Тесты по теме «Неравенства» онлайн
- Онлайн тесты
- Неравенства
-
Итоговый тест по теме «Неравенства»
13.04.2020 3823
Тест предназначен для проверки усвоения знаний по теме «Неравенства с одной переменной и их системы» к учебнику алгебры 8 класс (авторы Ю.Н.Макарычева и др.). Содержит как задания базового уровня, так и задания повышенного уровня.
-
Решение квадратных неравенств
22.12.2020 7789 0
Тест по теме «Решение квадратных неравенств» для 9 класса. Тест состоит из 10 вопросов с выбором одного правильного овета из предложенных четырех.
-
Линейные неравенства с одной переменной.
23.05.2021 4203 0
Тематический тест, объединяющий две темы: «Линейные неравенства» и «Числовые промежутки» предназначен для учащихся 8 классов. Данный тест нацелен на определение уровня усвоения учебного материала по теме «Линейные уравнения» за основу взят учебник Макарычева — самый распространенный учебник по алгебре для 8 класса.
-
9 класс. Неравенства на ОГЭ. Задание №13.
11.04.2021 3495 0
Тест составлен из задач открытого банка заданий ОГЭ ФИПИ, раздел «Уравнения и неравенства», предназначен для подготовки к ОГЭ. 17 заданий (каждое генерируется в 10 вариантах)
-
Квадратные неравенства
28.08.2020 4235
Тест создан к учебнику Алгебра 8 класс под редакцией А.Г.Мордковича по теме «Квадратные неравенства»
-
А8. «Решение неравенств и систем «
31.03.2020
Тест соответствует учебнику «Алгебра. 8 класс» под редакцией С.А. Теляковского.
-
Решение неравенств методом интервалов
26. 05.2020 4352 0
Тест предназначен для проверки умения решать неравенства методом интервалов, строить графическую интерпретацию .решения.
-
Тест по теме: «Решение неравенств методом интервалов», 10 класс
20.10.2020 175 0
Тест состоит из 8 вопросов по теме:»Решение неравенств методом интервалов», 10 класс, учебник Никольского С.М.
-
Иррациональные уравнения и неравенства
26.05.2020 3346 0
Тест предназначен для проверки умения решать простейшие иррациональные уравнения и неравенства.
-
Решение рациональных уравнений и неравенств
01.12.2020 440 0
Тест предназначен для проверки умения решать постейшие рациональные уравнения и неравенства и их системы
-
Показательные и логарифмические неравенства.
13.12.2020 101 0
Тест по теме «Показательные и логарифмические неравенства» составлен для аттестации учеников 10-11 класса. Задания теста составлены на основе заданий ЕГЭ (базовая математика).
-
Алгебра.
8 класс. Решение неравенств первой степени.05.05.2020 2983
Данный тест проверяет умение решать неравенства первой степени.
-
Решите неравенство
12.11.2019 4501
Решение квадратных неравенств и неравенств высших степеней методом интервалов.
-
Решение задач по дисциплине ЕН.01.Математика (итоговое занятие)
26.04.2023 38 0
Тест по математике содержит 10 вопросов на общие темы. Время выполнения тестовых заданий не ограничено, но фиксируется.
-
06.12.2020 1509 0
Контрорльный тест по алгебре, 9 класс по теме «Рациональные неравенства». Содержит 8 заданий.
-
Неравенства, содержащие знак модуля №1
15.11.2020 491 0
Ребята! Тест нацелен на определение степени усвоения классной работы и содержит задания, аналогичные тем, что были разобраны в видео-уроке.
-
Числовые неравенства. Алгебра 8-9 класс.
18. 08.2021 1526 0
Тест для учащихся 8- 9 классов по теме «Числовые неравенства. Свойства числовых неравенств»
-
Квадратные уравнения
12.04.2020 52 0
Тест по теме квадратный трехчлен проверяет умение решать квадратные уравнения и неравенства
-
Решение систем неравенств
08.01.2021 73 0
Тест предназначен для проверки знания методов решения систем неравенств, умения решать системы неравенств, изображать графически решение систем неравенств
-
Решение линейных неравенств
20. 10.2021 515 0
Данный тест нацелен на определение уровня усвоения учебного материала по теме «Линейные неравенства» 9 класс учебник А.Г. Мерзляка, В.Б. Полонского и др.
-
Решение неравенств методом интервалов (ОГЭ, алгебра, 2 часть № 21)
19.03.2019 305 0
Для проверки умения решать неравенства методом интервалов. Содержит теоретическую и практическую часть. Тест полезен при подготовке к экзаменам. Контактные данные не обязательны и нужны только если вы желаете получить комментарии после проверки (ссылка на страницу VK, электронная почта, WA.). В случае неудачного прохождения приглашаю https://vk.com/stairway5 -
Тест по алгебре
30. 08.2019 1745
В данном тесте содержится 20 вопросов по алгебре за 8 класс. Тест содержит вопросы по следующим темам: — Квадратные уравнения — Неравенства
-
Неравенства. Линейные неравенства. Квадратные неравенства
16.04.2020 2524 0
Тест по теме «Неравенства» предназначен для обучающихся 8-9 классов. Рекомендован при полготовке к ОГЭ
-
ОУД.03 Математика. Решение простейших неравенств.
07.06.2020 71 0
Перед Вами тренировочный тест, проверяющий усвоение небольшой, логически завершенной части темы «Уравнения и неравенства». Содержание и уровень сложности включенных в него заданий, в основном, отвечают обязательным требованиям к математической подготовке студентов, обучающихся по специальностям технического профиля.
-
Тест по модулю 3
20.08.2020 5 0
Привет, ребята! Пришло время показать свои знания на практике.
-
Решение неравенств. Подготовка к ОГЭ 2021
10.10.2020 30 0
Тест для проверки знаний и умений по теме «Решение линейных неравенств и неравенеств высших степений (варианты фзяты из Базы ФИПИ)
-
Неравенства, координатная прямая
17. 12.2020 617 0
Тест содержит 12 заданий по теме «Координатная прямая», «Расстояние между точками координатной прямой». Критерии: «3» от 50 до 69%, «4» от 70 до 90%, «5» от 91 до 100%. Оценка выставляется сразу после прохождения теста.
-
Линейные неравенства
07.04.2021 24 0
тест по подготовке к ГИА по теме «Линейные неравенства»
Линейные неравенства, примеры, решения
После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.
Что такое линейное неравенство?
В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.
Определение 1Линейное неравенство с одной переменной x – это неравенство вида a·x+b>0, когда вместо > используется любой знак неравенства <, ≤, ≥, а и b являются действительными числами, где a≠0.
Определение 2Неравенства a·x<c или a·x>c, с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной.
Так как ничего не сказано за то, может ли коэффициент быть равным 0, тогда строгое неравенство вида 0·x>c и 0·x<c может быть записано в виде нестрогого, а именно, a·x≤c, a·x≥c. Такое уравнение считается линейным.
Их различия заключаются в:
- форме записи a·x+b>0 в первом, и a·x>c – во втором;
- допустимости равенства нулю коэффициента a, a≠0 — в первом, и a=0 — во втором.
Считается, что неравенства a·x+b>0 и a·x>c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0·x+5>0 приведет к тому, что его необходимо будет решить, причем случай а=0 не подойдет.
Определение 3Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a·x+b<0, a·x+b>0, a·x+b≤0 и a·x+b≥0, где a и b являются действительными числами. Вместо x может быть обычное число.
Исходя из правила, имеем, что 4·x−1>0, 0·z+2,3≤0, -23·x-2<0 являются примерами линейных неравенств. А неравенства такого плана, как 5·x>7, −0,5·y≤−1,2 называют сводящимися к линейному.
Как решить линейное неравенство
Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x<p (≤, >, ≥), p являющееся некоторым числом, при a≠0, а вида a<p (≤, >, ≥) при а=0.
Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.
Используя равносильные преобразования
Чтобы решить линейное неравенство вида a·x+b<0 (≤, >, ≥), необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.
Определение 4Алгоритм решение линейного неравенства a·x+b<0 (≤, >, ≥) при a≠0
- число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a·x<−b (≤, >, ≥);
- будет производиться деление обеих частей неравенства на число не равное 0. Причем , когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.
Рассмотрим применение данного алгоритма на решении примеров.
Пример 1Решить неравенство вида 3·x+12≤0.
Решение
Данное линейное неравенство имеет a=3 и b=12. Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.
Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3·x≤−12. Необходимо произвести деление обеих частей на 3. Знак не поменяется, так как 3 является положительным числом. Получаем, что (3·x):3≤(−12):3, что даст результат x≤−4.
Неравенство вида x≤−4 является равносильным. То есть решение для 3·x+12≤0 – это любое действительное число, которое меньше или равно 4. Ответ записывается в виде неравенства x≤−4, или числового промежутка вида (−∞, −4].
Весь выше прописанный алгоритм записывается так:
3·x+12≤0; 3·x≤−12; x≤−4.
Ответ: x≤−4 или (−∞, −4].
Пример 2Указать все имеющиеся решения неравенства −2,7·z>0.
Решение
Из условия видим, что коэффициент a при z равняется -2,7, а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.
Производим деление обеих частей уравнения на число -2,7. Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (−2,7·z):(−2,7)<0:(−2,7), и дальше z<0.
Весь алгоритм запишем в краткой форме:
−2,7·z>0; z<0.
Ответ: z<0 или (−∞, 0).
Пример 3Решить неравенство -5·x-1522≤0.
Решение
По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x, которое равняется -5, с коэффициентом b, которому соответствует дробь -1522. Решать неравенство необходимо, следуя алгоритму, то есть: перенести -1522 в другую часть с противоположным знаком, разделить обе части на -5, изменить знак неравенства:
-5·x≤1522;-5·x:-5≥1522:-5x≥-322
При последнем переходе для правой части используется правило деления числе с разными знаками 1522:-5=-1522:5, после чего выполняем деление обыкновенной дроби на натурально число -1522:5=-1522·15=-15·122·5=-322.
Ответ: x≥-322 и [-322+∞).
Рассмотрим случай, когда а=0. Линейное выражение вида a·x+b<0 является неравенством 0·x+b<0, где на рассмотрение берется неравенство вида b<0, после чего выясняется, оно верное или нет.
Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b<0, потому что при подстановке любого t вместо переменной x, тогда получаем 0·t+b<0, где b<0. В случае, если оно верно, то для его решения подходит любое значение. Когда b<0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.
Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥):
Определение 5Числовое неравенство вида b<0 (≤, >, ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.
Пример 4Решить неравенство 0·x+7>0.
Решение
Данное линейное неравенство 0·x+7>0 может принимать любое значение x. Тогда получим неравенство вида 7>0. Последнее неравенство считается верным, значит любое число может быть его решением.
Ответ: промежуток (−∞, +∞).
Пример 5Найти решение неравенства 0·x−12,7≥0.
Решение
При подстановке переменной x любого числа получим, что неравенство получит вид −12,7≥0. Оно является неверным. То есть 0·x−12,7≥0 не имеет решений.
Ответ: решений нет.
Рассмотрим решение линейных неравенств , где оба коэффициента равняется нулю.
Пример 6Определить не имеющее решение неравенство из 0·x+0>0 и 0·x+0≥0.
Решение
При подстановке любого числа вместо x получим два неравенства вида 0>0 и 0≥0. Первое является неверным. Значит, 0·x+0>0 не имеет решений, а 0·x+0≥0 имеет бесконечное количество решений, то есть любое число.
Ответ: неравенство 0·x+0>0 не имеет решений, а 0·x+0≥0 имеет решения.
Методом интервалов
Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.
Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0. Иначе придется вычислять при помощи другого метода.
Определение 6Метод интервалов – это:
- введение функции y=a·x+b;
- поиск нулей для разбивания области определения на промежутки;
- определение знаков для понятия их на промежутках.
Соберем алгоритм для решения линейных уравнений a·x+b<0 (≤, >, ≥) при a≠0 с помощью метода интервалов:
- нахождение нулей функции y=a·x+b, чтобы решить уравнение вида a·x+b=0. Если a≠0, тогда решением будет единственный корень, который примет обозначение х0;
- построение координатной прямой с изображением точки с координатой х0, при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
- определение знаков функции y=a·x+b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
- решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.
Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.
Пример 6Решить неравенство −3·x+12>0.
Решение
Из алгоритма следует, что для начала нужно найти корень уравнения −3·x+12=0. Получаем, что −3·x=−12, x=4. Необходимо изобразить координатную прямую, где отмечаем точку 4. Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.
Нужно определить знаки на промежутках. Чтобы определить его на промежутке (−∞, 4), необходимо произвести вычисление функции y=−3·x+12 при х=3. Отсюда получим, что −3·3+12=3>0. Знак на промежутке является положительным.
Определяем знак из промежутка (4, +∞), тогда подставляем значение х=5. Имеем, что −3·5+12=−3<0. Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.
Мы выполняем решение неравенства со знаком >, причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.
Из чертежа видно, что искомое решение имеет вид (−∞, 4) или x<4.
Ответ: (−∞, 4) или x<4.
Графическим способом
Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0,5·x−1<0, 0,5·x−1≤0, 0,5·x−1>0 и 0,5·x−1≥0. Их решениями будут значения x<2, x≤2, x>2 и x≥2. Для этого изобразим график линейной функции y=0,5·x−1, приведенный ниже.
Видно, что
Определение 7- решением неравенства 0,5·x−1<0 считается промежуток, где график функции y=0,5·x−1 располагается ниже Ох;
- решением 0,5·x−1≤0 считается промежуток, где функция y=0,5·x−1 ниже Ох или совпадает;
- решением 0,5·x−1>0 считается промежуток, гре функция располагается выше Ох;
- решением 0,5·x−1≥0 считается промежуток, где график выше Ох или совпадает.
Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y=a·x+b, а правая – y=0, причем совпадает с Ох.
Алгоритм решения линейных неравенств графическим способом.
Определение 8Построение графика функции y=a·x+b производится:
- во время решения неравенства a·x+b<0 определяется промежуток, где график изображен ниже Ох;
- во время решения неравенства a·x+b≤0 определяется промежуток, где график изображается ниже оси Ох или совпадает;
- во время решения неравенства a·x+b>0 производится определение промежутка, где график изображается выше Ох;
- во время решения неравенства a·x+b≥0 производится определение промежутка, где график находится выше Ох или совпадает.
Решить неравенство -5·x-3>0 при помощи графика.
Решение
Необходимо построить график линейной функции -5·x-3>0. Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с Ох-5·x-3>0 получим значение -35. Изобразим графически.
Решение неравенства со знаком >, тогда необходимо обратить внимание на промежуток выше Ох. Выделим красным цветом необходимую часть плоскости и получим, что
Необходимый промежуток является частью Ох красного цвета. Значит, открытый числовой луч -∞, -35 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки -35 также являлось бы решением неравенства. И совпадало бы с Ох.
Ответ: -∞, -35 или x<-35.
Графический способ решения используется, когда левая часть будет отвечать функции y=0·x+b, то есть y=b. Тогда прямая будет параллельна Ох или совпадающей при b=0. Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.
Пример 8Определить из неравенств 0·x+7<=0, 0·x+0≥0 то, которое имеет хотя бы одно решение.
Решение
Представление y=0·x+7 является y=7, тогда будет задана координатная плоскость с прямой, параллельной Ох и находящейся выше Ох. Значит, 0·x+7<=0 решений не имеет, потому как нет промежутков.
График функции y=0·x+0, считается y=0, то есть прямая совпадает с Ох. Значит, неравенство 0·x+0≥0 имеет множество решений.
Ответ: второе неравенство имеет решение при любом значении x.
Неравенства, сводящиеся к линейным
Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.
Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5−2·x>0, 7·(x−1)+3≤4·x−2+x, x-35-2·x+1>27·x.
Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.
При сведении неравенства 5−2·x>0 к линейному, представляем его таким образом, чтобы оно имело вид −2·x+5>0, а для приведения второго получаем, что 7·(x−1)+3≤4·x−2+x. Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:
7·x−7+3≤4·x−2+x 7·x−4≤5·x−2 7·x−4−5·x+2≤0 2·x−2≤0
Это приводит решение к линейному неравенству.
Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.
Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:
Определение 9- раскрыть скобки;
- слева собрать переменные, а справа числа;
- привести подобные слагаемые;
- разделить обе части на коэффициент при x.
Решить неравенство 5·(x+3)+x≤6·(x−3)+1.
Решение
Производим раскрытие скобок, тогда получим неравенство вида 5·x+15+x≤6·x−18+1. После приведения подобных слагаемых имеем, что 6·x+15≤6·x−17. После перенесения слагаемых с левой в правую, получим, что 6·x+15−6·x+17≤0. Отсюда имеет неравенство вида 32≤0 из полученного при вычислении 0·x+32≤0. Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.
Ответ: нет решений.
Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 52·x−1≥1 является показательным уравнением, которое сводится к решению линейного вида 2·x−1≥0. Эти случаи будут рассмотрены при решении неравенств данного вида.
Решение уравнений и неравенств | Техасский шлюз
Давайте начнемРешение уравнений с одной переменной: часть 1Решение уравнений с одной переменной: часть 2Преобразование линейных уравненийПреобразование линейных неравенствСловарный запас Занятия в журналеСтандарты TEKS и ожидания учащихся
A(5) Учащийся применяет стандарты математического процесса для решения , с техникой и без нее, линейные уравнения и оценить обоснованность их решений. Студент должен:
А(5)(А) решать линейные уравнения с одной переменной, в том числе такие, для которых необходимо применение дистрибутивного свойства и для которых переменные включены с обеих сторон
А(5)(Б) решать линейные неравенства с одной переменной, в том числе те, для которых необходимо применение распределительного свойства и для которых переменные включены с обеих сторон
Ресурс Цель(и)
Учащийся будет использовать различные методы для решения уравнений и неравенства с переменными с обеих сторон.
Основные вопросы
Как можно использовать алгебраические плитки для решения уравнений и неравенств?
Какие шаги используются для алгебраического решения уравнений и неравенств?
Как уравнение или неравенство можно записать в стандартной форме?
Словарь
- Уравнение
- Неравенство
- Стандартная форма
- Переменная
- Нулевые пары
Чтобы решить уравнения, вы должны изолировать переменную. Нулевые пары и обратные операции могут использоваться для устранения констант в уравнении.
В приведенном ниже примере показано, как решать уравнения с использованием моделей и алгебраических шагов.
Чтобы попрактиковаться в решении двухшаговых уравнений, щелкните изображение ниже, чтобы открыть интерактивный инструмент. Следуйте указаниям «Обратная связь» под рабочим ковриком, чтобы построить модель с плитками алгебры и решить уравнение.
Некоторые уравнения могут быть более сложными, и для их решения требуется несколько шагов. Акроним « D on’t C все M e A после M idnight» может помочь вам запомнить этапы решения уравнений.
Пример 1
Найдите x в следующем уравнении: 2 x — 4 = x + 5. 9000 6
Шаг 1 : Переместите все переменные в одну сторону уравнение, вычитая x из обеих сторон.
2 х — 4 = х + 5
— x — x
x — 4 = 5
Шаг 2 : Добавьте 4 к обеим частям уравнения. Пример 2 084 x в следующем уравнении: 3 x + 15 — 9 = 2( х +2).
Шаг 1 : Распределите 2 на ( x + 2) путем умножения на 2.
3 x + 15 — 9 = 2( x + 2)
3 x + 15 — 9 = 2 x + 4
Шаг 2 : Объедините одинаковые термины, вычитая 9 из 15 ( 15 — 9 = 6).
3 x + 6 = 2 x + 4
Шаг 3 : Переместите все переменные в одну часть уравнения, вычитая 2 x из обеих сторон.
3 x + 6 = 2 x + 4
-2 x -2 x
x + 6 = 4
Шаг 4 : Вычтите 6 с обеих сторон.
x + 6 = 4
-6 -6
x = -2
Мы собираемся научиться преобразовывать уравнение или неравенство в эквивалентное уравнение или неравенство. Это включает перестановку значений неравенства или уравнения с использованием обратных операций. Давайте исследуем различные способы преобразования линейных уравнений из одного представления в другое.
Самое распространенное преобразование линейного уравнения, которое вам нужно знать, это как взять уравнение в стандартной форме (A x + B y = C) и переписать его в форме пересечения наклона ( y = m x + b), или наоборот. Это преобразование важно, потому что две разные формы быстро раскрывают разные типы информации.
В таблице ниже представлена важная информация для каждой формы.
Форма линейного уравнения | Важная информация | Где вы увидите эту форму |
Форма пересечения уклонов у = м х + б | Уклон м. Координата y точки пересечения y равна b. | Задачи, включающие начальную точку (b) и скорость изменения.
|
Стандартная форма А х + В у = С | Координата x точки пересечения x — C/A. y -координата пересечения y — это C/B. | Задачи, включающие комбинацию кратных x и y.
|
Для преобразования стандартной формы в форму с пересечением наклона обычно требуется два шага.
Шаг 1 . Добавьте или вычтите член размером x с обеих сторон.
Шаг 2 . Разделите все члены на коэффициент y . Пример 1 -3×2+122y = -32x + 6
Для преобразования из формы пересечения наклона в стандартную форму обычно требуется не более четырех шагов.
Шаг 1 . Добавьте или вычтите член размером x с обеих сторон.
Шаг 2 . Если коэффициент x отрицательный (слагаемое A), умножьте все слагаемые на -1.
Шаг 3 . Если есть дробь, умножьте все члены на знаменатель, чтобы исключить дроби.
Шаг 4 . Если есть десятичная дробь, умножьте все члены на степень 10, чтобы исключить десятичные дроби.
Пример 2
Преобразуйте уравнение в стандартный вид: 4x -y = 94(34x-y = 9)3x-4y=36
Проверьте свое понимание, выполнив следующие подсказки.
Линейные неравенства могут быть преобразованы аналогично линейным равенствам. Этот первый пример показывает, как преобразовать неравенство.
Пример 1
Как еще можно записать следующее неравенство?
3 x + 2 y ≥ 6
Чтобы записать неравенство по-другому, нужно убедиться, что значения решений остаются прежними.
Мы можем переписать неравенство, решив для y ИЛИ мы можем переписать неравенство, решив для x . Попробуем оба.
При работе с неравенствами важно помнить, что символ неравенства должен переворачиваться (переворачиваться) при умножении или делении на отрицательное число.
Посмотрите следующее видео о решении уравнений и неравенств и отвечайте на всплывающие подсказки. Когда вы закончите просмотр, выполните следующие шаги, чтобы преобразовать уравнение из стандартной формы в форму с пересечением наклона.
- Печать
- Поделиться
Решение уравнений и неравенств (практические задачи)
Показать мобильное уведомление Показать все примечания Скрыть все примечанияУведомление для мобильных устройств
Похоже, вы используете устройство с «узкой» шириной экрана ( т. е. вы наверное на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.
Вот набор практических задач для главы «Решение уравнений и неравенств» в заметках по алгебре.
- Если вам нужен документ в формате PDF, содержащий решения, на вкладке загрузки выше есть ссылки на файлы в формате PDF, содержащие решения для полной книги, главы и раздела. В настоящее время я не предлагаю pdf-файлы для решения отдельных проблем.
- Если вы хотите просмотреть решения в Интернете, перейдите на веб-страницу набора задач, щелкните ссылку решения для любой проблемы, и вы перейдете к решению этой проблемы.
Обратите внимание, что в некоторых разделах будет больше проблем, чем в других, а в некоторых будет большее или меньшее разнообразие проблем. Большинство разделов должны иметь ряд уровней сложности в задачах, хотя это будет варьироваться от раздела к разделу.
Вот список всех разделов, для которых были написаны практические задачи, а также краткое описание материала, содержащегося в примечаниях к этому конкретному разделу.
Решения и наборы решений. В этом разделе мы вводим некоторые основные обозначения и идеи, связанные с решением уравнений и неравенств. Мы определяем решения для уравнений и неравенств и наборы решений.
Линейные уравнения. В этом разделе мы опишем процесс решения линейных уравнений, включая уравнения с рациональными выражениями, и проиллюстрируем этот процесс несколькими примерами. Кроме того, мы обсуждаем тонкость, связанную с решением уравнений, которую студенты часто упускают из виду.
Применение линейных уравнений. В этом разделе мы обсуждаем процесс решения приложений в целом, хотя здесь мы сосредоточимся только на линейных уравнениях. Мы будем работать с приложениями по ценообразованию, проблемам расстояния / скорости, проблемам скорости работы и проблемам смешивания.
Уравнения с более чем одной переменной. В этом разделе мы рассмотрим решение уравнений с более чем одной переменной. В этих уравнениях будет несколько переменных, и нас попросят решить уравнение для одной из переменных. Это то, что нас будут просить делать на довольно регулярной основе.
Квадратные уравнения, часть I. В этом разделе мы начнем с решения квадратных уравнений. В частности, в этом разделе мы сосредоточимся на решении квадратных уравнений с помощью факторизации и свойства квадратного корня.
Квадратные уравнения, часть II. В этом разделе мы продолжим решать квадратные уравнения. Мы будем использовать завершение квадрата для решения квадратных уравнений в этом разделе и использовать его для вывода квадратной формулы. Квадратная формула — это быстрый способ, который позволит нам быстро решить любое квадратное уравнение.
Квадратные уравнения: Резюме – В этом разделе мы суммируем темы из двух последних разделов. Мы дадим процедуру определения того, какой метод использовать при решении квадратных уравнений, и определим дискриминант, который позволит нам быстро определить, какие решения мы получим при решении квадратного уравнения.
Приложения квадратных уравнений. В этом разделе мы вернемся к некоторым из приложений, которые мы видели в разделе линейных приложений, только на этот раз они будут включать решение квадратного уравнения. Включены примеры задач расстояния/скорости и задач скорости работы.
Уравнения, приводимые к квадратичной форме. Не все уравнения представляют собой то, что мы обычно называем квадратными уравнениями. Однако некоторые уравнения при соответствующей подстановке можно превратить в квадратное уравнение. Уравнения такого типа называются квадратичными по форме. В этом разделе мы будем решать этот тип уравнения.
Уравнения с радикалами. В этом разделе мы обсудим, как решать уравнения с квадратными корнями. Как мы увидим, нам нужно быть очень осторожными с потенциальными решениями, которые мы получаем, поскольку процесс, используемый при решении этих уравнений, может привести к значениям, которые на самом деле не являются решениями уравнения.
Линейные неравенства. В этом разделе мы начнем решать неравенства. В этом разделе мы сосредоточимся на решении линейных неравенств (как одинарных, так и двойных). Мы также введем обозначение интервала.
Полиномиальные неравенства. В этом разделе мы продолжим решать неравенства. Однако в этом разделе мы отойдем от линейных неравенств и перейдем к решению неравенств, включающих многочлены степени не ниже 2.
Рациональные неравенства – Мы продолжаем решать неравенства в этом разделе. Теперь мы будем решать неравенства, включающие рациональные выражения, хотя, как мы увидим, процесс здесь в значительной степени идентичен процессу, используемому при решении неравенств с многочленами.
Уравнения абсолютного значения – В этом разделе мы дадим геометрическое, а также математическое определение абсолютного значения. Затем мы перейдем к решению уравнений, которые включают абсолютное значение. Мы также будем работать с примером, в котором используются два абсолютных значения.
Неравенства с абсолютными значениями.