение на число). Для нахождения их производных необходимо знать правила дифференцирования. Далее буквами f и g обозначены функции, а С — константа.

1. Постоянный коэффициент можно выносить за знак производной

Пример 5. Найдите производную функции y= 6*x 8

Выносим постоянный коэффициент 6 и дифференцируем только x 4 . Это степенная функция, производную которой находим по формуле 3 таблицы производных.

(6*x 8)» = 6*(x 8)»=6*8*x 7 =48* x 7

2. Производная суммы равна сумме производных

(f + g)»=f» + g»

Пример 6. Найдите производную функции y= x 100 +sin x

Функция представляет собой сумму двух функций, производные которых мы можем найти по таблице. Так как (x 100)»=100 x 99 и (sin x)»=cos x. Производная суммы будет равна сумме данных производных:

(x 100 +sin x)»= 100 x 99 +cos x

3. Производная разности равна разности производных

(f – g)»=f» – g»

Пример 7. Найдите производную функции y= x 100 – cos x

Эта функция представляет собой разность двух функции, производные которых мы также можем найти по таблице. Тогда производная разности равна разности производных и не забудем поменять знак, так как (cos x)»= – sin x.

(x 100 – cos x)»= 100 x 99 + sin x

Пример 8. Найдите производную функции y=e x +tg x– x 2 .

В этой функции есть и сумма и разность, найдем производные от каждого слагаемого:

(e x)»=e x , (tg x)»=1/cos 2 x, (x 2)»=2 x. Тогда производная исходной функции равна:

(e x +tg x– x 2)»= e x +1/cos 2 x –2 x

4. Производная произведения

(f * g)»=f» * g + f * g»

Пример 9. Найдите производную функции y= cos x *e x

Для этого сначала найдем производного каждого множителя (cos x)»=–sin x и (e x)»=e x . Теперь подставим все в формулу произведения. Производную первой функции умножим на вторую и прибавим произведение первой функции на производную второй.

(cos x* e x)»= e x cos x – e x *sin x

5. Производная частного

(f / g)»= f» * g – f * g»/ g 2

Пример 10. Найдите производную функции y= x 50 /sin x

Чтобы найти производную частного, сначала найдем производную числителя и знаменателя отдельно: (x 50)»=50 x 49 и (sin x)»= cos x. Подставив в формулу производной частного получим:

(x 50 /sin x)»= 50x 49 *sin x – x 50 *cos x/sin 2 x

Производная сложной функции

Сложная функция — это функция, представленная композицией нескольких функций. Для нахождения производной сложной функции также существует правило:

(u (v))»=u»(v)*v»

Давайте разберемся как находить производную такой функции. Пусть y= u(v(x)) — сложная функция. Функцию u назовем внешней, а v — внутренней.

Например:

y=sin (x 3) — сложная функция.

Тогда y=sin(t) — внешняя функция

t=x 3 — внутренняя.

Давайте попробуем вычислить производную этой функции. По формуле необходимо перемножить производные внутренней и внешней функции.

(sin t)»=cos (t) — производная внешней функции (где t=x 3)

(x 3)»=3x 2 — производная внутренней функции

Тогда (sin (x 3))»= cos (x 3)* 3x 2 — производная сложной функции.


Дата: 20.11.2014

Таблица производных.

Производная — одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала — приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов — чтобы понять задание, и всего несколько правил — чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется

дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование — это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование — действие над функцией.

Производная — результат этого действия.

Так же, как, например, сумма — результат сложения. Или частное — результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: или f»(x) или S»(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли…)

Штрих также может обозначать производную конкретной функции, например: (2х+3)» , (x 3 , (sinx)» и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего — научиться их решать.) Напомню ещё раз: нахождение производной — это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире — бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе — линейная, квадратичная, гипербола и т.п.

Дифференцирование функций «с нуля», т.е. исходя из определения производной и теории пределов — штука достаточно трудоёмкая. А математики — тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева — элементарная функция, справа — её производная.

Функция
y
Производная функции y
1C (постоянная величина)C» = 0
2xx» = 1
3x n (n — любое число)(x n)» = nx n-1
x 2 (n = 2)(x 2)» = 2x
4sin x(sin x)» = cosx
cos x(cos x)» = — sin x
tg x
ctg x
5arcsin x
arccos x
arctg x
arcctg x
4a x
e x
5log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции — одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице — вроде и нету…

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) » = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y» = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию… Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню — это уже новая функция.

По табличке находим синус и соответствующую производную:

y» = (sin x)» = cosx

Подставляем ноль в производную:

y»(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию — это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает…

Но если увидеть, что наша функция — это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это — табличная функция. Сразу получаем:

Ответ: y» = — sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями… То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая — это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования — таблицей производных — всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

Определение производной от функции есть обратная операция интегрированию функции. Для элементарных функций вычислить производную не составляет труда, достаточно воспользоваться таблицей производных. Если же нам необходимо найти производную от сложной функции, то дифференцирование будет уже намного сложнее, потребует большей внимательности и времени. При этом очень легко допустить описку или незначительную ошибку, которая приведет к окончательному неверному ответу. Поэтому всегда важно иметь возможность проверить своё решение. Это вы можете сделать с помощью данного онлайн-калькулятора, который позволяет находить производные от любых функций онлайн с подробным решением бесплатно, без регистрации на сайте. Нахождение производной функции (дифференцирование) это отношение приращения функции к приращению аргумента (численно производная равна тангенсу угла наклона касательной к графику функции). Если необходимо вычислить производную от функции в конкретной точке, то нужно в полученном ответе вместо аргумента x подставить его численное значение и рассчитать выражение. При решении производной онлайн вам необходимо ввести функцию в соответсвующее поле: при этом аргументом должна быть переменная x , поскольку дифференцирование идёт именно по нему. Для вычисления второй производной нужно продифференцировать полученный ответ.

Производная функции arcsin x. Производная косинуса: (cos x)′

При выводе самой первой формулы таблицы будем исходить из определения производнойфункции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не являетсянеопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:

Производная логарифмической функции.

Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:

Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.

Производные тригонометрических функций.

Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.

Следовательно, производная функции cos x есть –sin x .

Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).

Производные гиперболических функций.

Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Чтобы при изложении не было путаницы, давайте обозначать в нижнем индексе аргумент функции, по которому выполняется дифференцирование, то есть, — это производная функции f(x) по x .

Теперь сформулируем правило нахождения производной обратной функции.

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x) , то в точке существует конечная производная обратной функции g(y) , причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Давайте проверим справедливость этих формул.

Найдем обратную функцию для натурального логарифма (здесь y – функция, а x — аргумент). Разрешив это уравнение относительно x , получим (здесь x – функция, а y – ее аргумент). То есть, и взаимно обратные функции.

Из таблицы производных видим, что и .

Убедимся, что формулы нахождения производных обратной функции приводят нас к этим же результатам:

Как видите, получили такие же результаты как и в таблице производных.

Теперь мы обладаем знаниями для доказательства формул производных обратных тригонометрических функций.

Начнем с производной арксинуса.

. Тогда по формуле производной обратной функции получаем

Осталось провести преобразования.

Так как областью значений арксинуса является интервал , то (смотрите раздел основные элементарные функции, их свойства и графики). Поэтому , а не рассматриваем.

Следовательно, . Областью определения производной арксинуса является промежуток (-1; 1) .

Для арккосинуса все делается абсолютно аналогично:

Найдем производную арктангенса.

Для обратной функцией является .

Выразим арктангенс через арккосинус, чтобы упростить полученное выражение.

Пусть arctgx = z , тогда

Следовательно,

Схожим образом находится производная арккотангенса:

Основа доказательства ― определение предела функции. Можно воспользоваться другим способом, используя тригонометрические формулы приведения для косинуса и синуса углов. Выразить одну функцию через другую — косинус через синус, и продифференцировать синус со сложным аргументом.

Рассмотрим первый пример вывода формулы (Cos(х))»

Даем ничтожно малое приращение Δх аргументу х функции у = Cos(х). При новом значении аргумента х+Δх получаем новое значение функции Cos(х+Δх). Тогда приращение функции Δу будет равно Cos(х+Δx)-Cos(x).
Отношение же приращения функции к Δх будет таким: (Cos(х+Δx)-Cos(x))/Δх. Проведем тождественные преобразования в числителе получившейся дроби. Вспомним формулу разности косинусов углов, результатом будет произведение -2Sin(Δх/2) умножить на Sin(х+Δх/2). Находим предел частного lim этого произведения на Δх при Δх, стремящемся к нулю. Известно, что первый (его называют замечательным) предел lim(Sin(Δх/2)/(Δх/2)) равен 1, а предел -Sin(х+Δх/2) равен -Sin(x) при Δx, стремящемся к нулю.
Запишем результат: производная (Cos(х))» равна — Sin(х).

Некоторым больше нравится второй способ вывода той же формулы

Из курса тригонометрии известно: Cos(х) равно Sin(0,5·∏-х), аналогично Sin(х) равно Cos(0,5·∏-x). Тогда дифференцируем сложную функцию — синус дополнительного угла (вместо косинуса икс).
Получим произведение Cos(0,5·∏-х)·(0,5·∏-х)», потому что производная синуса х равна косинусу х. Обращаемся ко второй формуле Sin(х) = Cos(0,5·∏-x) замены косинуса на синус, учитываем, что (0,5·∏-х)» = -1. Теперь получаем -Sin(x).
Итак, найдена производная косинуса, у» = -Sin(х) для функции у = Cos(х).

Часто используемый пример, где употребляется производная косинуса. Функция y = Cos 2 (x) сложная. Находим сначала дифференциал степенной функции с показателем 2, это будет 2·Cos(x), затем умножаем его на производную (Cos(x))», которая равна -Sin(х). Получаем y» = -2·Cos(х)·Sin(x). Когда применим формулу Sin(2·х), синуса двойного угла, получим окончательный упрощенный
ответ y» = -Sin(2·х)

Гиперболические функции

Применяются при изучении многих технических дисциплин: в математике, например, облегчают вычисления интегралов, решение Выражаются они через тригонометрические функции с мнимым аргументом, так, гиперболический косинус ch(х) = Cos(i·х), где i ― мнимая единица, гиперболический синус sh(x) = Sin(i·x).

Производная гиперболического косинуса вычисляется достаточно просто.
Рассмотрим функцию у = (e x +e -x)/2, это и есть гиперболический косинус ch(х). Используем правило нахождения производной суммы двух выражений, правило выноса постоянного множителя (Const) за знак производной. Второе слагаемое 0,5·е -х ― сложная функция (ее производная равна -0,5·е -х), 0,5·е х ― первое слагаемое. (ch(х)) «=((e х +e — x)/2)» можно записать по другому: (0,5·e х +0,5·е — х)» = 0,5·e х -0,5·e — х, потому что производная (e — x)» равна -1, умнноженная на e — x . Получилась разность, а это есть гиперболический синус sh(x).
Вывод: (ch(х))» = sh(x).
Рассмитрим на примере, как вычислить производную функции у = ch(x 3 +1).
По гиперболического косинуса со сложным аргументом у» = sh(x 3 +1)·(x 3 +1)», где (x 3 +1)» = 3·x 2 +0.
Ответ: производная данной функции равна 3·х 2 ·sh(х 3 +1).

Производные рассмотренных функций у = ch(х) и y = Cos(х) табличные

При решении примеров нет необходимости каждый раз дифференцировать их по предложенной схеме, достаточно использовать вывод.
Пример. Продифференцировать функцию у = Cos(x)+Cos 2 (-x)-Ch(5·х).
Легко вычислить (воспользуемся табличными данными), у» = -Sin(x)+Sin(2·х)-5·Sh(5·х).

Представлен вывод производных первого порядка арктангенса (arctg x)′ и арккотангенса (arcctg x)′. Для каждой из функций, вывод дан двумя способами.

Содержание

См. также: Арктангенс, арккотангенс — свойства, графики, формулы

Вывод производной арктангенса

Здесь мы полагаем, что нам известна производная тангенса:
.
Далее мы выводим формулу производной арктангенса, учитывая, что арктангенс является функцией, обратной к тангенсу.

Рассмотрим функцию арктангенс :
y = arctg x .
.
— π/2 до + π/2 :
.
Арктангенс является функцией, обратной к тангенсу:
x = tg y .


(1) .

Производная тангенса нам известна:
.
Здесь .
,
где .
Подставим в формулу (1):
(2) .
Здесь
y = arctg x ;
x = tg y .

Теперь выразим правую часть формулы (2) через переменную x . Для этого воспользуемся формулой и выполним преобразования:
.
Отсюда
.
Подставим в (2):
.

Тем самым мы вывели формулу производной арктангенса:
.

Второй способ

Поскольку арктангенс и тангенс являются взаимно обратными функциями, то
(3) .
Продифференцируем это уравнение по переменной x . То есть найдем производные левой и правой части и приравняем их друг к другу:
(4) .

Из таблицы производных имеем:
.

:
.
Здесь .
.
Тогда
.

Подставим в (4):
.
Отсюда
.

Вывод производной арккотангенса

Используя связь между арктангенсом и арккотангенсом

Производную арккотангенса можно получить из производной арктангенса, если воспользоваться связью между арктангенсом и арккотангенсом :
.
Отсюда
.

По формуле производной обратной функции

Рассмотрим функцию арккотангенс :
y = arcctg x .
Здесь независимая переменная x может принимать любые действительные значения:
.
Зависимая переменная y может принимать значения от 0 до π :
.
Арккотангенс является функцией, обратной к котангенсу:
x = ctg y .

Для определения его производной, применим формулу производной обратной функции:
(1) .

Считаем, что производная котангенса нам известна:
.
Здесь .
Поменяем местами обозначения переменных x и y . Тогда
,
где .
Подставим в формулу (1):
(5) .
Здесь
y = arcctg x ;
x = ctg y .

Выразим правую часть формулы (5) через переменную x . Для этого выполним преобразования:
.
Отсюда
.
Подставим в (5):
.

Таким образом, мы вывели формулу производной арккотангенса:
.

Второй способ

Поскольку арккотангенс и котангенс являются взаимно обратными функциями, то
(6) .
Продифференцируем это уравнение по переменной x :
(7) .

Из таблицы производных находим:
.

Производную левой части находим по формуле производной сложной функции :
.
Здесь .
Далее выполним преобразования:
.
Тогда
.

Подставим в (7):
.
Отсюда
.

См. также:

Вычисление производной часто встречается в заданиях ЕГЭ. Данная страница содержит список формул для нахождения производных.

Правила дифференцирования

  1. (k⋅ f(x))′=k⋅ f ′(x).
  2. (f(x)+g(x))′=f′(x)+g′(x).
  3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
  4. Производная сложной функции. Если y=F(u), а u=u(x), то функция y=f(x)=F(u(x)) называется сложной функцией от x. Равна y′(x)=Fu′⋅ ux′.
  5. Производная неявной функции. Функция y=f(x) называется неявной функцией, заданной соотношением F(x,y)=0, если F(x,f(x))≡0.
  6. Производная обратной функции. Если g(f(x))=x, то функция g(x) называется обратной функцией для функции y=f(x).
  7. Производная параметрически заданной функции. Пусть x и y заданы как функции от переменной t: x=x(t), y=y(t). Говорят, что y=y(x) параметрически заданная функция на промежутке x∈ (a;b), если на этом промежутке уравнение x=x(t) можно выразить в виде t=t(x) и определить функцию y=y(t(x))=y(x).
  8. Производная степенно-показательной функции. Находится путем логарифмирования по основанию натурального логарифма.
Советуем сохранить ссылку, так как эта таблица может понадобиться еще много раз.

Дата: 20.11.2014

Таблица производных.

Производная — одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала — приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов — чтобы понять задание, и всего несколько правил — чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование — это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование — действие над функцией.

Производная — результат этого действия.

Так же, как, например, сумма — результат сложения. Или частное — результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: или f»(x) или S»(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли…)

Штрих также может обозначать производную конкретной функции, например: (2х+3)» , (x 3 , (sinx)» и т. д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего — научиться их решать.) Напомню ещё раз: нахождение производной — это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире — бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе — линейная, квадратичная, гипербола и т.п.

Дифференцирование функций «с нуля», т.е. исходя из определения производной и теории пределов — штука достаточно трудоёмкая. А математики — тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева — элементарная функция, справа — её производная.

Функция
y
Производная функции y
1C (постоянная величина)C» = 0
2xx» = 1
3x n (n — любое число)(x n)» = nx n-1
x 2 (n = 2)(x 2)» = 2x
4sin x(sin x)» = cosx
cos x(cos x)» = — sin x
tg x
ctg x
5arcsin x
arccos x
arctg x
arcctg x
4a x
e x
5log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции — одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице — вроде и нету…

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) » = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y» = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию… Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню — это уже новая функция.

По табличке находим синус и соответствующую производную:

y» = (sin x)» = cosx

Подставляем ноль в производную:

y»(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию — это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает…

Но если увидеть, что наша функция — это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это — табличная функция. Сразу получаем:

Ответ: y» = — sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями… То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая — это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования — таблицей производных — всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

алгоритм и примеры решений. Производная первого порядка онлайн

Задача нахождения производной от заданной функции является одной из основных в курсе математики старшей школы и в высших учебных заведениях. Невозможно полноценно исследовать функцию, построить ее график без взятия ее производной. Производную функции легко можно найти, зная основные правила дифференцирования, а также таблицу производных основных функций. Давайте разберемся, как найти производную функции.

Производной функции называют предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Понять это определение достаточно сложно, так как понятие предела в полной мере не изучается в школе. Но для того, чтобы находить производные различных функций, понимать определение не обязательно, оставим его специалистам математикам и перейдем сразу к нахождению производной.

Процесс нахождения производной называется дифференцированием. При дифференцировании функции мы будем получать новую функцию.

Для их обозначения будем использовать латинские буквы f, g и др.

Существует много всевозможных обозначений производных. Мы будем использовать штрих. Например запись g» означает, что мы будем находить производную функции g.

Таблица производных

Для того чтобы дать ответ на вопрос как найти производную, необходимо привести таблицу производных основных функций. Для вычисления производных элементарных функций не обязательно производить сложные вычисления. Достаточно просто посмотреть ее значение в таблице производных.

  1. (sin x)»=cos x
  2. (cos x)»= –sin x
  3. (x n)»=n x n-1
  4. (e x)»=e x
  5. (ln x)»=1/x
  6. (a x)»=a x ln a
  7. (log a x)»=1/x ln a
  8. (tg x)»=1/cos 2 x
  9. (ctg x)»= – 1/sin 2 x
  10. (arcsin x)»= 1/√(1-x 2)
  11. (arccos x)»= — 1/√(1-x 2)
  12. (arctg x)»= 1/(1+x 2)
  13. (arcctg x)»= — 1/(1+x 2)
Пример 1.
Найдите производную функции y=500.

Мы видим, что это константа. По таблице производных известно, что производная константы, равна нулю (формула 1).

Пример 2. Найдите производную функции y=x 100 .

Это степенная функция в показателе которой 100 и чтобы найти ее производную нужно умножить функцию на показатель и понизить на 1 (формула 3).

(x 100)»=100 x 99

Пример 3. Найдите производную функции y=5 x

Это показательная функция, вычислим ее производную по формуле 4.

Пример 4. Найдите производную функции y= log 4 x

Производную логарифма найдем по формуле 7.

(log 4 x)»=1/x ln 4

Правила дифференцирования

Давайте теперь разберемся, как находить производную функции, если ее нет в таблице. Большинство исследуемых функций, не являются элементарными, а представляют собой комбинации элементарных функций с помощью простейших операций (сложение, вычитание, умножение, деление, а также умножение на число). Для нахождения их производных необходимо знать правила дифференцирования. Далее буквами f и g обозначены функции, а С — константа.

1. Постоянный коэффициент можно выносить за знак производной

Пример 5. Найдите производную функции y= 6*x 8

Выносим постоянный коэффициент 6 и дифференцируем только x 4 . Это степенная функция, производную которой находим по формуле 3 таблицы производных.

(6*x 8)» = 6*(x 8)»=6*8*x 7 =48* x 7

2. Производная суммы равна сумме производных

(f + g)»=f» + g»

Пример 6. Найдите производную функции y= x 100 +sin x

Функция представляет собой сумму двух функций, производные которых мы можем найти по таблице. Так как (x 100)»=100 x 99 и (sin x)»=cos x. Производная суммы будет равна сумме данных производных:

(x 100 +sin x)»= 100 x 99 +cos x

3. Производная разности равна разности производных

(f – g)»=f» – g»

Пример 7. Найдите производную функции y= x 100 – cos x

Эта функция представляет собой разность двух функции, производные которых мы также можем найти по таблице. Тогда производная разности равна разности производных и не забудем поменять знак, так как (cos x)»= – sin x.

(x 100 – cos x)»= 100 x 99 + sin x

Пример 8. Найдите производную функции y=e x +tg x– x 2 .

В этой функции есть и сумма и разность, найдем производные от каждого слагаемого:

(e x)»=e x , (tg x)»=1/cos 2 x, (x 2)»=2 x. Тогда производная исходной функции равна:

(e x +tg x– x 2)»= e x +1/cos 2 x –2 x

4. Производная произведения

(f * g)»=f» * g + f * g»

Пример 9. Найдите производную функции y= cos x *e x

Для этого сначала найдем производного каждого множителя (cos x)»=–sin x и (e x)»=e x . Теперь подставим все в формулу произведения. Производную первой функции умножим на вторую и прибавим произведение первой функции на производную второй.

(cos x* e x)»= e x cos x – e x *sin x

5. Производная частного

(f / g)»= f» * g – f * g»/ g 2

Пример 10. Найдите производную функции y= x 50 /sin x

Чтобы найти производную частного, сначала найдем производную числителя и знаменателя отдельно: (x 50)»=50 x 49 и (sin x)»= cos x. Подставив в формулу производной частного получим:

(x 50 /sin x)»= 50x 49 *sin x – x 50 *cos x/sin 2 x

Производная сложной функции

Сложная функция — это функция, представленная композицией нескольких функций. Для нахождения производной сложной функции также существует правило:

(u (v))»=u»(v)*v»

Давайте разберемся как находить производную такой функции. Пусть y= u(v(x)) — сложная функция. Функцию u назовем внешней, а v — внутренней.

Например:

y=sin (x 3) — сложная функция.

Тогда y=sin(t) — внешняя функция

t=x 3 — внутренняя.

Давайте попробуем вычислить производную этой функции. По формуле необходимо перемножить производные внутренней и внешней функции.

(sin t)»=cos (t) — производная внешней функции (где t=x 3)

(x 3)»=3x 2 — производная внутренней функции

Тогда (sin (x 3))»= cos (x 3)* 3x 2 — производная сложной функции.

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое —4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) — f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f «(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f «(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)» = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой «у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного — в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная «икса» равна единице, а производная синуса — косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200…), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего «икса». Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т. е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные — в статье «Производная произведения и частного функций » .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u «v , в котором u — число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка — механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие «Производная суммы дробей со степенями и корнями «.

Если же перед Вами задача вроде , то Вам на занятие «Производные простых тригонометрических функций».

Пошаговые примеры — как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители — суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, «икс» у нас превращается в единицу, а минус 5 — в ноль. Во втором выражении «икс» умножен на 2, так что двойку умножаем на ту же единицу как производную «икса». Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие «Производная суммы дробей со степенями и корнями» .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок «Производные простых тригонометрических функций» .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых — квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

9.

5 Обратные тригонометрические функции

Тригонометрические функции часто возникают в задачах, и часто это необходимо инвертировать функции, например, чтобы найти угол с заданный синус. Конечно, есть много углов с одним и тем же синусом, поэтому функция синуса на самом деле не имеет обратной, что надежно «отменяет» функцию синуса. Если вы знаете, что $\sin x=0,5$, вы не можете переверните это, чтобы обнаружить $x$, то есть вы не можете решить для $x$, так как существует бесконечно много углов с синусом $0,5$. Тем не менее, полезно иметь что-то вроде обратного к синус, пусть и несовершенный. Обычный подход состоит в том, чтобы выбрать несколько набор углов, которые производят все возможные значения синуса ровно один раз. Если мы «отбросим» все остальные углы, то в результате функция имеет правильную обратную.

Синус принимает все значения от $-1$ до $1$ ровно один раз на интервал $[-\pi/2,\pi/2]$. Если мы обрежем синус, оставив только интервала $[-\pi/2,\pi/2]$, как показано на рисунке 9. 3}=x$. Этот не работает с синусом и «обратным синусом», потому что обратный синус — это функция, обратная усеченному синусу, а не функция реального синуса. Верно, что $\sin(\arcsin(x))=x$, т.е. синус отменяет арксинус. Неправда, что арксинус отменяет синуса, например, $\sin(5\pi/6)=1/2$ и $\arcsin(1/2)=\pi/6$, поэтому выполнение сначала синуса, а затем арксинуса не возвращает нас туда, где мы начал. Это потому, что $5\pi/6$ не находится в домене усеченный синус. Если мы начнем с угла между $-\pi/2$ и $\pi/2$ тогда арксинус обращает синус: $\sin(\pi/6)=1/2$ и $\arcsin(1/2)=\pi/6$.

Чему равна производная арксинуса? Так как это инверсия функцию, мы можем найти производную, используя неявное дифференциация. Предположим, что $y=\arcsin(x)$. затем $$\sin(y)=\sin(\arcsin(x))=x.$$ Теперь, взяв производную от обеих частей, получим $$\выравнивание{ y’\cos y &= 1\cr y’={1\over \cos y}\cr }$$ Как и следовало ожидать, при использовании неявного дифференцирования $y$ появляется на правая сторона здесь. 2}}.$$ Обратите внимание, что это согласуется с рисунком 92 }}.$$ Обратите внимание, что усеченный косинус использует другой интервал, чем усеченный синус, поэтому что если $y=\arccos(x)$, мы знаем, что $0\le y\le \pi$. Расчет производной арккосинуса остается в качестве упражнения.

Рисунок 9.5.2. Усеченный косинус, арккосинус.

Наконец, мы смотрим на касательную; остальные тригонометрические функции также имеют «частичные инверсии», но достаточно синуса, косинуса и тангенса для большинства целей. Тангенс, усеченный тангенс и арктангенс показаны на рисунке 9{1/4}} \Большой\}. $$ Нарисуйте область $A$. Пусть $S$ — твердое тело, полученное от вращения $A$ вокруг оси $x$. Вычислите объем $S$.

AC Производные обратных функций

\(\require{marginnote}\newcommand{\dollar}{\$} \DeclareMathOperator{\erf}{erf} \DeclareMathOperator{\arctanh}{arctanh} \новая команда{\lt}{<} \новая команда{\gt}{>} \newcommand{\amp}{&} \)

мотивирующих вопросов
  • Какова производная функции натурального логарифма?

  • Каковы производные обратных тригонометрических функций \(\arcsin(x)\) и \(\arctan(x)\text{?}\)

  • Если \(g\) является обратной дифференцируемой функцией \(f\text{,}\), то как \(g’\) вычисляется через \(f\text{,}\) \(f ‘\текст{,}\) и \(г\текст{?}\)

Большая часть математики сосредоточена на понятии функции. Действительно, на протяжении всего нашего изучения исчисления мы изучаем поведение функций, часто уделяя особое внимание тому, как быстро изменяется результат функции в ответ на изменения входа. Поскольку каждая функция представляет собой процесс, возникает естественный вопрос, можно ли обратить конкретный процесс вспять. То есть, если мы знаем выходные данные функции, можем ли мы определить входные данные, которые привели к ней? В связи с этим вопросом мы теперь также спрашиваем: если мы знаем, как быстро изменяется конкретный процесс, можем ли мы определить, как быстро изменяется обратный процесс? 9x\text{.}\) Поскольку натуральный логарифм \(g(x) = \ln(x)\text{,}\) является обратной натуральной экспоненциальной функцией, натуральный логарифм также важен. Одна из наших целей в этом разделе — научиться дифференцировать логарифмическую функцию и, таким образом, расширить нашу библиотеку основных функций известными производными формулами. Во-первых, мы исследуем более знакомую настройку, чтобы освежить в памяти некоторые основные понятия, связанные с функциями и их инверсиями.

Предварительный просмотр 2.6.1

Уравнение \(y = \frac{5}{9}(x-32)\) связывает температуру, выраженную в \(x\) градусах Фаренгейта, с соответствующей температурой \(y\), измеренной в градусах Цельсия.

  1. Решите уравнение \(y = \frac{5}{9}(x-32)\) для \(x\), чтобы записать \(x\) (температура по Фаренгейту) через \(y\) (температура Цельсия).

  2. Пусть \(C(x) = \frac{5}{9}(x-32)\) будет функцией, которая принимает температуру в градусах Фаренгейта в качестве входных данных и выдает температуру в градусах Цельсия в качестве выходных данных. Кроме того, пусть \(F(y)\) будет функцией, которая преобразует температуру, заданную в \(y\) градусах Цельсия, в температуру \(F(y)\), измеренную в градусах Фаренгейта. Используйте свою работу в (a), чтобы написать формулу для \(F(y)\text{.}\)

  3. Далее рассмотрим новую функцию, определяемую выражением \(p(x) = F(C(x))\text{.}\) Используйте формулы для \(F\) и \(C\), чтобы определить выражение для \(p(x)\) и максимально упростим это выражение. Что вы наблюдаете?

  4. Теперь пусть \(r(y) = C(F(y))\text{.}\) Используйте формулы для \(F\) и \(C\), чтобы определить выражение для \(r( у)\) и максимально упростить это выражение. Что вы наблюдаете?

  5. Каково значение \(C'(x)\text{?}\) из \(F'(y)\text{?}\) Как эти значения связаны?

Подраздел 2.6.1 Основные сведения об обратных функциях

Функция \(f : A \to B\) — это правило, которое связывает каждый элемент множества \(A\) с одним и только одним элементом множества \(B\text{.}\). Мы называем \ (A\) домен для \(f\) и \(B\) кодовый домен для \(f\text{.}\) Если существует функция \(g : B \to A\) такое, что \(g(f(a)) = a\) для каждого возможного выбора \(a\) в множестве \(A\) и \(f(g(b)) = b\) для каждого \ (b\) в множестве \(B\text{,}\), то мы говорим, что \(g\) есть 9{\ln(x)} = x\text{,}\) и, таким образом,

\begin{уравнение*} g'(x) = \frac{1}{x}\text{.} \end{уравнение*}

Натуральный логарифм

Для всех положительных действительных чисел \(x\text{,}\) \(\frac{d}{dx}[\ln(x)] = \frac{1}{x}\text{. }\)

Это правило для функции натурального логарифма теперь присоединяется к нашему списку других основных правил производных, которые мы уже установили. Следует отметить две особенно интересные вещи, связанные с тем фактом, что \(\frac{d}{dx}[\ln(x)] = \frac{1}{x}\text{.}\) Во-первых, это правило ограничивается применением только к положительным значениям \(x\text{,}\), поскольку это единственные значения, для которых определена исходная функция. Во-вторых, впервые в нашей работе дифференцирование основной функции определенного типа привело к функции совершенно иного характера: производная натурального логарифма является не другим логарифмом и даже не экспоненциальной функцией, а скорее рациональный. 9х\) равно высоте кривой в этой точке. Например, в точке \(A = (\ln(0,5), 0,5)\text{,}\) наклон касательной равен \(m_A = 0,5\text{,}\), а в точке \(B = (\ln(5), 5)\text{,}\) наклон касательной равен \(m_B = 5\text{.}\) В соответствующих точках \(A’\) и \(B’\ ) на графике функции натурального логарифма (которые получаются при отражении через прямую \(y = x\)), мы знаем, что наклон касательной есть величина, обратная \(x\)-координате точки (поскольку \(\frac{d}{dx}[\ln(x)] = \frac{1}{x}\)). Таким образом, при \(A’ = (0,5, \ln(0,5))\text{,}\) имеем \(m_{A’} = \frac{1}{0,5} = 2\text{,}\ ) и в \(B’ = (5, \ln(5))\text{,}\) \(m_{B’} = \frac{1}{5}\text{.}\) 9x\) вместе с обратной, \(y = \ln(x)\text{,}\), где обе функции просматриваются с использованием входной переменной \(x\text{.}\)

В частности, мы наблюдаем, что \(m_{A’} = \frac{1}{m_A}\) и \(m_{B’} = \frac{1}{m_B}\text{.}\) Это не случайно, но на самом деле выполняется для любой кривой \(y = f(x)\) и ее обратной, если обратная существует. Одно из объяснений того, почему это так, связано с отражением через \(y = x\text{:}\), при этом мы существенно меняем роли \(x\) и \(y\text{,} \), таким образом, меняя местами подъем и разбег, что приводит к тому, что наклон обратной функции в отраженной точке является обратным наклону исходной функции. В конце этого раздела мы также рассмотрим, как цепное правило дает нам алгебраическую формулировку этого общего явления. 9т + 1}\)

  • \(s(y) = \ln(\cos(y) + 2)\)

  • \(z(x) = \tan(\ln(x))\)

  • \(m(z) = \ln(\ln(z))\)

  • Подраздел 2.

    6.3 Обратные тригонометрические функции и их производные

    Тригонометрические функции являются периодическими, поэтому они не могут быть взаимно однозначными и, следовательно, не имеют обратных. Однако, если мы ограничим область определения каждой тригонометрической функции, мы можем заставить функцию быть взаимно однозначной. Например, рассмотрим функцию синуса в области \([-\frac{\pi}{2}, \frac{\pi}{2}]\text{.}\) 9{-1}(y) = \arcsin(y)\text{.}\) Особенно важно помнить, что запись

    \begin{equation*} y = \sin(x) \\\text{and} \\x = \arcsin(y) \end{equation*}

    говорят то же самое. Мы часто читаем «арксинус \(y\)» как «угол, синус которого равен \(y\text{.}\)». Например, мы говорим, что \(\frac{\pi}{6}\) это угол, синус которого равен \(\frac{1}{2}\text{,}\), который можно записать более кратко как \(\arcsin(\frac{1}{2}) = \frac{\pi {6}\text{,}\), что эквивалентно записи \(\sin(\frac{\pi}{6}) = \frac{1}{2}\text{.}\) 9{-1}(x) = \arcsin(x)\) (выделено пурпурным цветом).

    Далее определяем производную функции арксинуса. Полагая \(h(x) = \arcsin(x)\text{,}\), наша цель состоит в том, чтобы найти \(h'(x)\text{.}\) Поскольку \(h(x)\) является угол, синус которого равен \(x\text{,}\), эквивалентен записи

    \begin{уравнение*} \sin(ч(х)) = х\текст{.} \end{уравнение*}

    Дифференцируя обе части предыдущего уравнения, мы имеем

    \begin{уравнение*} \frac{d}{dx}[\sin(h(x))] = \frac{d}{dx}[x]\text{,} \end{уравнение*}

    и тем фактом, что правая часть просто \(1\) и по цепному правилу, примененному к левой стороне,

    \begin{уравнение*} \cos(h(x)) h'(x) = 1\text{.} \end{уравнение*}

    Решение для \(h'(x)\text{,}\) следует, что

    \begin{уравнение*} h'(x) = \frac{1}{\cos(h(x))}\text{.} \end{уравнение*}

    Наконец, напомним, что \(h(x) = \arcsin(x)\text{,}\), поэтому знаменатель \(h'(x)\) есть функция \(\cos(\arcsin(x ))\text{,}\) или, другими словами, «косинус угла, синус которого равен \(x\text{.}\)». Немного тригонометрии прямоугольного треугольника позволяет нам значительно упростить это выражение. 92}}\текст{.} \end{уравнение*}

    Мероприятие 2.6.3

    Следующие подсказки в этом упражнении помогут вам найти производную функции арктангенса.

    1. Пусть \(r(x) = \arctan(x)\text{.}\) Используйте соотношение между функциями арктангенса и тангенса, чтобы переписать это уравнение, используя только функцию тангенса.

    2. Дифференцируйте обе части уравнения, которое вы нашли в (а). Решите полученное уравнение для \(r'(x)\text{,}\), записав \(r'(x)\) как можно проще в терминах тригонометрической функции, оцениваемой в \(r(x)\text{ .}\)

    3. Вспомните, что \(r(x) = \arctan(x)\text{.}\) Обновите выражение для \(r'(x)\) так, чтобы оно включало только тригонометрические функции и независимую переменную \(x \текст{.}\)

    4. Представьте прямоугольный треугольник с углом \(\theta\) так, чтобы \(\theta = \arctan(x)\text{. }\) Каковы три стороны треугольника?

    5. Только с точки зрения \(x\) и \(1\text{,}\) каково значение \(\cos(\arctan(x))\text{?}\)

    6. Используйте результаты своей работы выше, чтобы найти выражение, содержащее только \(1\) и \(x\) для \(r'(x)\text{.}\)

    Хотя производные для других обратных тригонометрических функций могут быть установлены аналогичным образом, мы в первую очередь ограничимся функциями арксинуса и арктангенса. С этими правилами, добавленными в нашу библиотеку производных основных функций, мы можем различать еще больше функций, используя ярлыки производных. В Упражнении 2.6.4 мы видим каждое из этих правил в действии. 909{-1}\text{.}\) Дифференцируя обе части этого уравнения по \(x\text{,}\), получаем

    \begin{уравнение*} \frac{d}{dx} [f(g(x))] = \frac{d}{dx} [x]\text{,} \end{уравнение*}

    и по правилу цепочки

    \begin{уравнение*} f'(g(x)) g'(x) = 1\text{.} \end{уравнение*}

    Решая для \(g'(x)\text{,}\), мы имеем \(g'(x) = \frac{1}{f'(g(x))}\text{. }\) Здесь мы видим, что наклон касательной к обратной функции \(g\) в точке \((x,g(x))\) в точности пропорционален наклону касательной к исходной функции \( f\) в точке \((g(x),f(g(x))) = (g(x),x)\text{.}\) 9{-1}(x)\text{.}\) Обратите внимание, что наклоны двух касательных линий обратны друг другу.

    Чтобы увидеть это яснее, рассмотрим график функции \(y = f(x)\), показанный на рисунке 2.6.6, вместе с обратной функцией \(y = g(x)\text{.}\). точка \((a,b)\), которая лежит на графике \(f\text{,}\), мы знаем, что \((b,a)\) лежит на графике \(g\text{ ;}\) иначе говоря, \(f(a) = b\) и \(g(b) = a\text{.}\) Теперь, применяя правило, согласно которому \(g'(x) = 1/f ‘(g(x))\) к значению \(x = b\text{,}\) имеем

    \begin{уравнение*} g'(b) = \frac{1}{f'(g(b))} = \frac{1}{f'(a)}\text{,} \end{уравнение*}

    именно это мы и видим на рисунке: наклон касательной к \(g\) в точке \((b,a)\) является величиной, обратной наклону касательной к \(f\) в точке \((a,b)\text{,}\) поскольку эти две линии являются отражением друг друга через линию \(y = x\text{. }\)

    Производная обратной функции

    Предположим, что \(f\) — дифференцируемая функция с обратной \(g\) и что \((a,b)\) — точка, лежащая на графике \(f\), в которой \(f’ (a) \ne 0\text{.}\) Тогда 92}\текст{.}\)

  • Если \(g\) является обратной дифференцируемой функцией \(f\text{,}\), то для любой точки \(x\) в области определения \(g’\text{,}\) \ (g'(x) = \frac{1}{f'(g(x))}\text{.}\)

  • Подраздел Упражнения

    1 Составная функция, включающая логарифмы и многочлены
    2 Составная функция, включающая тригонометрические функции и логарифмы
    3 Произведение с участием \(\arcsin(w)\)
    4 Производная с участием \ (\ arctan (x) \)
    5 Составная функция из графика
    6 Составная функция, включающая обратную тригонометрическую функцию
    7 правил смешивания: произведение, цепь и обратный триггер
    8 правил смешивания: произведение и обратный триггер
    9

    Определите производную каждой из следующих функций. Используйте надлежащие обозначения и четко определяйте производные правила, которые вы используете.

    1. \(f(x) = \ln(2\arctan(x) + 3\arcsin(x) + 5)\)

    2. 93 + 4\текст{.}\)

      1. Нарисуйте график \(y = f(x)\) и объясните, почему \(f\) является обратимой функцией.

      2. Пусть \(g\) будет обратным \(f\) и определит формулу для \(g\text{.}\)

      3. Вычислить \(f'(x)\text{,}\) \(g'(x)\text{,}\) \(f'(2)\text{,}\) и \(g’ (6)\text{.}\) Какая особая связь между \(f'(2)\) и \(g'(6)\text{?}\) Почему?

      12

      Пусть \(h(x) = x + \sin(x)\text{.}\) 9{-1})'(\frac{\pi}{2} + 1)\text{.}\)

    Численность, математика и статистика — Набор академических навыков

    Дифференцирование с использованием обратных функций

    ContentsToggle Главное меню 1 Определение 2 Примеры работы 3 Видеопримеры Он включает в себя поиск обратной функции, подлежащей дифференцированию, а затем применение неявного дифференцирования. Этот метод особенно полезен для нахождения производных обратных тригонометрических функций $\arccos{x}$, $\arcsin{x}$ и $\arctan{x}$.

    Рабочие примеры
    Пример 1. Производная арктангенса

    Найдите $\dfrac{\mathrm{d

    {\mathrm{d} x}\Bigl[\arcsin{x}\Bigl]$.

    }}

    Решение

    Пусть $y=\arcsin{x}$. Нам потребуется инверсия этой функции, чтобы продолжить технику.

    По определению, $\arcsin{x}$ является обратным $\sin{x}$. Следовательно, обратная функция $y=\arcsin{x}$ равна:

    \[\sin{y}=x.\]

    Дифференцирование обеих частей этого уравнения дает:

    \[\dfrac{\mathrm{d

    {\mathrm{d} x}\Bigl[\sin{y}\Bigl]=\dfrac{\mathrm{d}}{\mathrm{d} x}\Bigl[x\Bigl].\]

    Поскольку правая часть этого уравнения является чисто функцией $x$, ее можно сразу продифференцировать. Однако к левой части необходимо применить цепное правило, поскольку дифференцируемый член является функцией $y(x)$. Применение цепного правила дает:

    \begin{align} \dfrac{\mathrm{d}}{\mathrm{d} x}\Bigl[\sin{y}\Bigl] &= \dfrac{\mathrm{d }}{\mathrm{d} x}\Bigl[x\Bigl], \\ \dfrac{\mathrm{d}}{\mathrm{d} y}\Bigl[\sin{y}\Bigl]\dfrac {\ mathrm {d} y} {\ mathrm {d} x} & = 1, \\ \ cos {y} \ dfrac {\ mathrm {d} y} {\ mathrm {d} x} & = 1. \ конец {выравнивание} 92} }.\]

    }}

    Пример 2. Производная arctan(x)

    Найти $\dfrac{\mathrm{d

    {\mathrm{d} x}\Bigl[\arctan{x }\Bigl]$.

    }}

    Решение

    Пусть $y=\arctan{x}$. Нам потребуется инверсия этой функции, чтобы продолжить технику.

    По определению $\arctan{x}$ является обратным $\tan{x}$. Следовательно, обратная функция $y=\arctan{x}$ равна:

    \[\tan{y}=x.\]

    Дифференцирование обеих частей этого уравнения дает:

    \[\ dfrac {\ mathrm {d {\ mathrm {d} x} \ Bigl [\ tan {y} \ Bigl] = \ dfrac {\ mathrm {d}} {\ mathrm {d} x}\Bigl[x\Bigl].\]

    Поскольку правая часть этого уравнения является чисто функцией $x$ , ее можно сразу продифференцировать. Однако к левой части необходимо применить цепное правило, поскольку дифференцируемый член является функцией $y(x)$ . Применение цепного правила дает:

    \begin{align} \dfrac{\mathrm{d}}{\mathrm{d} x}\Bigl[\tan{y}\Bigl] &= \dfrac{\mathrm{d }}{\mathrm{d} x}\Bigl[x\Bigl], \\ \dfrac{\mathrm{d}}{\mathrm{d} y}\Bigl[\tan{y}\Bigl]\dfrac {\ mathrm {d} y} {\ mathrm {d} x} & = 1, \\ \ sec ^ 2 {y} \ dfrac {\ mathrm {d} y} {\ mathrm {d} x} & = 1 . \end{выравнивание} 92)}\bigl)}\Bigl]$.

    Пример 3

    Профессор Робин Джонсон использует обратные функции для нахождения $\dfrac{\mathrm{d} }{\mathrm{d}x}\Bigl[\arctan{\bigl(\sqrt{1+x) }\bigl)}\Bigl]$.

    3. Производные обратных триггерных функций

    М. Борна

    Вспомните, когда мы впервые познакомились с обратным тригонометрическим функции:

    «sin -1 x » означает «найти угол, синус которого равно х «.
    9-1 х`. В этом разделе в основном используется обозначение sin -1 x (поскольку изначально оно было написано, чтобы соответствовать представлению калькулятора), однако вам рекомендуется использовать более высокое обозначение, `arcsin x`.

    Вы также можете вернуться к справочной информации об обратных тригонометрических уравнениях.

    Производные обратных тригонометрических функций

    Ниже приведены формулы для производных обратной тригонометрической функции: 9(-1)4x`

    4. Найдите производную sin -1 ( x + y ) + y = x 2 .

    Ответить

    У нас есть неявная функция:

    sin -1 ( х + у ) + у = х 2 .

    Берем первый член, sin -1 ( x + y ), и допускаем

    92}$$.

    Пример 3

    Предположим, что $$\displaystyle f(x) = \frac{8x}{\arccsc 12x}$$. $$f’\влево(\frac 1 6\вправо)$$.

    Шаг 1

    Дифференцируйте с помощью правила отношения.