Решить пример по алгебре: Mathway | Решение алгебраических задач

Содержание

photomatch онлайн решать

Вы искали photomatch онлайн решать? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и алгебра решение по фото, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «photomatch онлайн решать».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как photomatch онлайн решать,алгебра решение по фото,задачи решение по фото,калькулятор онлайн по фото,калькулятор онлайн фото,калькулятор по фото,калькулятор по фото онлайн,калькулятор по фотографии онлайн,калькулятор с камерой онлайн,калькулятор фото матч онлайн,калькулятор фото онлайн,математика по фото решение,математика решение по фото,математика решение по фото онлайн,математика фото решение,онлайн калькулятор по фото,онлайн калькулятор по фотографии,онлайн калькулятор с камерой,онлайн решение задач по фото,онлайн решение по картинке,онлайн решение по фото,онлайн решение примеров по фото,онлайн фото калькулятор,по фото решить пример,по фото решить уравнение,приложение для решение примеров по алгебре,приложение для решения примеров,приложение для решения примеров по алгебре,приложение для решения примеров по математике,приложения для решения примеров,решение задач онлайн по фото,решение задач онлайн по фотографии,решение задач по фото,решение задач по фото онлайн,решение задач по фотографии онлайн,решение задач фото,решение задачи по фото,решение математики по фото,решение онлайн по картинке онлайн,решение онлайн по фото,решение онлайн по фото математика,решение по картинке онлайн,решение по математике по фото,решение по фото алгебра,решение по фото математика,решение по фото математика онлайн,решение по фото онлайн,решение по фото онлайн математика,решение по фотографии онлайн,решение по фотографии онлайн алгебра,решение примера по фото,решение примеров онлайн по фото,решение примеров по фото,решение примеров по фото онлайн,решение примеров по фото онлайн бесплатно,решение примеров по фотографии,решение примеров фото,решение уравнений онлайн по фото,решение уравнений по фото,решение уравнений по фото онлайн,решение уравнений фото,решение фото задач,решение фото математика,решить задачу по фото,решить по фото задачу,решить пример онлайн по фото,решить пример по фото,решить пример по фото онлайн,решить уравнение онлайн по фото,решить уравнение по фото,решить уравнение по фото онлайн,сфоткать задание и решить,фантомас онлайн калькулятор,фото калькулятор онлайн,фото калькулятор онлайн без скачивания,фото математика онлайн,фото математика решение,фото матч калькулятор онлайн,фото решение задач,фото решение математика,фото решение онлайн,фото решение примеров,фото решение уравнений.

На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и photomatch онлайн решать. Просто введите задачу в окошко и нажмите «решить» здесь (например, задачи решение по фото).

Где можно решить любую задачу по математике, а так же photomatch онлайн решать Онлайн?

Решить задачу photomatch онлайн решать вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

‎App Store: Photomath

Научитесь решать математические задачи, проверять домашние задания и готовиться к предстоящим экзаменам и экзаменам ACT / SAT с помощью самого популярного в мире учебного ресурса по математике. Более 100 миллионов загрузок и миллиарды решенных задач каждый месяц!

КАК ЭТО РАБОТАЕТ
С помощью камеры своего устройства мгновенно отсканируйте печатный текст И рукописные математические задачи или введите и отредактируйте уравнения в нашем научном калькуляторе. Каждую математическую задачу Photomath разбивает на простые, понятные шаги, чтобы Вы могли хорошо понять основные концепции и уверенно отвечать на вопросы.

КЛЮЧЕВЫЕ ОСОБЕННОСТИ
Сканирование (печатного) учебника И рукописных задач
Научный калькулятор
Пошаговые объяснения для каждого решения
Несколько методов решения
Поддержка более 30 языков
Интерактивные графики

МАТЕМИЧЕСКИЕ ТЕМЫ
Базовая математика / начала алгебры: арифметика, целые числа, дроби, десятичные числа, степени, корни, факторы
Алгебра: линейные уравнения / неравенства, квадратные уравнения, системы уравнений, логарифмы, функции, матрицы, графики, полиномы
Тригонометрия / начала математического анализа: тождества, конические сечения, векторы, матрицы, комплексные числа, последовательности и ряды, логарифмические функции
Исчисления (математический анализ): пределы, производные, интегралы, построение кривых
Статистика: комбинации, факториалы

Наша собственная команда ветеранов преподавателей математики также сотрудничает с учителями по всему миру, что дает возможность гарантировать использование наиболее эффективных методик обучения в наших математических системах.

Представлено в Huffington Post, Forbes, TIME, CNN, EdSurge, Guiding Tech, The Verge, TechCrunch и других.

Предложения, комментарии или вопросы? Напишите нам по адресу [email protected]

Подписывайтесь на нас!
Facebook: facebook.com/Photomathapp
Twitter: @Photomath

Photomath есть и всегда будет бесплатным, но Вы можете улучшить свое обучение, перейдя на Photomath Plus. Photomath Plus предлагает решения для всех задач и примеров из учебников! В настоящее время предложение действительно только для США и для конкретных учебников.

Оплата будет снята с Вашей учетной записи Apple ID при подтверждении покупки. Подписка продлевается автоматически, если она не отменена как минимум за 24 часа до окончания текущего периода. За 24 часа до окончания текущего периода с Вашего счета будет снята плата за продление. Вы можете управлять своими подписками и отменять их, перейдя в настройки своей учетной записи в App Store после покупки. Предложения и цены могут быть изменены без предварительного уведомления.

Дополнительная информация:
Условия использования: https://photomath.com/en/termsofuse
Политика конфиденциальности: https://photomath.com/en/privacypolicy

  Поиск Поиск
  • Школьный помощник
    • математика 5 класс
    • математика 6 класс
    • алгебра 7 класс
    • алгебра 8 класс
    • геометрия 7 класс
    • русский язык 5 класс
    • русский язык 6 класс
    • русский язык 7 класс
  • математика
  • алгебра
  • геометрия
  • русский язык

«»

следующая предыдущая вернуться на предыдущую страницу

Такой страницы нет !!!

  • Популярные запросы
    • Обстоятельство
    • Дополнение
    • Определение
    • Деление дробей
    • Математика 5 класс
    • Русский язык 6 класс
    • Математика 6 класс
    • Алгебра 8 класс
    • Русский язык 5 класс
    • Русский язык 7 класс
    • Алгебра 7 класс
    • Наименьшее общее кратное
    • Наибольший общий делитель. Взаимно простые числа
    • Деление и дроби
    • Доли. Обыкновенные дроби
    • Буквы о и а в корнях -кос- / -кас-; -гор- / — гар-; -клан- / -клон-; -зар- / -зор-
    • Буквы о и а в корнях -кос- / -кас-; -гор- / — гар-; -клан- / -клон-; -зар- / -зор-
    • Окружность и круг
    • Квадратный корень из неотрицательного числа
    • Антонимы. Синонимы
    • Десятичная запись дробных чисел
    • Буквы о – а в корнях -лаг- / -лож-, -рос- / -раст- (-ращ-)

Все онлайн калькуляторы для решения задач · Контрольная Работа РУ · Теперь вы можете задать любой вопрос!

Кусочно-заданная функция

Укажите кусочно-заданную функцию и перейдите к нужному вам сервису, например, к одному из: нахождению интеграла, производной, исследованию и построение графика и др.

Решение уравнений

Это сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике.

Решение пределов

Этот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя.

Производная функции

Это сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции.

Разложение в ряд

Здесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда.

Системы уравнений

Позволяет решать системы линейных уравнений методом Крамера, методом Гаусса, а также вообще любые системы уравнений.

Решение неравенств

Решает неравенство, а также изображает решённое неравенство на графике.

Решение интегралов

Это сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные.

График функции

Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции.

Решение систем неравенств

Вы можете попробовать решить любую систему неравенств с помощью данного калькулятора систем неравенств.

Решение задач с помощью уравнений в курсе алгебры 7 класса.

 

Учебник для учащихся 7 класса общеобразовательных учреждений Ю. Н. Макарычев,  Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского.  Алгебра.  7 класс -М.: Просвещение, 2017г.

  1.  Тема: Решение задач с помощью уравнений.
  2. Классифицировать все текстовые и логические задачи.
  3. Проанализировать особенности решения каждой задачи.

Классификация задач

Содержание

Основные виды учебной  деятельности

обучающихся

Простые и определённые по известным формулам

Алгоритм решения задач с помощью составления уравнений.

Запоминают алгоритм решения задач с помощью составления уравнений.

Составные и с перестановкой в  условии

Свойства урав­нений, приме­няемые при ре­шении.

Учатся ре­шать задачи с помощью ли­нейных урав­нений с одной переменной.

Движение объекта  (по формуле нахождения расстояния)

Задачи на движение .

Учатся решать задачи с помощью уравнений на движение согласно S=Vt.

4)Использовать  способы применения ИКТ: Презентации  илюстрирующая задачу.

Комплект задач для  стартовой диагностики.

1. Составьте равенство, используя условие, и найдите значение переменной:

     а) Одна деталь весит х кг, а другая 4х кг. Вместе эти детали весят 55 кг.

     б) Длина прямоугольника равна 2х см, ширина х см, а периметр равен     156 см.

2. Отцу и сыну вместе 60 лет. Сколько лет каждому, если отец в 3 раза  старше сына.

3. В первый день продали на 4 телевизора меньше, чем во второй. Сколько телевизоров продали в каждый день, если известно, что всего продали 18 телевизоров.

Комплект задач для  промежуточной диагностики.

  1. За два дня на элеватор отправили  574 т зерна, причем в первый день в 1,8 раза меньше, чем во второй. Сколько тонн зерна было отправлено в первый день и сколько во второй?
  2. За три дня было продано 830 кг апельсинов. Во второй день продали на 30 кг меньше, чем в первый, а в третий – в 3 раза больше, чем во второй. Сколько килограммов апельсинов было продано в первый день
  3. Яблонь в саду на 12 деревьев меньше, чем груш, и в 2 раза меньше, чем вишен. Сколько посажено яблонь, сколько груш и сколько вишен, если всего в саду 100 деревьев
  4. На нижней полке было в 4 раза книг меньше, чем на верхней. После того как на нижнюю полку переставили с верхней  27 книг, на полках книг оказалось поровну. Сколько книг было на каждой полке первоначально

 

Комплект задач для  итоговой  диагностики.

 

  1. На нижней полке было в 3 раза книг болььше, чем на верхней. После того как на верхнюю полку переставили с нижней  15 книг, на полках книг оказалось поровну. Сколько книг было на каждой полке первоначально?
  2.  На первом катере было в 2 раза больше людей, чем на втором. Когда на ближайшей пристани с первого катера сошли 98 человек, а со второго 16 человек, то на обоих катерах людей стало поровну. Сколько человек было на каждом катере первоначально?
  3. Турист шел от турбазы до станции со скоростью 6 км/ч. Если бы он шел  со скоростью 4 км/ч, то затратил бы на дорогу на 1 час больше. Чему равно расстояние от турбазы до станции?
  4. Из поселка в город едет автомобиль. Если он увеличит скорость на 8  км/ч, то приедет в город через 6 часов. Если же автомобиль уменьшит  скорость на 12 км/ч, то приедет в город через 8 часов. С какой скоростью движется автомобиль?

Ресурс: http://videouroki. net

 

 

6/2(2+1)= Как решается этот проклятый пример: denis_demakhin — LiveJournal

Уже давно я увлечен этим примером:

Делал по нему опросы

И сейчас попробую обосновать мою новую точку зрения, которая теперь выглядит так:


Дело в том, что между алгеброй и арифметикой есть разница в порядке действий:

Теперь понятно, почему инженерный калькулятор показывает ответ: 1.

Он не сломался. Он алгебраический.

Алгебраический калькулятор считает по правилам алгебры.

Осталось понять, алгебраический это пример или арифметический. От этого будет зависеть ответ.

Букв в примере нет, однако, в нем есть пропущенный знак умножения перед скобкой:

Случаи возможного пропуска знака умножения:


  1. Между буквенными множителями;

  2. Между числовым и буквенным множителем;

  3. Между множителем и скобкой;

  4. Между выражениями в скобках.

Тут подходит только правило №3. И тогда пропущенный знак умножения равносилен скобкам, то есть 2(2+1) = (2*(2+1)), следуя правилам из скана выше.

И получается, что если выражение (2+1) заменить на икс, то написание 6/2Х читается как «шесть, разделить на два икса».

Тогда ответ: 1.

Но почему тогда самая умная штука на Земле — Гугл-поисковик считает, что ответ 9?

Потому что и Гугл и смартфон считают по арифметическим правилам.

Но вот тут есть тонкий момент. Арифметические правила должны, по-правильному то, действовать при указании знака умножения. Так, как я написал здесь:

Тут уже нет оснований применять правила алгебры, в которых пропущенный знак умножения считается неразрывным. И ответ получается: 9.

Вывод:

Всё зависит от того, алгебра это или арифметика.

Еще интересные штуки:

Задачи, ломающие мозг (с ответами, спрятанными под спойлер)

Тренировка ума развивальщика предприятий

Подписывайся, мыслитель!






Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра

Схема метода Феррари

      Целью данного раздела является изложение метода Феррари, с помощью которого можно решать уравнения четвёртой степени

a0x4 + a1x3 + a2x2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем

      Метод Феррари состоит из двух этапов.

      На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

      На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Приведение уравнений 4-ой степени

      Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x4 + ax3 + bx2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

      Сделаем в уравнении (2) замену

(3)

где y – новая переменная.

      Тогда, поскольку

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

      Если ввести обозначения

то уравнение (4) примет вид

y4 + py2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

      Первый этап метода Феррари завершён.

Разложение на множители. Кубическая резольвента

      Добавив и вычитая в левой части уравнения (5) выражение

2sy2 + s2,

где s – некоторое число, которое мы определим чуть позже, из (5) получим

      Следовательно, уравнение (5) принимает вид

      Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

(7)

то уравнение (6) примет вид

      Избавляясь от знаменателя, уравнение (7) можно переписать в виде

или, раскрыв скобки, — в виде

(9)

      Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

      Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

      Действительно,

      Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

(10)

а также квадратное уравнение

(11)

      Вывод метода Феррари завершен.

Пример решения уравнения 4-ой степени

      Пример. Решить уравнение

x4 + 4x3 – 4x2
– 20x – 5 = 0.
(12)

      Решение. В соответствии с (3) сделаем в уравнении (12) замену

      Поскольку

x4 + 4x3 – 4x2 – 20x – 5 =
= (y – 1)4 + 4(y – 1)3
– 4(y – 1)2 – 20(y – 1)– 5 =
= y4 – 4y3 + 6y2 – 4y + 1 +
+ 4y3 – 12y2 + 12y – 4 –
– 4y2 + 8y – 4 –
– 20y + 20 – 5 =
= y4 – 10y2 – 4y + 8,

то в результате замены (13) уравнение (12) принимает вид

y4 – 10y2 – 4y + 8 = 0.(14)

      В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10,      q = – 4,       r = 8.(15)

      В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

2s3 + 10s2 – 16s – 84 = 0,

которое при сокращении на 2 принимает вид:

s3 + 5s2 – 8s – 42 = 0.(16)

      Проверяя, какой из делителей свободного члена уравнения (16) является целым корнем этого уравнения, находим, что целым корнем кубической резольвенты является число

      Подставляя значения (15) и (17) в формулу (10), получаем уравнение

y2 – 2y – 4 = 0,

корни которого имеют вид:

(18)

      Подставляя значения (15) и (17) в формулу (11), получаем уравнение

y2 + 2y – 2 = 0,

корни которого имеют вид:

(19)

      В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Ответ.

      Замечание. При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y4 – 10y2 – 4y + 8 =
= (y2 – 2y – 4) (y2 +
+ 2y – 2).
(20)

      Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

 

Алгебраические выражения — объяснения и примеры

Алгебра — интересный и увлекательный раздел математики, в котором числа, фигуры и буквы используются для выражения задач. Независимо от того, изучаете ли вы алгебру в школе или сдаете какой-то тест, вы заметите, что почти все математические задачи представлены словами.

Следовательно, необходимость переводить письменные текстовые задачи в алгебраические выражения возникает тогда, когда нам нужно их решить.

Большинство задач по алгебраике слов состоят из рассказов или случаев из реальной жизни.Другие — простые фразы, такие как описание математической задачи. Из этой статьи вы узнаете, как написать алгебраических выражений из простых задач со словами, а затем перейти к слегка сложным задачам со словами.

Что такое алгебраическое выражение?

Многие люди попеременно используют алгебраические выражения и алгебраические уравнения, не подозревая, что это совершенно разные термины.

Алгебраика — это математическая фраза, в которой две стороны фразы соединены знаком равенства (=).Например, 3x + 5 = 20 — это алгебраическое уравнение, где 20 представляет собой правую часть (RHS), а 3x +5 представляет собой левую часть (LHS) уравнения.

С другой стороны, алгебраическое выражение — это математическая фраза, в которой переменные и константы объединяются с помощью операционных символов (+, -, × & ÷). В алгебраическом символе отсутствует знак равенства (=). Например, 10x + 63 и 5x — 3 являются примерами алгебраических выражений.

Давайте рассмотрим терминологию, используемую в алгебраических выражениях:

  • Переменная — это буква, значение которой нам неизвестно.Например, x — это наша переменная в выражении: 10x + 63.
  • Коэффициент — это числовое значение, используемое вместе с переменной. Например, 10 — это переменная в выражении 10x + 63.
  • Константа — это термин, имеющий определенное значение. В данном случае 63 — это константа в алгебраическом выражении, 10x + 63.

Существует несколько типов алгебраических выражений, но основной тип включает:

  • Мономиальное алгебраическое выражение

Этот тип выражения имеет только один член, например, 2x, 5x 2 , 3xy и т. Д.

Алгебраическое выражение, содержащее два, в отличие от членов, например, 5y + 8, y + 5, 6y 3 + 4 и т. Д.

Это алгебраическое выражение с более чем одним членом и ненулевыми показателями переменных. Пример полиномиального выражения: ab + bc + ca и т. Д.

Другие типы алгебраических выражений:

Числовое выражение состоит только из чисел и операторов. В числовое выражение переменная не добавляется. Примеры числовых выражений: 2 + 4, 5-1, 400 + 600 и т. Д.

Это выражение содержит переменные вместе с числами, например 6x + y, 7xy + 6 и т. Д.

Как решить алгебраическое выражение?

Цель решения алгебраического выражения в уравнении — найти неизвестную переменную. Когда два выражения приравниваются, они образуют уравнение, и поэтому становится легче найти неизвестные члены.

Чтобы решить уравнение, поместите переменные с одной стороны, а константы — с другой. Вы можете изолировать переменные, применяя арифметические операции, такие как сложение, вычитание, умножение, деление, квадратный корень, кубический корень и т. Д.

Алгебраическое выражение всегда взаимозаменяемо. Это означает, что вы можете переписать уравнение, поменяв местами LHS и RHS.

Пример 1

Рассчитайте значение x по следующему уравнению

5x + 10 = 50

Решение

Учитывая уравнение как 5x + 10 = 50

  • Изолируйте переменные и константы;
  • Вы можете сохранить переменную на левой стороне, а константы — на правой.

5x = 50-10

5x = 40

Разделим обе части на коэффициент переменной;

х = 40/5 = 8

Следовательно, значение x равно 8.

Пример 2

Найдите значение y, когда 5y + 45 = 100

Решение

Изолировать переменные от констант;

5лет = 100-45

5лет = 55

Разделим обе части на коэффициент;

г = 55/5

г = 11

Пример 3

Определите значение переменной в следующем уравнении:

2x + 40 = 30

Решение

Отделить переменные от констант;

2x = 30-40

2x = -10

Разделите обе стороны на 2;

х = -5

Пример 4

Найдите t, когда 6t + 5 = 3

Решение

Отделить константы от переменной,

6т = 5-3

6т = -2

Разделим обе части на коэффициент,

т = -2/6

Упростить дробь,

т = -1/3

Практические вопросы

1. Если x = 4 и y = 2, решите следующие выражения:

а. 2лет + 4

г. 10х + 40л;

г. 15лет — 5x

г. 5x + 7

e. 11лет + 6

ф. 6x — 2

г. 8лет — 5

ч. 60 — 5x — 2 года

2. Сэм кормит свою рыбу одинаковым количеством корма (пусть равным x ) трижды в день. Сколько еды он накормит рыбок в неделю?

3. Нина испекла 3 кекса для сестры и по 2 кекса для каждой подруги (пусть равняется x ).Сколько всего кексов она испекла?

4. У Джонса на ферме 12 коров. Большинство коров дают 30 литров молока в день (пусть равно x ). Сколько коров не дают 30 литров молока в день?

Предыдущий урок | Главная страница | Следующий урок

Решение уравнений — методы и примеры

Понимание того, как решать уравнения, — один из самых фундаментальных навыков, которым может овладеть каждый студент, изучающий алгебру. Решения для большинства алгебраических выражений ищутся, применяя этот навык.Следовательно, учащиеся должны лучше понимать, как проводить операцию.

Эта статья научит решить уравнение , выполнив четыре основных математических операции: сложение , вычитание , умножение и деление .

Уравнение обычно состоит из двух выражений, разделенных знаком, обозначающим их взаимосвязь. Выражения в уравнении могут быть связаны знаком равенства (=), меньше (<), больше (>) или комбинацией этих знаков.

Как решать уравнения?

Решение алгебраического уравнения — это обычно процедура манипулирования уравнением. Переменная остается на одной стороне, а все остальное — на другой стороне уравнения.

Проще говоря, решить уравнение — значит изолировать его, сделав его коэффициент равным 1. Что бы вы ни делали с одной стороной уравнения, сделайте то же самое с противоположной стороной уравнения.

Решите уравнения, добавив

Давайте рассмотрим несколько примеров ниже, чтобы понять эту концепцию.

Пример 1

Решить: –7 — x = 9

Решение

–7 — x = 9

Добавьте 7 к обеим частям уравнения.
7 — х + 7 = 9 + 7
— х = 16

Умножьте обе стороны на –1
x = –16

Пример 2

Решить 4 = x — 3

Решение

Здесь переменная находится справа в уравнении.Добавьте 3 к обеим сторонам уравнения

4+ 3 = х — 3 + 3

7 = х

Найдите решение, подставив ответ в исходное уравнение.

4 = х — 3

4 = 7–3

Следовательно, x = 7 — правильный ответ.

Решение уравнений вычитанием

Давайте рассмотрим несколько примеров ниже, чтобы понять эту концепцию.

Пример 3

Решить относительно x in x + 10 = 16

Решение

х + 10 = 16

Вычтем 7 из обеих частей уравнения.

х + 10 — 10 = 16 — 10

х = 6

Пример 4

Решите линейное уравнение 15 = 26 — y

Решение

15 = 26 — y

Вычтем 26 из обеих частей уравнения
15-26 = 26-26 -y
-11 = -y

Умножьте обе стороны на –1

г = 11

Решение уравнений с переменными с обеих сторон путем добавления

Давайте рассмотрим несколько примеров ниже, чтобы понять эту концепцию.

Пример 4

Рассмотрим уравнение 4x –12 = -x + 8.

Поскольку уравнение имеет две стороны, вам необходимо выполнить одну и ту же операцию с обеими сторонами.

Добавьте переменную x к обеим сторонам уравнения

⟹ 4x –12 + x = -x + 8 + x.

Упростить

Упростите уравнение, собрав одинаковые члены с обеих сторон уравнения.

5x — 12 = 8.

Теперь уравнение имеет только одну переменную с одной стороны.

Добавьте константу 12 к обеим частям уравнения.

Константа, прикрепленная к переменной, добавляется с обеих сторон.

⟹ 5x — 12 +12 = 8 + 12

Упростить

Упростите уравнение, объединив похожие члены. И 12.

⟹ 5x = 20

Теперь разделим на коэффициент.

Деление обеих частей на коэффициент означает простое деление всего на число, присвоенное переменной.

Решение этого уравнения, следовательно,

х = 4.

Проверьте свое решение

Проверьте правильность решения, подставив ответ в исходное уравнение.

4x –12 = -x + 8

⟹ 4 (4) –12 = -4 + 8

4 = 4

Значит, решение верное.

Пример 5

Решить -12x -5-9 + 4x = 8x — 13x + 15-8

Решение

Упростите, объединив похожие термины

-8x-14 = -5x +7

Добавьте 5x с обеих сторон.

-8x + 5x -14 = -5x + 5x + 7

-3w -14 = 7

Теперь прибавьте 14 к обеим частям уравнения.

— 3x — 14 + 14 = 7 + 14

-3x = 21

Разделите обе части уравнения на -3

-3x / -3 = 21/3

х = 7.

Решение уравнений с переменными с обеих сторон путем вычитания

Давайте рассмотрим несколько примеров ниже, чтобы понять эту концепцию.

Пример 6

Решите уравнение 12x + 3 = 4x + 15

Решение

Вычтем 4x из каждой части уравнения.

12x-4x + 3 = 4x — 4x + 15

6x + 3 = 15

Вычтите константу 3 с обеих сторон.

6x + 3–3 = 15–3

6x = 12

Разделим на 6;

6x / 6 = 12/6

х = 2

Пример 7

Решите уравнение 2x — 10 = 4x + 30.

Решение

Вычтем 2x из обеих частей уравнения.

2x -2x -10 = 4x — 2x + 23

-10 = 2x + 30

Вычтем обе части уравнения на константу 30.

-10-30 = 2x + 30-30

— 40 = 2x

Теперь разделим на 2

-40/2 = 2x / 2

-20 = х

Решение линейных уравнений с умножением

Линейные уравнения решаются умножением, если при написании уравнения используется деление. Как только вы заметите, что переменная делится, вы можете использовать умножение для решения уравнений.

Пример 7

Решить x / 4 = 8

Решение

Умножьте обе части уравнения на знаменатель дроби,

.

4 (x / 4) = 8 x 4

х = 32

Пример 8

Решите -x / 5 = 9

Решение

Умножьте обе стороны на 5.

5 (-x / 5) = 9 x 5

-x = 45

Умножьте обе стороны на -1, чтобы коэффициент переменной был положительным.

х = — 45

Решение линейных уравнений с делением

Для решения линейных уравнений путем деления обе части уравнения делятся на коэффициент переменной. Давайте посмотрим на приведенные ниже примеры.

Пример 9

Решить 2x = 4

Решение

Чтобы решить это уравнение, разделите обе части на коэффициент переменной.

2x / 2 = 4/2

х = 2

Пример 10

Решите уравнение −2x = −8

Решение

Разделите обе части уравнения на 2.

−2x / 2 = −8/2

−x = — 4

Умножая обе части на -1, получаем;

х = 4

Как решать алгебраические уравнения, используя свойство дистрибутивности?

Решение уравнений с использованием свойства распределения влечет за собой умножение числа на выражение в круглых скобках.Затем подобные термины объединяются, а затем выделяется переменная.

Пример 11

Решите 2x — 2 (3x — 2) = 2 (x –2) + 20

Решение

2x — 2 (3x — 2) = 2 (x –2) + 20

Используйте свойство распределения для удаления скобок
2x — 6x + 4 = 2x — 4 + 20
— 4x + 4 = 2x + 16

Сложить или вычесть с обеих сторон

–4x + 4 — 4 –2x = 2x + 16 — 4 –2x
–6x = 12
x = –2

Проверьте ответ, подставив решение в уравнение.

2x — 2 (3x — 2) = 2 (x –2) + 20

(2 * –2) — 2 ((3 * –2) –2) = 2 (–2 –2) + 20
12 = 12

Пример 12

Решите относительно x в уравнении -3x — 32 = -2 (5 — 4x)

Решение

Примените свойство distributive, чтобы убрать круглые скобки.

–3x — 32 = — 10 + 8x

Складывая обе части уравнения в 3 раза, получаем

-3x + 3x — 32 = — 10 + 8x + 3x

= — 10 + 11x = -32

Складываем обе части уравнения на 10.

— 10 + 10 + 11x = -32 + 10

11x = -2

Разделите все уравнение на 11.

11x / 11 = -22/11

х = -2

Как решать уравнения с дробями?

Не паникуйте, когда вы видите дроби в алгебраическом уравнении. Если вы знаете все правила сложения, вычитания, умножения и деления, это легкий кусок пирога для вас.

Чтобы решить уравнения с дробями, вам нужно преобразовать их в уравнение без дробей.

Этот метод также называется «очистка от фракций ».

При решении уравнений с дробями выполняются следующие шаги:

  • Определите наименьшее общее кратное знаменателей (LCD) всех дробей в уравнении и умножьте на все дроби в уравнении.
  • Изолировать переменную.
  • Упростите обе части уравнения, применяя простые алгебраические операции.
  • Примените свойство деления или умножения, чтобы коэффициент переменной был равен 1.

Пример 13

Решить (3x + 4) / 5 = (2x — 3) / 3

Решение

ЖК-дисплей 5 и 3 равен 15, поэтому умножьте оба значения
(3x + 4) / 5 = (2x — 3) / 3

{(3x + 4) / 5} 15 = {(2x — 3) / 3} 15

9x +12 = 10x -15

Изолировать переменную;

9x -10x = -15-12

-x = -25

х = 25

Пример 14

Решите относительно x 3 / 2x + 6/4 = 10/3

Решение

ЖК-дисплей 2x, 4 и 3 — 12x

Умножьте каждую дробь в уравнении на ЖК-дисплей.

(3 / 2x) 12x + (6/4) 12x = (10/3) 12x

=> 18 + 18x = 40x

Изолировать переменную

22x = 18

х = 18/22

Упростить

х = 9/11

Пример 15

Решите относительно x (2 + 2x) / 4 = (1 + 2x) / 8

Решение

ЖК-дисплей = 8

Умножьте каждую дробь на ЖК-дисплей,

=> 4 + 4x = 1 + 2x

Изолят x;

2x = -3

х = -1.5

Практические вопросы

1. Решите относительно x в следующих линейных уравнениях:

а. 10x — 7 = 8x + 13

г. х + 1/2 = 3

г. 0,2x = 0,24

г. 2х — 5 = х + 7

e. 11х + 5 = х + 7

2. Возраст Джареда в четыре раза старше его сына. Через 5 лет Джаред будет в 3 раза старше своего сына. Найдите настоящий возраст Джареда и его сына.

3. Стоимость 2-х пар брюк и 3-х рубашек — 705 долларов.Если рубашка стоит на 40 долларов меньше пары брюк, найдите стоимость каждой рубашки и брюк.

4. Лодка идет вверх по течению 6 часов, а вниз по течению — 5 часов. Рассчитайте скорость лодки в стоячей воде, учитывая, что скорость реки составляет 3 км / час.

5. Сумма цифр двузначного числа равна 7. Когда цифры меняются местами, полученное число на 27 меньше исходного. Найдите номер.

6. 10000 долларов распределено между 150 людьми.Если деньги достоинством 100 или 50 долларов. Подсчитайте количество денег каждого достоинства.

7. Ширина прямоугольника на 3 см меньше длины. Когда ширина и длина увеличиваются на 2, площадь прямоугольника изменяется на 70 см 2 больше, чем у исходного прямоугольника. Вычислите размеры исходного прямоугольника.

8. Числитель дроби 8 меньше знаменателя. Когда знаменатель уменьшается на 1, а числитель увеличивается на 17, дробь становится 3/2.Определите дробь.

9. Мой отец на 12 лет больше меня, чем в два раза. Через 8 лет возраст моего отца будет на 20 лет меньше меня, чем в 3 раза. Какого возраста сейчас мой отец?

Предыдущий урок | Главная страница | Следующий урок

Как решать алгебру

г = 24 — 4x
Пояснение:

Как показано в приведенном выше примере, мы вычисляем значение переменной из одного уравнения и подставляем его в другое.

Нам дано, что

у = 24 — 4х —— (1)
2x + y / 2 = 12 —— (2)

Здесь мы выбираем уравнение (1) для вычисления значения x. Поскольку уравнение (1) уже находится в самая упрощенная форма:

(Подставляя это значение y в уравнение (2), а затем решая для x дает)

2x + (24-4x) / 2 = 12 —— (2) (∵ y = 24 — 4x)
2x + 24 / 2- 4x / 2 = 12
2x + 12 — 2x = 12
12 = 12

Вы можете подумать, что это тот же сценарий, что обсуждался выше (24 = 24). Но ждать! Вы слишком рано пытаетесь сделать вывод. В предыдущем сценарии результат 24 = 24 был получен потому, что мы поместили значение переменной в то же уравнение, что и используется для его вычисления. Здесь мы этого не сделали.

Результат 12 = 12 имеет какое-то отношение к природе системы уравнений, которую мы дано.Независимо от того, какой метод решения вы можете использовать, решение системы линейных уравнения лежит в единственной точке, где их линии пересекаются. В этом сценарии две строки в основном одинаковы (одна линия над другой. На следующем рисунке показан этот сценарий.

Такая система называется зависимой системой уравнения. И решение такой системы — это вся линия (каждая точка на линии — это точка пересечения двух линий)

Следовательно, решением данной системы уравнений является вся строка: y = 24 — 4x

Другой возможный сценарий:

Подобно этому примеру, существует другой сценарий, в котором замена одной переменной в уравнение 2 nd приводит к результату, аналогичному показанному ниже:

23 = –46

или

5 = 34

Такой сценарий возникает, когда не существует решения данной системы уравнений. Т.е., когда две линии вообще не пересекаются ни в одной точке.

Следовательно, в случае такого результата, когда кажется, что ваши основные математические правила не работают, простой вывод заключается в том, что решения данной системы не существует. Такая система уравнений называется системой Несогласованная .

Решение алгебраических уравнений: определение и примеры — видео и стенограмма урока

Немного базовой терминологии

Математика с буквами — это просто расширение математики без букв. Алгебра просто упрощает обсуждение чего-то с неизвестной ценностью, и вам не нужно делать сумасшедшие утверждения, как мы только что сделали.

Математики согласились называть букву, которая используется для обозначения неизвестной величины, переменной . Чтобы сбить с толку, он называется переменной, даже если представляет собой одно конкретное число, как в случае с нашим примером уравнения. Пять — единственное число, которое делает равенство 3 x + 2 = 17 истинным. Но даже после того, как вы это узнаете, x по-прежнему называется переменной.

3 из 3 x + 2 = 17 называется коэффициентом, а 2 и 17 называются константами; мы можем назвать их постоянными членами. Любые термины, умноженные на одну и ту же переменную или комбинацию переменных, подобны терминам.3 y и 10 y похожи на термины, как и 3 xy и 17,23 xy . Сравните их с 3 x и 7 y , которые не похожи на термины и не могут быть объединены.

Теперь, когда мы разобрались с этим, давайте разберемся с алгебраическими уравнениями.

Алгебраическое уравнение: определение

Есть несколько правил, которые мы должны соблюдать:

  • Алгебраическое уравнение должно содержать переменную.
  • Переменная должна быть умножена на коэффициент, отличный от нуля.
  • Должен быть знак равенства.

Является ли наше уравнение 3 x + 2 = 17 алгебраическим уравнением?

Да! Он имеет переменную, умноженную на ненулевой коэффициент (3), и имеет знак равенства, поэтому он соответствует нашим требованиям.

Решение уравнений с одной переменной

Решение алгебраического уравнения просто означает манипулирование уравнением так, чтобы переменная сама по себе находилась на одной стороне уравнения, а все остальное — на другой стороне уравнения.Как только все остальное упростится, уравнение решено.

Самым простым алгебраическим уравнением, которое вы могли бы иметь, было бы что-то вроде x = 5, которое одновременно является алгебраическим уравнением и собственным решением.

Давайте попробуем что-нибудь посложнее: y + 5 = 10.

Как мы можем получить y отдельно? Да ну избавься от 5 конечно! Только не все так просто. Стороны уравнения во многом похожи на братьев и сестер: если вы сделаете что-то для одного, а не для другого, кто-то начнет кричать: « Это несправедливо! » Чтобы избежать этой ситуации, что бы мы ни делали с одной стороной уравнения, нам нужно делать и с другим.Что нам нужно сделать с левой стороны, чтобы избавиться от этой надоедливой 5?

Вычтем 5 из обеих частей уравнения. Это превращает наше уравнение в следующее:

y + 5-5 = 10-5

Это немного неуклюже, поэтому давайте объединим такие термины:

y + (5-5) = (10-5) )

5-5 = 0 и 10-5 = 5, поэтому наше уравнение принимает следующий вид:

y = 5

Теперь это решено! По мере того, как вы ближе познакомитесь с этими типами операций, вы можете пропустить промежуточные шаги и просто перейти от y + 5 = 10 к y = 5 за один шаг.А пока вам следует выписать каждый шаг. Это хорошая практика, которая также помогает вашим учителям понять, с какими шагами у вас возникают проблемы.

Еще один совет: не думайте, что вы знаете, сколько места вам понадобится для решения уравнения. Это часто приводит к беспорядку, поэтому избегайте этого! Оставьте много бумаги для выработки каждого решения, чтобы у вас никогда не закончилось место. Еще лучше не записывать ничего для следующей задачи, пока не закончите ту, над которой работаете.

Дополнительная практика

Тот же процесс, который мы видели ранее (перемещение переменной в другую часть уравнения), работает независимо от того, какая операция требуется.

Давайте решим наше исходное уравнение: 3 x + 2 = 17. Как вы думаете, будет легче сначала избавиться от 3 или 2? Хорошая новость в том, что вы можете делать это в любом порядке. Начнем с 3:

(3 x + 2) / 3 = 17/3

Это сокращается до:

x + 2/3 = 17/3

Ой, наверное, было бы было лучше начать с 2. Ну что ж, давайте продолжим:

x + 2/3 — 2/3 = 17/3 — 2/3

Теперь объедините подобные термины:

x = 15 / 3

И, наконец:

x = 5

Почему бы вам не попробовать ту же задачу, но начать с манипулирования 2 вместо 3.Посмотрим, сможете ли вы придумать такой же ответ! Возможно, вам будет легче, чем то, что мы только что сделали.

Когда мы начинаем говорить о переменных с показателями степени или уравнениях с несколькими переменными, решения могут стать немного более сложными. Однако вы должны быть рады узнать, что все правила и методы, описанные в этом уроке, по-прежнему применимы к этим более сложным задачам. Язык математики строится сам на себе. Разве математика не прекрасна?

Итоги урока

Хорошо, давайте сделаем пару минут для повторения.Как мы узнали на этом уроке, алгебраическое уравнение состоит из переменной, ненулевого коэффициента и констант. И помните, что переменная — это просто буква, которая используется для обозначения неизвестной величины.

Решение этого типа уравнения включает в себя манипулирование им в соответствии с логическими математическими правилами, так что вы можете найти нужную переменную, выделив ее с одной стороны уравнения, а все остальное — с другой. Представьте, что каждая сторона равенства — дети: что бы вы ни делали с одной стороной, вы должны сделать и с другой стороной.Как только вы усвоите эти концепции, решение алгебраических уравнений станет легким делом!

Базовая алгебра

Также в IntMath

Связанные главы по алгебре:

Эта глава содержит уроки элементарной алгебры по следующим темам:

1. Сложение и вычитание алгебраических выражений, показывает, как решать такие задачи, как: Упростить: −2 [−3 ( x — 2 y ) + 4 y ].

2. Умножение алгебраических выражений, есть такие примеры:
Развернуть (2 x + 3) ( x 2 x — 5).

3. Деление алгебраических выражений, например: (12a 2 б) ÷ (3ab 2 )

4. Решение уравнений, подобных этому: 5 — ( x + 2) = 5 x .

5. Формулы и буквальные уравнения, в котором показано, как решить уравнение для конкретной переменной.

6. Прикладные вербальные задачи показывает, почему мы все это делаем.

Что такое алгебра?

Алгебра — это раздел математики, в котором вместо неизвестных чисел используются буквы.

Вы использовали алгебру с раннего школьного возраста, когда вы выучили такие формулы, как площадь прямоугольника , шириной w , высотой h :

A = w × h

Мы использовали букв вместо цифр. Как только мы узнали ширину и высоту, мы могли подставить их в формулу и найти нашу площадь.

Еще один, который вы, возможно, видели, — это область окружности с радиусом r :

.

A = π r 2

Как только мы узнаем длину сторон, мы сможем найти площадь.

Буквенные числа (буквы, используемые в алгебре) могут означать переменных (значение буквы может меняться, как w , h и r в примерах площади прямоугольника. и площадь круга) или константы (где значение не меняется), например:

π (отношение длины окружности к диаметру, значение 3,141592 ….)

г (ускорение свободного падения 9.8 м / с 2 ),

e (имеет постоянное значение 2,781828 …).

И как постоянно спрашивают мои ученики …

Почему мы должны это делать?

Алгебра — это мощный инструмент для решения задач в области науки, техники, экономики, финансов, архитектуры, судостроения и многих других повседневных задач.

Если бы мы не использовали буквы вместо цифр (а использовали вместо них слова), мы бы писали много страниц для каждой задачи , и это было бы намного более запутанным.

Эта глава элементарной алгебры является продолжением предыдущей главы о числах.

Если эта глава покажется вам сложной …

Если у вас возникли трудности с этой главой, может быть хорошей идеей вернуться и сначала напомнить себе об основных свойствах чисел, поскольку это важная основа.

На шоу

Хорошо, давайте продолжим и выучим несколько основных советов по алгебре:

1. Сложение и вычитание алгебраических выражений »

РЕШЕНИЕ УРАВНЕНИЙ

РЕШЕНИЕ УРАВНЕНИЙ

В этом разделе показан процесс решения уравнений различных форм.Здесь также показано, как проверить свой ответ тремя разными способами: алгебраически, графически и с использованием концепции эквивалентности. В следующей таблице приведены частичные списки типичных уравнений.

ЛИНЕЙНЫЕ УРАВНЕНИЯ — Решите относительно x в следующих уравнениях.

  1. x — 4 = 10 Решение
  2. 2 x — 4 = 10 Решение
  3. 5x — 6 = 3 x — 8 Решение
  4. Решение
  5. Решение
  6. 2 (3 x -7) + 4 (3 x + 2) = 6 (5 x + 9) + 3 Решение
  7. Решение

УРАВНЕНИЯ , СОДЕРЖАЩИЕ РАДИКАЛ (S) — Решите для x следующим образом уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение

УРАВНЕНИЯ , СОДЕРЖАЩИЕ АБСОЛЮТНЫЕ ЗНАЧЕНИЯ — Решите относительно x в следующие уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

КВАДРАТИЧЕСКИЕ УРАВНЕНИЯ — Решите относительно x следующим образом уравнения.

  1. х Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

УРАВНЕНИЯ , ВКЛЮЧАЮЩИЕ ДОБИ — Решите для x следующим образом уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

ЭКСПОНЕНЦИАЛЬНЫЕ УРАВНЕНИЯ — Решите для x в следующих уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение

ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ — Решите относительно x следующим образом уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ — Решите относительно x следующим образом уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение
  8. Решение
  9. Решение
  10. Решение
  11. Решение
  12. Решение
[Алгебра] [Тригонометрия] [Геометрия] [Дифференциальные уравнения] [Исчисление] [Комплексные переменные] [Матричная алгебра] С.Домашняя страница O.S MATHematics

Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем S.O.S. Математика CyberBoard.

Автор: Нэнси Маркус
Авторские права 1999-2021 MathMedics, LLC. Все права защищены.
Свяжитесь с нами
Math Medics, LLC. — П.О. Box 12395 — El Paso TX 79913 — США
пользователей онлайн за последний час

Wolfram | Alpha Примеры: Алгебра


Другие примеры

Решение уравнения

Решите уравнения с одной или несколькими переменными как символьно, так и численно.

Решите полиномиальное уравнение:

Решите систему линейных уравнений:

Решите уравнение с параметрами:

Другие примеры


Другие примеры

Полиномы

Решайте, строите и находите альтернативные формы полиномиальных выражений от одной или нескольких переменных.

Вычислить свойства многочлена от нескольких переменных:

Другие примеры


Другие примеры

Рациональные функции

Вычислить разрывы и другие свойства рациональных функций.

Вычислить свойства рациональной функции:

Вычислить частичное разложение дроби:

Другие примеры


Другие примеры

Упрощение

Упростите алгебраические функции и выражения.

Другие примеры


Другие примеры

Матрицы

Находите свойства и выполняйте вычисления с матрицами.

Выполните базовую арифметику с матрицами:

Вычислить собственные значения и собственные векторы матрицы:

Другие примеры


Другие примеры

Кватернионы

Выполните вычисления в кватернионной системе счисления.

Получите информацию о кватернионе:

Проведите расчеты с кватернионами:

Другие примеры


Другие примеры

Конечные группы

Откройте для себя свойства групп, содержащих конечное число элементов.

Получите информацию о конечной группе:

Спросите о собственности группы:

Сделайте алгебру с перестановками:

Другие примеры


Другие примеры

Конечные поля

Откройте для себя свойства полей, содержащих конечное число элементов.

Вычислить свойства конечного поля:

Вычислить конкретное свойство:

Другие примеры


Другие примеры

Домен и диапазон

Найдите область и диапазон математических функций.

Вычислить область определения функции:

Вычислить диапазон функции:

Другие примеры

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *