Решите неравенство 36 x 2 0: conf__edu_age }) }) edu_group = edu_age_conf.groups[conf__edu_age] edu_ad = edu_age_conf.ads[edu_group] } $(document).ready(() => { if (typeof KrApi != ‘undefined’) { edu_group = edu_age_conf.pods[KrApi.settings.base_pod] if (typeof edu_group != ‘undefined’) { edu_ad = edu_age_conf.ads[edu_group] } } })

2+2x-8>0 \) превращается в неравенство

\(\displaystyle (x-2)(x+4)>0{\small .}\)


Запишем неравенство \(\displaystyle (x-2)(x+4)>0 \) в виде систем эквивалентных линейных неравенств.

Все решения неравенства \(\displaystyle (x-2)(x+4)>0\) получаются, когда

  • либо \(\displaystyle x-2>0{ \small ,}\, x+4>0\) – оба множителя больше нуля;
  • либо \(\displaystyle x-2<0{ \small ,}\, x+4<0\) – оба множителя меньше нуля.

Если это переписать в виде систем, то получаем:

\(\displaystyle \left\{\begin{aligned}x-2&>0{ \small ,}\\x+4&> 0\end{aligned}\right.\)   или   \(\displaystyle \left\{\begin{aligned}x-2&< 0{ \small ,}\\x+4& < 0{\small .}\end{aligned}\right.\)

Перенося все числа вправо, получаем:

\(\displaystyle \left\{\begin{aligned}x&>2{ \small ,}\\x&> -4\end{aligned}\right.\)   или   \(\displaystyle \left\{\begin{aligned}x&< 2{ \small ,}\\x& < -4{\small .

}\end{aligned}\right.\)

 

Решим получившиеся системы.

\(\displaystyle \left\{ \begin{aligned} x&>2{ \small ,}\\ x &>-4{\small .} \end{aligned} \right.\)

Неравенство \(\displaystyle x>2\) соответствует множеству точек на прямой:


Неравенство \(\displaystyle x>-4\) соответствует множеству точек на прямой:


Таким образом, переменная \(\displaystyle x\) одновременно больше \(\displaystyle 2\) и больше \(\displaystyle -4{\small :}\)


Получившееся пересечение и будет решением исходной системы неравенств.

Значит, решения – \(\displaystyle x\in (2;+\infty){\small .} \)


 

или

\(\displaystyle \left\{ \begin{aligned} x&<2{ \small ,}\\ x &<-4{\small .} \end{aligned} \right.\)

Неравенство \(\displaystyle x< 2\) соответствует множеству точек на прямой:


Неравенство \(\displaystyle x<-4\) соответствует множеству точек на прямой:


Таким образом, переменная \(\displaystyle x\) одновременно меньше \(\displaystyle 2\) и меньше \(\displaystyle -4{\small :}\)


Получившееся пересечение и будет решением исходной системы неравенств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта