Решение системы линейных уравнений дифференциальных: Решить систему дифференциальных уравнений: примеры

Дифференциальное и интегральное исчисления для втузов, т.2

Дифференциальное и интегральное исчисления для втузов, т.2
  

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т. 2: Учебное пособие для втузов.—13-е изд.— М.: Наука, Главная редакция физико-математической литературы, 1985. — 560 с.

Хорошо известное учебное пособие по математике для втузов с достаточно широкой математической подготовкой.

Второй том включает разделы: дифференциальные уравнения, кратные и криволинейные интегралы, интегралы по поверхности, ряды, уравнения математической физики, операционное исчисление, элементы теории вероятностей и математической статистики, матрицы.

Для студентов высших технических учебных заведений.



Оглавление

ПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮ
ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ
ГЛАВА XIII. (n) = f(x)
§ 18. Некоторые типы дифференциальных уравнений второго порядка, приводимых к уравнениям первого порядка. Задача о второй космической скорости
§ 19. Графический метод интегрирования дифференциального уравнения второго порядка
§ 20. Линейные однородные уравнения. Определения и общие свойства
§ 21. Линейные однородные уравнения второго порядка с постоянными коэффициентами
§ 22. Линейные однородные уравнения n-го порядка с постоянными коэффициентами
§ 23. Неоднородные линейные уравнения второго порядка
§ 24. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами
§ 25. Неоднородные линейные уравнения высших порядков
§ 26. Дифференциальное уравнение механических колебаний
§ 27. Свободные колебания. Векторное и комплексное изображение гармонических колебаний
§ 28. Вынужденные колебания
§ 29. Системы обыкновенных дифференциальных уравнений
§ 30. Системы линейных дифференциальных уравнений с постоянными коэффициентами
§ 31. Понятие о теории устойчивости Ляпунова. Поведение траектории дифференциального уравнения в окрестности особой точки
§ 32. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 33. Разностный метод приближенного решения дифференциальных уравнений, основанный на применении формулы Тейлора.. Метод Адамса
§ 34. Приближенный метод интегрирования систем дифференциальных уравнений первого порядка
Упражнения к главе XIII
ГЛАВА XIV. КРАТНЫЕ ИНТЕГРАЛЫ
§ 2. Вычисление двойного интеграла
§ 3. Вычисление двойного интеграла (продолжение)
§ 4. Вычисление площадей и объемов с помощью двойных интегралов
§ 5. Двойной интеграл в полярных координатах
§ 6. Замена переменных в двойном интеграле (общий случай)
§ 7. Вычисление площади поверхности
§ 9. Момент инерции площади плоской фигуры
§ 10. Координаты центра масс площади плоской фигуры
§ 11. Тройной интеграл
§ 12. Вычисление тройного интеграла
§ 13. Замена переменных в тройном интеграле
§ 14. Момент инерции и координаты центра масс тела
§ 15. Вычисление интегралов, зависящих от параметра
Упражнения к главе XIV
ГЛАВА XV. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ
§ 2. Вычисление криволинейного интеграла
§ 3. Формула Грина
§ 4. Условия независимости криволинейного интеграла от пути интегрирования
§ 5. Поверхностный интеграл
§ 6. Вычисление поверхностного интеграла
§ 7. Формула Стокса
§ 9. Оператор Гамильтона. Некоторые его применения
Упражнения к главе XV
ГЛАВА XVI. РЯДЫ
§ 1. Ряд. Сумма ряда
§ 2. Необходимый признак сходимости ряда
§ 3. Сравнение рядов с положительными членами
§ 4. Признак Даламбера
§ 5. Признак Коши
§ 6. Интегральный признак сходимости ряда
§ 7. Знакочередующиеся ряды. Теорема Лейбница
§ 8. Знакопеременные ряды. Абсолютная и условная сходимость
§ 9. Функциональные ряды
§ 10. Мажорируемые ряды
§ 11. Непрерывность суммы ряда
§ 12. Интегрирование и дифференцирование рядов
§ 13. Степенные ряды. Интервал сходимости
§ 14. Дифференцирование степенных рядов
§ 15. Ряды по степеням x-a
§ 16. Ряды Тейлора и Маклорена
§ 17. Примеры разложения функций в ряды
§ 18. Формула Эйлера
§ 19. Биномиальный ряд
§ 20. Разложение функции ln(1+x) в степенной ряд. Вычисление логарифмов
§ 21. Вычисление определенных интегралов с помощью рядов
§ 22. Интегрирование дифференциальных уравнений с помощью рядов
§ 23. Уравнение Бесселя
§ 24. Ряды с комплексными членами
§ 25. Степенные ряды с комплексной переменной
§ 26. Решение дифференциального уравнения первого порядка методом последовательных приближений (метод итераций)
§ 27. Доказательство существования решения дифференциального уравнения. Оценка погрешности при приближенном решении
§ 28. Теорема единственности решения дифференциального уравнения
Упражнения к главе XVI
ГЛАВА XVII. РЯДЫ ФУРЬЕ
§ 2. Примеры разложения функций в ряды Фурье
§ 3. Одно, замечание о разложении периодической функции в ряд Фурье
§ 4. Ряды Фурье для четных и нечетных функций
§ 5. Ряд Фурье для функции с периодом 2l
§ 6. О разложении непериодической функции в ряд Фурье
§ 7. Приближение в среднем заданной функции с помощью тригонометрического многочлена
§ 8. Интеграл Дирихле
§ 9. Сходимость ряда Фурье в данной точке
§ 10. Некоторые достаточные условия сходимости ряда Фурье
§ 11. Практический гармонический анализ
§ 12. Ряд Фурье в комплексной форме
§ 13. Интеграл Фурье
§ 14. Интеграл Фурье в комплексной форме
§ 15. Ряд Фурье по ортогональной системе функций
§ 16. Понятие о линейном функциональном пространстве. Аналогия между разложением функций в ряд Фурье и разложением векторов
Упражнения к главе XVII
ГЛАВА XVIII. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ
§ 1. Основные типы уравнений математической физики
§ 2. Вывод уравнения колебаний струны. Формулировка краевой задачи. Вывод уравнений электрических колебаний в проводах
§ 3. Решение уравнения колебаний струны методом разделения переменных (методом Фурье)
§ 4. Уравнение распространения тепла в стержне. Формулировка краевой задачи
§ 5. Распространение тепла в пространстве
§ 6. Решение первой краевой задачи для уравнения теплопроводности методом конечных разностей
§ 7. Распространение тепла в неограниченном стержне
§ 8. Задачи, приводящие к исследованию решений уравнения Лапласа. Формулировка краевых задач
§ 9. Уравнение Лапласа в цилиндрических координатах. Решение задачи Дирихле для кольца с постоянными значениями искомой функции на внутренней и внешней окружностях
§ 10. Решение задачи Дирихле для круга
§ 11. Решение задачи Дирихле методом конечных разностей
Упражнения к главе XVIII
ГЛАВА XIX. ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ
§ 1. Начальная функция и ее изображение
§ 2. Изображение функций …
§ 3. Изображение функции с измененным масштабом независимой переменной. Изображение функций sin at, cos at
§ 4. Свойство линейности изображения
§ 5. Теорема смещения
§ 6. Изображение функций …
§ 7.
Дифференцирование изображения
§ 8. Изображение производных
§ 9. Таблица некоторых изображений
§ 10. Вспомогательное уравнение для данного дифференциального уравнения
§ 11. Теорема разложения
§ 12. Примеры решения дифференциальных уравнений и систем дифференциальных уравнений операционным методом
§ 13. Теорема свертывания
§ 14. Дифференциальные уравнения механических колебаний. Дифференциальные уравнения теории электрических цепей
§ 15. Решение дифференциального уравнения колебаний
§ 16. Исследование свободных колебаний
§ 17. Исследование механических и электрических колебаний в случае периодической внешней силы
§ 18. Решение уравнения колебаний в случае резонанса
§ 19. Теорема запаздывания
§ 20. Дельта-функция и ее изображение
Упражнения к главе XIX
ГЛАВА XX. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
§ 1. Случайное событие. Относительная частота случайного события. Вероятность события. Предмет теории вероятностей
§ 2. Классическое определение вероятности и непосредственный подсчет вероятностей
§ 3. Сложение вероятностей. Противоположные случайные события
§ 4. Умножение вероятностей независимых событий
§ 5. Зависимые события. Условная вероятность. Полная вероятность
§ 6. Вероятность гипотез. Формула Байеса
§ 7. Дискретная случайная величина. Закон распределения дискретной случайной величины
§ 8. Относительная частота и вероятность относительной частоты при повторных испытаниях
§ 9. Математическое ожидание дискретной случайной величины
§ 10. Дисперсия. Среднеквадратичное отклонение. Понятие о моментах
§ 11. Функции от случайных величин
§ 12. Непрерывная случайная величина. Плотность распределения непрерывной случайной величины. Вероятность попадания случайной величины в заданный интервал
§ 13. Функция распределения, или интегральный закон распределения. Закон равномерного распределения вероятностей
§ 14. Числовые характеристики непрерывной случайной величины
§ 15. Нормальный закон распределения. Математическое ожидание нормального распределения
§ 16. Дисперсия и среднеквадратичное отклонение случайной величины, подчиненной нормальному закону распределения
§ 17. Вероятность попадания значения случайной величины в заданный интервал. Функция Лапласа. Интегральная функция распределения для нормального закона
§ 18. Вероятное (срединное) отклонение или срединная ошибка
§ 19. Выражение нормального закона распределения через срединное отклонение. Приведенная функция Лапласа
§ 20. Правило трех сигм. Шкала вероятностей распределения ошибок
§ 21. Среднеарифметическая ошибка
§ 22. Мера точности. Соотношение между характеристиками распределения ошибок
§ 23. Двумерная случайная величина
§ 24. Нормальный закон распределения на плоскости
§ 25. Вероятность попадания двумерной случайной величины в прямоугольник со сторонами, параллельными главным осям рассеивания, при нормальном законе распределения
§ 26. Вероятность попадания двумерной случайной величины в эллипс рассеивания
§ 27. Задачи математической статистики. Статистический материал
§ 28. Статистический ряд. Гистограмма
§ 29. Определение подходящего значения измеряемой величины
§ 30. Определение параметров закона распределения. Теорема Ляпунова. Теорема Лапласа
Упражнения к главе XX
ГЛАВА XXI. МАТРИЦЫ. МАТРИЧНАЯ ЗАПИСЬ СИСТЕМ И РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Линейные преобразования. Матрица
§ 2. Общие определения, связанные с понятием матрицы
§ 3. Обратное преобразование
§ 4. Действия над матрицами. Сложение матриц
§ 5. Преобразование вектора в другой вектор с помощью матрицы
§ 6. Обратная матрица
§ 7. Нахождение матрицы, обратной данной
§ 8. Матричная запись системы линейных уравнений
§ 9. Решение системы линейных уравнений матричным методом
§ 10. Ортогональные отображения. Ортогональные матрицы
§ 11. Собственный вектор линейного преобразования
§ 12. Матрица линейного преобразования, при котором базисные векторы являются собственными векторами
§ 13. Преобразование матрицы линейного преобразования при переходе от одного базиса к другому
§ 14. Квадратичные формы и их преобразования
§ 15. Ранг матрицы. Существование решений системы линейных уравнений
§ 16. Дифференцирование и интегрирование матриц
§ 17. Матричная запись системы дифференциальных уравнений и решений системы дифференциальных уравнений с постоянными коэффициентами
§ 18. Матричная запись линейного уравнения n-го порядка
§ 19. Решение систем линейных дифференциальных уравнений с переменными коэффициентами методом последовательных приближений с использованием матричной записи
Упражнения к главе XXI
ПРИЛОЖЕНИЯ

35.1. Нормальная система дифференциальных уравнений

Система вида

где функции определены в некотороймерной области переменныхназываетсянормальной системой дифференциальных уравнений первого порядкас неизвестными функциями

Число уравнений, входящих в систему, называется порядком нормальной системы. Решением нормальной системы в интервале называется совокупность функций

непрерывно дифференцируемых в интервале и обращающих вместе со своими производными каждое уравнение нормальной системы в тождество.

Задача Коши для системы дифференциальных уравнений первого порядка имеет следующую формулировку. Найти решение нормальной системы дифференциальных уравнений первого порядка, удовлетворяющее начальным условиямгдезаданные числа,

Теорема Коши о существовании и единственности решение задачи. Если функции непрерывны в окрестности точкии имеют непрерывные частные производныето всегда найдется некоторый интеграл с центромв котором существует единственное решение нормальной системы дифференциальных уравнений первого порядка, удовлетворяющее заданным начальным условиям.

Общим решением нормальной системы называется совокупность функций

зависящих от произвольных постоянныхи удовлетворяющих следующим условиям:

  1. функции определены в некоторой области изменения переменных и имеют непрерывные частные производные

  2. совокупность является решением нормальной системы дифференциальных уравнений первого порядка при любых значениях

  3. для любых начальных условий из области где выполняются условия теоремы Коши, всегда найдутся такие значения произвольных постоянныхчто будут справедливы равенства

Частным решением нормальной системы дифференциальных уравнений первого порядка называется решение, полученное из общего при некоторых частных значениях произвольных постоянных.

Одним из методов решения нормальной системы дифференциальных уравнений первого порядка является сведение ее к решению одного или нескольких дифференциальных уравнений высших порядков – метод исключения.

Все сказанное выше верно и для частного случая нормальной системы дифференциальных уравнений, которая имеет вид

где функции предполагаются непрерывными в некотором интервалеЕсли всето рассматриваемая система называется однородной, в противном случае неоднородной. Еслито рассматриваемая системаназывается линейной с постоянными коэффициентами. Существуют методы, позволяющие проинтегрировать такую систему. Рассмотрим два из них.

Первый метод. Составляем характеристическое уравнение

где Раскрывая определитель, приходим к алгебраическому уравнению степениотносительнос действительными постоянными коэффициентами, которое имееткорней.

Если корни характеристического уравнения действительные и различные то каждому корню соответствует частное решение вида

где коэффициенты определяются из системы линейных алгебраических уравнений

Все частные решения вида

образуют фундаментальную систему решений.

Общее решение однородной системы с постоянными коэффициентами, получаемой из системы

при представляет собой следующую совокупность функций, являющихся линейной комбинацией решений

где произвольные постоянные.

Рассмотрим пример. Найти общее решение однородной системы

Характеристическое уравнение данной системы

имеет различные действительные корни Для каждого из них составляем систему

Так как определители этих систем равны нулю, то каждая из них имеет бесчисленное множество решений. В данном случае можно выбрать те решения, для которых Тогда получим следующие решения систем: еслито

если то

если то

Это приводит к фундаментальной системе решений

Линейная комбинация этих решений с учетом совокупности функций

дает общее решение исходной системы

Второй случай. Корни характеристического уравнения

различные, но среди них имеются комплексные. Известно, что в этом случае каждой паре комплексно – сопряженных корней характеристического уравнения соответствует пара частных решений

где Коэффициентыопределяются из системы

соответственно для иКоэффициентыоказываются, как правило, комплексными числами, а соответствующие им функциикомплексными функциями. Выделяя мнимую и действительную части функцийи пользуясь тем, что для линейных уравнений с действительными коэффициентами и мнимая, и действительная части решения также являются решениями, получаем пару частных действительных решений однородной системы.

Рассмотрим пример. Найти общее решение системы

Характеристическое уравнение системы

имеет корни Получаем

Корню соответствует система для вычисления

Согласно формуле получаем частное решение

Взяв в отдельности действительные и мнимые части в решении, получим два решения в действительной форме, образующих фундаментальную систему решений системы

Тогда общее решение системы имеет вид

Третий случай. Среди корней характеристического уравнения имеются кратные. В этом случае поступаем следующим образом. Пустькорень кратностихарактеристического уравнения. Тогда решение системы, для которойсоответствующее этомукратному корню, ищем в виде

……………………………………………………………………………

Числа находим, подставляя функциии их производныев исходную систему при указанных ограничениях наиа затем приравниваем коэффициенты при одинаковых степеняхв левых и правых частях полученных равенств. В результате проведенных действий из всех чиселвсегда остаются в качестве свободных параметров, которые принимаются за произвольные постоянные.

Рассмотрим пример. Найти общее решение системы

Характеристическое уравнение системы

имеет двукратный и однократныйкорни. Двукратному корнюсоответствует решение вида

Коэффициенты определяются из системы, полученной подстановкой выражений дляв исходную систему. После сокращения наимеем

Приравнивая коэффициенты при одинаковых степенях слева и справа, получаем систему

из которой находим, что

Числа можно считать произвольными параметрами. Обозначим их черезисоответственно. Тогда решение запишется в виде

Корню соответствует решение

где числа определяется из системы

Ее решение Следовательно, соответствующее корню

решение исходной системы имеет вид

где произвольная постоянная.

Общее решение исходной систему записывается в виде

Если система неоднородная, то, зная общее решение вида

соответствующей однородной системы, можно найти общее решение исходной неоднородной системы методом вариации произвольных постоянных в решении

Общее решение неоднородной системы всегда можно записать в данном виде, заменив произвольные постоянные соответственно функциямиЭти функции определяются с помощью данной неоднородной системы. В систему подставляютполучают линейную системуалгебраических уравнений относительнорешение которой всегда существует и представимо в виде

где известные функции. Интегрируя эти равенства, находим

где произвольные постоянные.

Рассмотрим пример. Решить задачу Коши

заданы начальные условия

Найдем общее решение соответствующей однородной системы

Корни ее характеристического уравнения общее решение ищем в виде

Пусть в данном решении иявляются неизвестными функциямииПотребуем, чтобыибыли решением исходной системы. Находим

Подставляем выражения для в исходную систему, приводим подобные члены и получаем систему

откуда

Проинтегрируем последние равенства

Подставляя ив равенствавместоиполучаем общее решение исходной неоднородной системы

Используя начальные условия, получим систему для определения постоянных и:

откуда

Решением задачи Коши будет следующее частное решение

Контрольные вопросы

  1. Что называют порядком нормальной системы?

  2. Дать определение решению нормальной системы в заданном интервале?

  3. Дать формулировку Задачи Коши для системы дифференциальных уравнений первого порядка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *