Sin cos tg ctg определения: Основные тригонометрические тождества sin, cos, tg, ctg

Тангенс отношение синуса к косинусу. Синус (sin x) и косинус (cos x) – свойства, графики, формулы

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой.

Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13.

График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪

ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Zcos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Zcos x = 1, при x = 2πk, где k ϵ Z
sin x = — 1, при x = 3π/2 + 2πk, где k ϵ Zcos x = — 1, при x = π + 2πk, где k ϵ Z
sin (-x) = — sin x, т. е. функция нечетнаяcos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период — 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk]возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk]убывает на промежутках
производная (sin x)’ = cos xпроизводная (cos x)’ = — sin x

Радианная мера угла. Синус, косинус, тангенс числа

Похожие презентации:

Элементы комбинаторики ( 9-11 классы)

Применение производной в науке и в жизни

Проект по математике «Математика вокруг нас. Узоры и орнаменты на посуде»

Знакомство детей с математическими знаками и монетами

Тренажёр по математике «Собираем урожай». Счет в пределах 10

Методы обработки экспериментальных данных

Лекция 6. Корреляционный и регрессионный анализ

Решение задач обязательной части ОГЭ по геометрии

Дифференциальные уравнения

Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи

Радианная мера угла.
Синус, косинус, тангенс числа.
Тригономе́трия (от греч. τρίγονο (треугольник) и греч.
μετρειν (измерять),
то есть измерение треугольников) — раздел математики,
в котором изучаются тригонометрические функции и их
приложения к геометрии.
Данный термин впервые появился в 1595 г. как название
книги немецкого математика Бартоломеуса Питискуса
(Bartholomäus Pitiscus, 1561—1613),

а сама наука ещё в глубокой древности использовалась для
расчётов в астрономии, геодезии и архитектуре.
Эти ученые внесли свой вклад в развитие тригонометрии
Архимед
Жозеф Луи
Лагранж
Фалес
Тригонометрия возникла и развивалась в древности как
один из разделов астрономии, как ее вычислительный
аппарат, отвечающий практическим нуждам человека. С ее
помощью можно определить расстояние до недоступных
предметов и существенно упрощать процесс геодезической
съемки местности для составления географических карт.
Общепринятые понятия тригонометрии, а также
обозначения и определения тригонометрических функция
сформировались в процессе долгого исторического развития.
Тригонометрические сведения были известны древним
вавилонянам и египтянам, но основы этой науки заложены в
Древней Греции встречающиеся уже в III веке до н.э.
в работах великих математиков– Евклида, Архимеда,
Апполония Пергского. Древнегреческие астрономы успешно
решали вопросы из тригонометрии, связанные с астрономией.
Соотношение между сторонами и углами
прямоугольного треугольника
0 90
с
а
в
a
sin
ñ
b
cos
c
a
tg
b
b
ñtg
a
Синус/ Косинус острого угла в прямоугольном треугольнике

отношение противолежащего/прилежащего катета к гипотенузе.
Тангенс/Котангенс— отношение противолежащего/прилежащего
катета к прилежащему/противолежащему.
В XVIII веке Леонард Эйлер
дал современные, более
общие определения,
расширив область
определения этих функций
на всю числовую ось.
угол _ поворота
R
у
1
0
х
1
у
1
0
х
1
Рассмотрим в прямоугольной системе координат
окружность единичного радиуса и отложим от
горизонтальной оси угол
(если величина угла положительна, то откладываем против
часовой стрелки, иначе по часовой стрелке). Точку
пересечения построенной стороны угла с окружностью
у
обозначим Р.
0
Р
1
0
1
х
1
0
Р90
у
Р60
Р45
Р30
Р180
Р
1
0
х 0
1
Р360
Ð 30
Р270
у
Р45
Ð405
1
0
х
1
360 0 ,
ãäå 0, 1, 2,…
360 0 45 4050
Вспомните как расположены четверти в прямоугольной
системе координат и запишите соответствие градусных
мер в каждой четверти.
Центральный угол, опирающийся на дугу, длина которой равна радиусу
окружности, называется углом в 1 радиан.
в градусах
π
1º = —— рад
180
где π ≈ 3,14
в радианах
180º
1 рад = ——
π
1 радиан ≈ 57,3º:
Синус, косинус, тангенс и котангенс произвольного угла
у1
cos
P ( x; y )
у
P0 (1;0)
1
0
1
sin
х
х
1
cos x
sinопределяется
yкак ордината
Синус угла
точки P
Косинус — абсцисса точки P
y
ординаты к абсциссе
Тангенс –tg
отношение
точкиxP
x
Котангенсctg
– отношение
точки
абсциссы к ординате
Py
Р90
Ð120
у
Р0 (1; 0)
Ð60
Р90 (0; 1)
у
Ð60 (x; y)
Р180
Р
1

0
х 0
1
х
Р360
Ð120 (-x; y)
Р180 (-1; 0)
Р270
Р270 (0;-1)
Градусы

30°
45°
60°
90°
120°
135°
150°
180°
270°
360°
Радианы
0
π/6
π/4
π/3
π/2
2π/3
3π/4
5π/6
π
3π/2

sin а
0
1/2
√2/2
√3/2
1
√3/2
√2/2
1/2
0
-1
0
сos a
1
√3/2
√2/2
1/2
0
-1/2
-√2/2
-√3/2
-1
0
1
tg a
0
√3/3
1
√3

-√3
-1
-√3/3
0

0
ctg a

√3
1
√3/3
0
-√3/3
-1
-√3

0

Свойства тригонометрических функций
Знаки синуса, косинуса, тангенса, котангенса в координатных четвертях
у
у
+ +
х
1
— —
0
1
— +
+ 1
1
х
— +
+ 1
1
0
sin68 0
cos 76 0
sin 153 0
cos 236 0
sin 249 0
tg127 0
sin 315 0
ctg195 0
у
0
— +
— +
1
1
0
у
х
х
Четность, нечетность синуса, косинуса, тангенса, котангенса
sin( ) sin
tg ( ) tg
Нечетные функции
ctg ( ) ctg
cos( ) cos
Четная функция
Периодичность тригонометрических функций
При изменении угла на целое число оборотов
значения синуса, косинуса, тангенса, котангенса
не изменяются
sin( 2n ) sin
2
cos( 2n ) cos
2
tg ( ) tg
ctg ( ) ctg
08.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *