1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(30 град. ) | |
4 | Найти точное значение | sin(60 град. ) | |
5 | Найти точное значение | tan(30 град. ) | |
6 | Найти точное значение | arcsin(-1) | |
7 | Найти точное значение | sin(pi/6) | |
8 | cos(pi/4) | ||
9 | Найти точное значение | sin(45 град. ) | |
10 | Найти точное значение | sin(pi/3) | |
11 | Найти точное значение | arctan(-1) | |
12 | Найти точное значение | cos(45 град. ) | |
13 | Найти точное значение | cos(30 град. ) | |
14 | Найти точное значение | tan(60) | |
15 | Найти точное значение | csc(45 град. ) | |
16 | Найти точное значение | tan(60 град. ) | |
17 | Найти точное значение | sec(30 град. ) | |
18 | Найти точное значение | cos(60 град. ) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | sin(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | tan(45 град. ) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 град. ) | |
25 | Найти точное значение | sec(45 град. ) | |
26 | Найти точное значение | csc(30 град. ) | |
27 | Найти точное значение | sin(0) | |
28 | Найти точное значение | sin(120) | |
29 | Найти точное значение | cos(90) | |
30 | Преобразовать из радианов в градусы | pi/3 | |
31 | Найти точное значение | tan(30) | |
32 | Преобразовать из градусов в радианы | 45 | |
33 | Найти точное значение | cos(45) | |
34 | Упростить | sin(theta)^2+cos(theta)^2 | |
35 | Преобразовать из радианов в градусы | pi/6 | |
36 | Найти точное значение | cot(30 град. ) | |
37 | Найти точное значение | arccos(-1) | |
38 | Найти точное значение | arctan(0) | |
39 | Найти точное значение | cot(60 град. ) | |
40 | Преобразовать из градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2pi)/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | tan(pi/2) | |
45 | Найти точное значение | sin(300) | |
46 | Найти точное значение | cos(30) | |
47 | Найти точное значение | cos(60) | |
48 | Найти точное значение | cos(0) | |
49 | Найти точное значение | cos(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | sec(60 град. ) | |
53 | Найти точное значение | sin(300 град. ) | |
54 | Преобразовать из градусов в радианы | 135 | |
55 | Преобразовать из градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5pi)/6 | |
57 | Преобразовать из радианов в градусы | (5pi)/3 | |
58 | Преобразовать из градусов в радианы | 89 град. | |
59 | Преобразовать из градусов в радианы | 60 | |
60 | Найти точное значение | sin(135 град. ) | |
61 | Найти точное значение | sin(150) | |
62 | Найти точное значение | sin(240 град. ) | |
63 | Найти точное значение | cot(45 град. ) | |
64 | Преобразовать из радианов в градусы | (5pi)/4 | |
65 | Найти точное значение | sin(225) | |
66 | Найти точное значение | sin(240) | |
67 | Найти точное значение | cos(150 град. ) | |
68 | Найти точное значение | tan(45) | |
69 | Вычислить | sin(30 град. ) | |
70 | Найти точное значение | sec(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | csc(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | tan((5pi)/3) | |
75 | Найти точное значение | tan(0) | |
76 | Вычислить | sin(60 град. ) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3pi)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | arcsin(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | csc(45) | |
83 | Упростить | arctan( квадратный корень из 3) | |
84 | Найти точное значение | sin(135) | |
85 | Найти точное значение | sin(105) | |
86 | Найти точное значение | sin(150 град. ) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | tan((2pi)/3) | |
89 | Преобразовать из радианов в градусы | pi/4 | |
90 | Найти точное значение | sin(pi/2) | |
91 | Найти точное значение | sec(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | arcsin(0) | |
95 | Найти точное значение | sin(120 град. ) | |
96 | Найти точное значение | tan((7pi)/6) | |
97 | Найти точное значение | cos(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразовать из градусов в радианы | 88 град. |
cosx меньше a
Рассмотрим решение тригонометрических неравенств вида cosx меньше a (cosx<a) на единичной окружности.
Снова применяем ассоциацию косинус-колобок. Оба кругленькие, оба начинаются с ко-. Колобку, в силу особенности его фигуры, удобнее двигаться влево-вправо, а не вверх-вниз. Влево-вправо на координатной плоскости — движение по оси ox. Значит, косинус — это x. То есть абсцисса, координата x точки на окружности. Геометрически cosx=a в точках пересечения единичной окружности и прямой x=a (прямая, параллельная оси ox). Соответственно, точки окружности, находящиеся правее этой прямой, соответствуют значениям косинуса, большим a, а cosx меньше a — левее этой прямой. Прямая и окружность могут пересекаться, не пересекаться и касаться. От их взаимного расположения зависит решение тригонометрического неравенства cosx меньше a.
1) cosx<a, при 0<a<1.
Первая точка пересечения прямой и окружности находится, как обычно, — это arccos a. Поскольку нам нужны значения, в которых cos x меньше a, из первой точки ко второй мы идем по верхнему пути, против часовой стрелки. При таком направлении обхода угол увеличивается. Вторую точку получили, немного не дойдя до 2п. На сколько не дошли? На тот же угол, который соответствует arccos a. Раз не дошли, то это число вычитаем из 2п. Поэтому вторая точка пересечения прямой с окружностью есть 2п-arccos a. Итак, решением неравенства cos x меньше a является промежуток (arccos a; 2п-arccos a). Поскольку период косинуса равен 2п, к каждому из концов промежутка прибавляем 2пn, где n -целое число (то есть n принадлежит Z). Получаем окончательный вариант ответа: (arccos a+2пn; 2п-arccos a+2пn). Для нестрогого неравенства точки закрашиваем и ставим квадратные скобки.
2) cos x меньше -a, при 0<a<1.
Решение неравенства аналогично первому случаю. Отличие — нужно вычислить арккосинус отрицательного числа (чуть позже я расскажу, как легко запомнить значения arccos (-a) с помощью ассоциации). А пока что arccos (-a)= п-arccos a. Ко второй точке здесь тоже идем против часовой стрелки, то есть значение угла увеличивается. Не доходим до 2п на величину arccos(-a), отсюда вторая точка есть 2п-arccos(-a). Чтобы учесть все решения неравенства, к концам промежутка прибавляем 2пn. Если неравенство нестрогое, точки закрашиваем и включаем в ответ (с квадратной скобкой).
3) cosx<0
То есть ищем, где косинус отрицательный.
В качестве первой точки промежутка, на котором косинус принимает отрицательные значения, берем п/2, вторая точка — 3п/2. Чтобы учесть все промежутки, на которых косинус отрицательный, прибавляем к концам промежутка 2пn. Таким образом, решение тригонометрического неравенства cosx<0 есть промежуток (п/2+2пn; 3п/2+2пn), где n — целое число. Если неравенство нестрогое, то есть ищем неотрицательные значения косинуса, точки закрашиваем, скобки берем квадратные.
4) cosx<1
В этом случае окружность и прямая x=a касаются в одной точке — в нуле. Таким образом, за исключением этой точки, окружность расположена левее прямой. Значит, cosx меньше 1 в любой точке, кроме точек вида 0+2пn. Чтобы записать решение тригонометрического неравенства cosx<1 в виде интервала, в качестве второго конца промежутка берем 2п и к обоим концам прибавляем 2пn. Получаем (2пn; 2п+2пn).
5) cosx<a, при a>1.
В этом случае окружность целиком лежит левее прямой x=a и любое значение x удовлетворяет условию неравенства. Таким образом, в этом случае косинус меньше a на промежутке (-∞;+∞).
6) cosx<-a, при a>1.
При таких a окружность целиком расположена правее прямой x=-a и нет ни одного x, удовлетворяющего требованию cosx меньше -a. Поэтому решений нет.
В этом случае точку пересечения окружности и прямой исключать из решения не нужно, значит, x — любое число и решением является вся числовая прямая: (-∞;+∞).
Единственным решением этого тригонометрического неравенства является точка п. С учетом периодичности косинуса, решением является множество точек вида п+2пn, где n — целое число.
И в заключении — пример решения тригонометрического неравенства вида cosx меньше a: cosx<-1/2:
Найдите набор решений неравенства cosx>= (-1)/2.
- Курс
- NCERT
- Класс 12
- Класс 11
- Класс 10
- Класс 9
- Класс 8 900 03 Класс 7
- Класс 6
- NCERT
- IIT JEE
- Экзамен
- JEE MAINS
- JEE ADVANCED
- X BOARDS
- XII BOARDS
- NEET
- Neet Предыдущий год (по годам)
- Физика Предыдущий год
- Химия Предыдущий год
- Биология Предыдущий год
- Нет Все образцы работ
- Образцы работ Биология
- Образцы работ Физика
- Образцы работ Химия 900 21
- Скачать PDF-файлы
- Класс 12
- Класс 11
- Класс 10
- Класс 9
- Класс 8
- Класс 7
- Класс 6
- Экзамен угол
- Онлайн-класс
- Викторина
- Задать вопрос в Whatsapp
- Поиск Сомнение 900 21
- Английский словарь
- Toppers Talk
- Блог
- О нас
- Карьера
- Скачать
- Получить приложение
Рекомендуемые вопросы
Найдите множество решений неравенства cosx>= (-1)/2.
07:09
Множество решений неравенства |x+1|
02:18
Найдите множество решений неравенства sinx > 1/2.
01:35
Алгоритм решения неравенств вида (ax+b)/(cx+d)
08:00
Найдите множество решений неравенства |(3|x|-2)/(|x|-1)|>=2
05:55
Найдите множество решений неравенства |(3| x | -2)/(| x | -1) |> = 2
05:55
Найдите набор решений по неравенству COSX GE 1/2
02:21
Набор раствора неравенство (-3)/(2) lt 1
Текст Решение
Найдите набор решений неравенства (1)/(x-2)lt0.
01:31
- Ask Unlimited Doubts
- Видеорешения на нескольких языках (включая хинди)
- Видеолекции экспертов
- Бесплатные PDF-файлы (документы за предыдущий год, книжные решения и многое другое)
- Посещайте специальные консультационные семинары для IIT- JEE, NEET и Board Exams
- Курс
- NCERT
- Класс 12
- Класс 11
- Класс 10
- Класс 9
- Класс 8 9000 3 Класс 7
- Класс 6
- NCERT
- IIT JEE
Вопрос
Обновлено: 25/02/2018
Рекомендуемые вопросы
9 видеоРЕКЛАМА
Ab Padhai каро бина объявления ке
Khareedo DN Про и дехо сари видео бина киси объявление ки рукаават ке!
Похожие видео
Найдите множество решений неравенства |x−1|<2.
51238212
01:43
Найдите множество решений неравенства x+1x+2>1.
51238215
01:30
Набор решений для неравенства 1x−2<0 есть-
277386051
00:55
Множество решений неравенства 3|x|+2≤1
385982705
02:27
Найдите множества решений следующих неравенств.
5х≥3х+1.
643338277
01:28
Найдите множество решений неравенства sinx>12.
644008248
02:10
Найдите множество решений неравенства: 2x+1>3
644623953
01:12
Найдите множество решений неравенства cosx≥12
645257775
03:00
РЕКЛАМА
Doubtnut хочет отправлять вам уведомления. Разрешите получать регулярные обновления!
Слушаю…
Найдите множество решений неравенства cosx>= (-1)/2.
- Экзамен
- JEE MAINS
- JEE ADVANCED
- X BOARDS
- XII BOARDS
- NEET
- Neet Предыдущий год (по годам)
- Physics Предыдущий год
- Химия Предыдущий год
- Биология Предыдущий год
- Нет Все образцы работ
- Образцы работ по биологии
- Образцы работ по физике
- Образцы работ по химии
- Скачать PDF-файлы
- Класс 12
- Класс 11
- Класс 10
- Класс 9
- Класс 8
- Класс 7
- Класс 6
- Экзаменационный уголок
- Онлайн класс 9 0021
- Викторина
- Задать вопрос в Whatsapp
- Поиск Doubtnut
- Английский словарь
- Блог
- О нас
- Карьера
- Скачать
- Получить приложение
- 9 0003 Toppers Talk
Вопрос
Обновлено: 28/04/2021 Экзамен за предыдущие 13 лет)
13 видеоРЕКЛАМА
Ab Padhai каро бина объявления ке
Khareedo DN Про и дехо сари видео бина киси объявление ки рукаават ке!
Похожие видео
Множество решений неравенства |x+1|
124441
02:18
Найдите множество решений неравенства sinx>12.
346759
01:35
Алгоритм решения неравенств вида ax+bcx+d
1339464
08:00
Найти решение множество неравенства |(3|x|-2)/( |х|-1)|>=2
2054237
05:55
Найдите множество решений неравенства |(3|x|-2)/(|x|-1)|>=2
2054324
05:55
9 0130 Найдите решение набор неравенств cosx≥128493407
02:21
Набор решений неравенства −32<1
42359917
Текст Решение
9013 0 Найдите множество решений неравенства 1x−2<0.51238211
01:31
Найдите множество решений неравенства |x−1|<2.
51238212
01:43
Найдите множество решений неравенства x+1x+2>1.
51238215
01:30
Набор решений неравенства 1x−2<0 равен 3|x|+2≤1
385982705
02 :27
Найдите наборы решений следующих уравнений.
5х≥3х+1.
643338277
01:28
Найдите множество решений неравенства sinx>12.