Решение системы уравнений квадратных онлайн: Онлайн калькулятор. Решение квадратных уравнений

Численные методы решения систем нелинейных уравнений / Хабр

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:

(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD

(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;

lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

(3)

Определим матрицу Якоби:

(4)

Запишем(3) в виде:

(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

(6)

где — итерационные параметры, a — квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Система линейных уравнений (5) для нахождения нового приближения может решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

n=100
def f(x):
         f = zeros([n])
         for i in arange(0,n-1,1):
                  f[i] = (3 + 2*x[i])*x[i] - x[i-1] - 2*x[i+1] - 2
         f [0] = (3 + 2*x[0] )*x[0] - 2*x[1] - 3
         f[n-1] = (3 + 2*x[n-1] )*x[n-1] - x[n-2] - 4
         return f

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

from numpy import*
from scipy import optimize
import time 
ti = time.clock() 
n=100
def f(x):
         f = zeros([n])
         for i in arange(0,n-1,1):
                  f[i] = (3 + 2*x[i])*x[i] - x[i-1] - 2*x[i+1] - 2
         f [0] = (3 + 2*x[0] )*x[0] - 2*x[1] - 3
         f[n-1] = (3 + 2*x[n-1] )*x[n-1] - x[n-2] - 4
         return f
x0 =zeros([n])
sol = optimize.root(f,x0, method='krylov')
print('Solution:\n', sol.x)
print('Krylov method iteration = ',sol.nit)
print('Optimize root time', round(time.clock()-ti,3), 'seconds')

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Решение для n=200

Solution:
[1.00000018 0.99999972 0.99999985 1.00000001 0.99999992 1.00000049
0.99999998 0.99999992 0.99999991 1.00000001 1.00000013 1.00000002
0.9999997 0.99999987 1.00000005 0.99999978 1.0000002 1.00000012
1.00000023 1.00000017 0.99999979 1.00000012 1.00000026 0.99999987
1.00000014 0.99999979 0.99999988 1.00000046 1.00000064 1.00000007
1.00000049 1.00000005 1.00000032 1.00000031 1.00000028 0.99999992
1.0000003 1.0000001 0.99999971 1. 00000023 1.00000039 1.0000003

1.00000013 0.9999999 0.99999993 0.99999996 1.00000008 1.00000016
1.00000034 1.00000004 0.99999993 0.99999987 0.99999969 0.99999985
0.99999981 1.00000051 1.0000004 1.00000035 0.9999998 1.00000065
1.00000061 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.0000006 1.0000006 1.0000006 1.0000006
1.0000006 1.0000006 1.
0000006 1.0000006 1.00000059 1.00000056
1.00000047 1.00000016 1.00000018 0.99999988 1.00000061 1.00000002
1.00000033 1.00000034 1.0000004 1.00000046 1.00000009 1.00000024
1.00000017 1.00000014 1.00000054 1.00000006 0.99999964 0.99999968
1.00000005 1.00000049 1.0000005 1.00000028 1.00000029 1.00000027
1.00000027 0.9999998 1.00000005 0.99999974 0.99999978 0.99999988
1.00000015 1.00000007 1.00000005 0.99999973 1.00000006 0.99999995
1.00000021 1.00000031 1.00000058 1.00000023 1.00000023 1.00000044
0.99999985 0.99999948 0.99999977 0.99999991 0.99999974 0.99999978
0.99999983 1.0000002 1.00000016 1.00000008 1.00000013 1.00000007
0.99999989 0.99999959 1.00000029 1.0000003 0.99999972 1.00000003
0.99999967 0.99999977 1.00000017 1.00000005 1.00000029 1.00000034
0.99999997 0.99999989 0.99999945 0.99999985 0.99999994 0.99999972
1.00000029 1.00000016]
Krylov method iteration = 9178
Optimize root time 23. 397 seconds

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона


Программа отыскания корней по модифицированному методу Ньютона

from numpy import*
import time 
ti = time.clock() 
def jacobian(f, x):
         h = 1.0e-4
         n = len(x)
         Jac = zeros([n,n])
         f0 = f(x)
         for i in arange(0,n,1):
                  tt = x[i]
                  x[i] = tt + h
                  f1= f(x)
                  x[i] = tt
                  Jac [:,i] = (f1 - f0)/h
         return Jac, f0
def newton(f, x, tol=1. 0e-9):
         iterMax = 50
         for i in range(iterMax):
                  Jac, fO = jacobian(f, x)
                  if sqrt(dot(fO, fO) / len(x)) < tol:
                           return x, i                 
                  dx = linalg.solve(Jac, fO)
                  x = x - dx
         print ("Too many iterations for the Newton method")
n=100
def f(x):
         f = zeros([n])
         for i in arange(0,n-1,1):
                  f[i] = (3 + 2*x[i])*x[i] - x[i-1] - 2*x[i+1] - 2
         f [0] = (3 + 2*x[0] )*x[0] - 2*x[1] - 3
         f[n-1] = (3 + 2*x[n-1] )*x[n-1] - x[n-2] - 4
         return f
x0 =zeros([n])
x, iter = newton(f, x0)
print ('Solution:\n', x)
print ('Newton iteration = ', iter)
print('Newton method time', round(time.clock()-ti,3), 'seconds')

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

n=10
def f(x):
         f = zeros([n])
         for i in arange(0,n-1,1):
                  f[i] = (3 + 2*x[i])*x[i]*sin([i]) - x[i-1] - 2*x[i+1] - 2+e**-x[i]
         f [0] = (3 + 2*x[0] )*x[0] - 2*x[1] - 3
         f[n-1] = (3 + 2*x[n-1] )*x[n-1] - x[n-2] - 4
         return f

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

n=500

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 15
Newton method time 11. 754 seconds


Выводы:

Программа, написанная на Python по модифицированному методу Ньютона, при решении систем нелинейных уравнений из приведенной модельной функции обладает большей устойчивостью решения, чем при решении с помощью библиотечной функции optimize.root(f,x0, method=’krylov’) для метода Крылова. Относительно быстродействия окончательного вывода сделать нельзя из-за разного подхода к управлению шагом.

Ссылки:

  1. Рейтинг языков программирования 2018.
  2. Бондарь И.В, Фалейчик Б.В. Безматричные итерационные процессы со среднеквадратичным подавлением ошибки для больших систем нелинейных уравнений.
  3. scipy.optimize.root.
  4. Вабищевич П.Н. Численные методы: Вычислительный практикум. — М.: Книжный дом «ЛИБРОКОМ», 2010. — 320 с.

Решение квадратных уравнений

jpg» valign=»top»>
 
  Бесплатные учебники по алгебре
!
Дом
Системы линейных уравнений и решение задач
Решение квадратных уравнений
Решение абсолютных неравенств
Решение квадратных уравнений
Решение квадратных неравенств
Решающие системы сокращения строк уравнений
Решение систем линейных уравнений с помощью графиков
Решение квадратных уравнений
Решение систем линейных уравнений
Решение линейных уравнений. Часть II
Решение уравнений I
Итоговая оценка результатов решения проблем и навыков
Решение математических задач: длинное деление лица
Решение линейных уравнений
Системы линейных уравнений с двумя переменными
Решение системы линейных уравнений с помощью графика
Ti-89 Решение одновременных уравнений
Системы линейных уравнений с тремя переменными и матричные операции
Решение рациональных уравнений
Решение квадратных уравнений методом факторинга
Решение квадратных уравнений
Решение систем линейных уравнений
Системы уравнений с двумя переменными
Решение квадратных уравнений
Решение экспоненциальных и логарифмических уравнений
Решение систем линейных уравнений
Решение квадратных уравнений
Математическая логика и решение задач с отличием
Решение квадратных уравнений методом факторинга
Решение буквенных уравнений и формул
Решение квадратных уравнений путем заполнения квадрата
Решение экспоненциальных и логарифмических уравнений
Решение уравнений с дробями
Решение уравнений
Решение линейных уравнений
Решение линейных уравнений с одной переменной
Решение линейных уравнений
РЕШЕНИЕ КВАДРАТИЧНЫХ УРАВНЕНИЙ С ИСПОЛЬЗОВАНИЕМ КВАДРАТИЧНОЙ ФОРМУЛЫ
РЕШЕНИЕ ЛИНЕЙНЫХ УРАВНЕНИЙ
 

НАСТРОЙКА: Удалить все дроби и круглые скобки, сгруппировать термины, сделать квадрат члена положительным,
и ввести в стандартную форму:

Ax 2 + Bx + C = 0

ВСЕГДА: Сначала вынесите на множители все общие множители

2 ТЕРМИНА
Отсутствует 1 ст Член
3x — 12 = 0

Не квадратичный!
(линейный)

Решите для 1 ответа
x = 12
x = 4

Отсутствует 2 nd Термин

Использовать метод квадратного корня
Missing 3 rd Term
x 2 + 3 = 0

вы забыли вычесть
из общего «x»

изолировать x 2
x = 12
оба стороны
изолировать квадратный бином

оба стороны
ВСЕ 3 УСЛОВИЯ
Факторинг


Завершением квадрата
2x 2 — 6x — 3 = 0
коэффициент x 2 должен быть 1:
разделить обе стороны на 2:
завершить квадрат:
добавить (½B)2 к обеим сторонам :
записать в виде бинома в квадрате:
использовать метод квадратного корня:

 

B 2 -4ac называется дискриминантом
1) если B 2 -4ac положительно: 2 действительных корня
2) если B 2 -4ac отрицательно: 2 комплексных корня
3) если B 2 -4ac = 0:1 действительный корень (дважды)

Квадратичная формула
Помните: Вы должны проверить оба решения, когда вы превращаете неквадратичное уравнение в квадратное!
jpg»>
Все права защищены. Copyright 2005-2023

Калькулятор решения квадратных уравнений — онлайн-помощь по математике0023 и

, не равные нулю, называются квадратными уравнениями. В калькуляторе квадратного уравнения, как только квадратное уравнение будет введено в качестве входных данных в калькулятор, результат будет обработан калькулятором в виде графика. Давайте узнаем о решении калькулятора квадратных уравнений с решенными примерами.

Типы квадратного уравнения:
1. Чистое квадратное уравнение:

Числовой коэффициент не может быть равен нулю. Если b=0, то квадратное уравнение называется «чистым» квадратным уравнением

2. Полное квадратное уравнение:

Если уравнение содержит члены x и x2, такое уравнение называется «полным» квадратным уравнением. Постоянный числовой член «с» может быть или не быть нулевым в полном квадратном уравнении. Пример, x2 + 5x + 6 = 0 и 2×2 — 5x = 0 являются полными квадратными уравнениями.

Свойства корней решения квадратного уравнения:

  • Сумма корней квадратного уравнения равна,  

              x1 + x2 = -b/a, где a, b — коэффициенты x2 и x члена.

  • Кратность корней квадратного уравнения: (x1)(x2) = c/a

        Квадратное уравнение может иметь два корня; но в определенной ситуации только один корень может дать точное решение задачи, которое является логически правильным.

В формуле квадратного уравнения b2-4ac является дискриминантом,

            Возможны три вещи в соответствии с дискриминант .

                        b2- 4ac > 0, уравнение, имеющее два различных действительных корня.

                        b2- 4ac = 0, квадратное уравнение, имеющее два равных корня.

                        b2- 4ac < 0, уравнение не имеет действительных корней. Корни воображаемые.

Пример задачи на решение калькулятора квадратных уравнений:
            Решить квадратное уравнение методом факторизации и найти корни?

3×2-4x -4 = 0

Решение:

Шаг 1: Умножение коэффициента x2 и постоянный термин,

3 * -4 = -12 (термин продукта)

3 * -4 = -12 (термин продукта)

3 * -4 = -12 (термин продукта)

3 * -4 = -12 (термин продукта)

3 * -4 = -12. : Найдите коэффициенты для термина продукта

                        -12 → -6 * 2 = -12 (множители -6 и 2) )

            Шаг 3: Разделите коэффициент x AS -4

3×2 — 4x — 4 = 0

3×2 — 6x + 2x — 4 = 0

Шаг 4: .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *