Решение систем линейных алгебраических уравнений
Похожие презентации:
Системы линейных алгебраических уравнений
Решение систем линейных уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений. Ранг матрицы. Исследование систем линейных уравнений
Системы линейных алгебраических уравнений
Численное решение систем линейных алгебраических уравнений СЛАУ
Обратная матрица. Матричный способ решения линейной системы уравнений. Формулы Крамера
Системы из n линейных уравнений с n неизвестными. Метод Гаусса решения систем линейных уравнений
Линейная алгебра. Ранг матрицы. Метод Гаусса решения систем линейных уравнений. Лекция 5
Системы линейных уравнений. (Тема 9.1)
1. ТЕМА 2. РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ Алгебраических УРАВНЕНИЙ
Система m линейных уравнений с nпеременными имеет вид:
a11 x1 a12 x2 … a1n xn b1
a x a x … a x b
21 1 22 2
2n n
2
. ………………………………….
am1x1 am 2 x2 … amn xn bm
aij
bi
— коэффициенты системы,
— свободные члены.
Решением системы называется такая
совокупность значений, при подстановке которых
каждое уравнение системы обращается в верное
равенство.
Система линейных уравнений называется:
совместной, если она имеет хотя бы одно решение;
несовместной, если она не имеет решений;
определенной, если она имеет единственное
решение;
неопределенной, если она имеет более одного
решения;
однородной, если все bi=0;
неоднородной, если не все bi=0.
Методы решения систем
1. Метод Крамера
Рассмотрим систему n линейных уравнений
неизвестными:
a11x1 a12 x2 … a1n xn b1
c
n
a x a x … a x b
21 1
22 2
2n n
2
……………………………………..
an1 x1 an 2 x2 … ann xn bn
Теорема Крамера:
Пусть Δ — определитель матрицы системы,
Δi — определитель матрицы, получаемой из
матрицы
A
заменой
столбца коэффициентов
аij при xi столбцом свободных членов.
Тогда, если Δ ≠ 0, то система имеет единственное решение,
определяемое по формулам:
j
xj
— формула Крамера.
Вспомним тему: Определители
Определитель квадратной матрицы – это число,
вычисляемое по определённым правилам.
Обозначают: |А|, ΔА, detA .
Определитель 2-го
порядка:
a11 a12
2
a11 a22 a21a12
a21 a22
2 3
1 5
2 5 1 3 7
Боковая
диагональ
Главная
диагональ
Определитель 3-го порядка:
Правило Саррюса (правило треугольников)
a11
a12
a13
a21
a22
a 23
a31
a 32
a33
a11a22a33 a21a32a13 a12a23a 31
a31a22a13 a21a12a33 a 32 a23a11
1 1 1
2
1
1 1 1 1 2 ( 1) 1 1 2 1 1 1 1 1 1 1 1 2 2 ( 1) 5
1 2
Вспомним тему: Алгебраические дополнения и
миноры
a11 a1 j ……a1n В квадратной матрице n-го
порядка рассмотрим элемент aij.
ai1 aij ……ain Вычеркнем i-ю строку и j-ый
A
столбец, на пересечении которых
…… ……………. стоит элемент aij. В результате
матрица
(n-1)-го
a a .. .. a получается
nn
n1 nj
порядка.
Минором Мij к элементу aij матрицы n-го порядка
называется определитель матрицы (n-1)-го порядка,
полученной из исходной матрицы вычеркиванием
строки и
i-й
j-го столбца.
Алгебраическим дополнением Аij к элементу aij
матрицы n-го порядка называется его минор, взятый со
знаком «+», если сумма i+j четная, и со знаком «-»,
если сумма нечетная: A 1 i. j M
ij
ij
Пример. Решить систему методом Крамера:
x1 2 x2 x3 0
2 x1 x2 3 x3 0
x x x 1
2
3
1
1 2 1
Решение. 1)Определитель матрицы системы: 2 1 3 5 0
1
2) Вычислим определители
1
0 2 1
1 0 1
1
1
3 5
1
Δ1, Δ2, Δ3 :
0 1
2 2 0
1
1
1 1
3 5
1
2
0
3 2 1 0 5.
1
1
1
1
3) Подставим полученные значения в формулу Крамера:
1
5
x1
1,
5
2
5
x2
1,
5
3 5
x3
1
5
2. Матричный метод
Рассмотрим систему n линейных уравнений c n неизвестными:
a11x1 a12 x2 … a1n xn b1
a x a x … a x b
21 1
22 2
2n n
2
……………………………………..
an1 x1 an 2 x2 … ann xn bn
x1
x2
X
….
x
n
a11 a12 …a1n
a21 a22 …a2 n
A
…………………
a a …a
n1 n 2 nn
матрица коэффициентов
системы
b1
b2
матрица-столбец B
….
переменных
b
n
Запишем эту систему в матричном виде.
1
A X B
Обозначим:
X A B
матрица столбец
свободных членов
— решение системы
Вспомним тему : умножение матриц
Произведением матрицы А размера m x n на матрицу
В размера n x k есть матрица С размера m x k ,
каждый элемент которой вычисляется по формуле:
n
cij ais bsj .
dim A m n
dim B n k
s 1
C A B существует
dim C m k
Вывод: число столбцов первого множителя должно
равняться числу строк второго множителя.
3
1
1 0 2
3
2
5
3 1 0 2 3
2
4 3 2
2
c11 1 ( 1) 0 5 2 2 3
11
7 2 2
c12 1 3 0 ( 2) 2 4 11
10
Пример. Решить систему матричным методом
x1 2 x2 x3 0
ОБОЗНАЧИМ
2 x1 x2 3 x3 0
x x x 1
2
3
1
x1
X x2
x
3
1 2 1
A 2 1 3
1 1
1
1. Вычислим определитель матрицы
1
2
det A 2 1
1
1
1
3 5 0
1
0
B 0
1
3. Вычисляем обратную матрицу:
3 2 0,2
0,6 0,4
1
1 ~ 1
1
A
A 3 1
1 0,6 0,2
0,2
A
5
0,2 0,4 0,6
1
2
3
4.
Проверка:
1
1
A A AA E
3 2 1 1 1
1
5 0 0
1
1
1
A A 3 1
1 2 1 1 0 5 0 E
5
5
1
2
3
1
1
2
0
0
5
Вспомним тему : Обратная матрица
Матрица А является невырожденной (неособенной),
если |А|≠0, иначе матрица называется вырожденной
(особенной).
Матрица
А-1
называется
обратной
матрицей
к
квадратной матрице А, если при умножении этой
матрицы на данную как справа, так и слева получается
единичная матрица: 1
1
A A A A E
А11 А 21 А n1
1 А12 А 22 А n 2
1
A
A
А А
А
2n
nn
1n
алгебраические
дополнения к элементам
строки
записаны
в
столбец
Пример. Найти матрицу обратную к
матрице: A 2
1
Решение.
1. Вычислим определитель матрицы
1 1 1
А 2
1
1 5 0
1
1
2
1
1
1
1
2
1
1
определитель матрицы не равен
нулю, значит обратная матрица
существует
2. Находим алгебраические дополнения элементов
матрицы
A11 1
1 1
A12 1
2 1
1 1
1 2
A13 1
1 3
1 2
1 2
2 1
1 1
1
A21 1
2 1
1 1
1
2
1 1
3 A22 1
1 A23 1
1 1
2 2
2 3
1
1 2
1
3 A31 1
1
2
3 1
1 1
2
1
1
A32 1
1 1
A33 1
1 1
3 2
3 3
2 1
2
1
1
3
2. Найдём алгебраические дополнения элементов матрицы и
составим обратную матрицу
1 3
A11 1 1 1
4
1 1
2 3
A12 1 1 2
1
1 1
2 1
1
3
A13 1
3
1 1
Обратная матрица
3. Решение системы
2 1
3 1 2 1 5
A21 1 2 1
3 A31 1
1 3
1 1
1 1
3 2 1 1 5
A22 1 2 2
2 A32 1
2 3
1 1
3 3 1 2 5
1 2
2
3
A
1
33
A23 1
1
2 1
1 1
5
4 3
1
1
A
2 5
1
5
3
1
5
4
1
1
X A B
1
5
3
x1 1, x2 1, x3
3
2
1
1.
5 0
5 1
1
5 0
5 1
5
5 1
5 1
3. Метод Гаусса
Рассмотрим систему m линейных уравнений c n неизвестными:
a11 x1 a12 x2 … a1n xn b1
a x a x … a x b
21 1 22 2
2n n
2
…………………………………..
am1 x1 am 2 x2 … amn xn bm
Apа сши р
a11 a12 a13 a1n
a21 a22 a23 a2 n
A
B
основная м атрица
м атрица св ободных
систем
( а ) ы чл( bенов
a a a a
)
ij
i
mn
m1 m 2 m 3
b1
— расширенная
b2
матрица
системы
bm
Цель: с помощью элементарных эквивалентных преобразований
получить трапецивидную (треугольную) матрицу
a11 a12 a13 a14 b1
a21 a22 a23 a24 b2
a
31 a32 a33 a34 b3
c11 c12 c13 c14 d1
0 c22 c23 c24 d 2
0 0 c
c
d
33
34
3
Пример.
Решить систему методом Гаусса
Решение:
5 x 2 y 4 z 5
2 x 3 y z 7
3 x y 2 z 3
5 2 4 5 ( 2) 1 8 6 9 ( 2)
( 3)
~
Римскими
2 3 1 7
2 3 1 7
цифрами I, II, III
~
3 1 2 3 обозначим 3 1 2
3
номера строк
1
~
8
0 19
0 4
6
9
1 8
0 19 13 25
0 23 16 30
системы
9 ( 5) 1 8 6 9 1 4 8 6 9
~ 0 1 2 0
~
13 25
0
0 1 2
0 0 5 5
0 4 3 5
3
5
6
Восстановим систему:
x 8 y 6 z 9
y 2z 0
5z 5
x 9 8 y 6 z
y 2z 2
z 1
x 1 y 2 z 1
x 9 16 6 1
y 2
z 1
18.
Исследование систем линейных уравненийТеорема Кронекера — Капелли. Для того, чтобы системалинейных алгебраических уравнений была совместна (имела
решение), необходимо и достаточно, чтобы ранг расширенной
матрицы системы равнялся рангу матрицы коэффициентов:
r ( Ap) r ( A)
r ( Ap) r ( A) , то система несовместна (не имеет
Если
решений).
r ( Ap) r ( A) n
Если
(числу неизвестных), то система
совместна и определенна (имеет единственное решение).
r ( Ap) r ( A) n
Если
, то система совместна
неопределенна (имеет бесконечное множество решений):
и
Бесконечное множество решений:
r ( Ap) r ( A) n
Система имеет r базисных переменных и n – r свободных
переменных.
Общее решение системы запишется в виде:
x1(t1,…, tn r )
…
xr (t1,…, tn r )
X
t1
…
tn r
Базисные переменные,
зависящие от свободных
переменных
Свободные
переменные
t1 xr 1; t 2 xr 2; tn r xn
20.
Ранг матрицыРассмотрим прямоугольную матрицу размерностью (m x n).a11 a12
a 21 a 22
a
a 32
31
am1 am 2
a13
a 23
a 33
am3
a1n
a 2n
a3n
amn
M2
a12
a1n
a32
a3 n
Выделим в этой матрице k произвольных строк и k
произвольных столбцов. Элементы матрицы А, стоящие
на пересечении выделенных строк и столбцов,
образуют определитель k — того порядка.
Минором
k-го
порядка
матрицы
А
называют
определитель,
полученный
из
А
выделением
произвольных k строк и k столбцов.
Рангом матрицы называется наибольший порядок
отличного от нуля минора этой матрицы.
2 3 4 5
A 0 2 3 1
0 2 2 4
2
Матрица А имеет 4 минора 3 — его порядка,
например:
18 миноров 2 — го порядка, например:
2
3
0 2
3
4
0 2 3 20
0
4
12 миноров 1 — го порядка – сами элементы.
Наибольший порядок отличного от нуля минора
этой матрицы равен 3, поэтому: r ( A ) 3
2
2
Базисным минором называется определитель, порядок
которого равен рангу матрицы. Он может быть не
единственным.
Теорема.
Эквивалентные преобразования не меняют ранга матрицы.
Эквивалентные преобразования:
Умножение или деление элементов одного ряда на одно и то же
число, не равное нулю
Перестановка местами двух рядов
Прибавление к элементам ряда
параллельного
ряда,
умноженного
множитель
Вычеркивание нулевого ряда
элементов другого
на
произвольный
Ранг матрицы равен числу ненулевых строк матрицы,
приведенной к треугольному виду.
1 3 2
A 0 5 4 ~
1 7 6
1 3 2 ( 2)
~
0 5 4
0 10 8
1 3 2
0 5 4
0 0 0
r( A ) 2
Два ряда матрицы называются линейно зависимыми,
если их линейная комбинация с коэффициентами, не все
из которых равны нулю, дает нулевой ряд.
В противном случае ряды называются линейно
независимыми.
Теорема.
Ранг матрицы равен числу линейно независимых рядов
Пример. Решить систему:
Решение
x1
x2
x3
2 x1 2 x2 2 x3 4
x x x 0
1
2
3
3 x1 3 x2 x3 2
x1 x2 3 x3 2
2
:
2
2 2 2 4
1
1
1
2
( 3) 1 1 1
2 2 V
A p 1 1 1 0 ~ 1 1 1 0 V
0 0 2 2
3 3 1 2
~
0 0 4 4
3 3 1 2
~
1 1 3 2
0 0 4
4
1
1
3
2
x1 x2 x3
2
1 1 1
2
1 1 1
r ( Ap) r ( A) 2 совместна
0 0 2 2
0 0 — 2 2
0 0 0
0
r ( Ap) n неопределенна
0
0 0 0
2 базисных переменных, т. к. r 2 например, x1 , x3
1 свободная переменная, т.к. n r 3 2 1 например, x2 t
Восстановим систему:
x1 1 t
x
2
t
x
1
t
x
t
x
2
1
1
3
3
x2 t
2
x
2
x
1
3
3
x 1
3
25. Однородные системы линейных уравнений
a11 x1 a12 x2 a1n xn 0a x a x a x 0
21 1
22 2
2n n
am1 x1 am 2 x2 amn xn 0
Однородная система всегда имеет решение:
x1 0 x2 0 xn 0
— тривиальное решение.
Оно является единственным решением системы в случае, когда
Если r ( A)
решений.
n , то система имеет бесконечное множество
Решить однородную систему уравнений:
x1 x2 5 x3 7 x4 0
2 x1 x2 4 x3 x4 0
3 x 2 x x 6 x 0
1
2
3
4
1 1 5 7
0 1 14 15
0 1 14 15
1 1 5 7
0 1 14 15
n r 4 2 2
1 1 5 7
1
2 1 4
3 2 1 6
~
1 1 5 7
0 1 14 15
0 0
0
0
r ( A) 2
n 4
( 2)
( 3)
~
( 1)
~
множество решений
— число свободных переменных
English Русский Правила
1 | Упростить | квадратный корень из s квадратный корень из s^7 | |
2 | Упростить | кубический корень из 8x^7y^9z^3 | |
3 | Упростить | arccos(( квадратный корень из 3)/2) | |
4 | Risolvere per ? | sin(x)=1/2 | |
5 | Упростить | квадратный корень из s квадратный корень из s^3 | |
6 | Risolvere per ? | cos(x)=1/2 | |
7 | Risolvere per x | sin(x)=-1/2 | |
8 | Преобразовать из градусов в радианы | 225 | |
9 | Risolvere per ? | cos(x)=( квадратный корень из 2)/2 | |
10 | Risolvere per x | cos(x)=( квадратный корень из 3)/2 | |
11 | Risolvere per x | sin(x)=( квадратный корень из 3)/2 | |
12 | График | g(x)=3/4* корень пятой степени из x | |
13 | Найти центр и радиус | x^2+y^2=9 | |
14 | Преобразовать из градусов в радианы | 120 град. |