Sin3X 3cos2x sinx: A) sin5x=sin6xB) sin3x-корень из 3cos2x-sinx=0

2

Дифференциальные уравнения (варианты)

Решение

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решение

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Решение

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , .

Подставим в исходное , , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Решение

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Решение

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решение

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решение

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3-3r2+4= 0

(r + 1)(r2 — 4r + 4)=0

Корни характеристического уравнения:

R1 = -1 и корень характеристического уравнения r2 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e-x, y2 = e2x, y3 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = (2•x-3)•e-x

Уравнение имеет частное решение вида:

Вычисляем производные:

Y’ =

Y» =

Y»’ =

которые подставляем в исходное дифференциальное уравнение:

-3+4=

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3 — 16r = 0

Корни характеристического уравнения:r1 = -4, r2 = 0, r3 = 4

Следовательно, фундаментальную систему решений составляют функции:

Y1 = e-4x, y2 = e0x, y3 = e4x

Общее решение однородного уравнения имеет вид:

Правая часть F(x) = e2•x+3cos2x-sinx

Будем искать отдельно частные решения для F1(x) = e2•x, F2(x) = 3cos2x, F3(x) = — sinx

Рассмотрим правую часть: F1(x) = e2•x

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 0.

Следовательно, число α + βi = 2 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Вычисляем производные:

Y’ = 2•A•e2x

Y» = 4•A•e2x

Y»’ = 8•A•e2x

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•e2x) -16(2•A•e2x) = e2•x или -24•A•e2x = e2•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

-24A = 1

Решая ее, находим: A = -1/24;

Частное решение имеет вид: y* = -1/24e2x

Рассмотрим правую часть: F2(x) = 3•cos(2•x)

Поиск частного решения.

Уравнение имеет частное решение вида:y* = Acos(2x) + Bsin(2x)

Вычисляем производные:

Y’ = 2•B•cos(2x)-2•A•sin(2x)

Y» = -4(A•cos(2x)+B•sin(2x))

Y»’ = 8•A•sin(2x)-8•B•cos(2x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•sin(2x)-8•B•cos(2x)) -16(2•B•cos(2x)-2•A•sin(2x)) = 3•cos(2•x)

или 40•A•sin(2x)-40•B•cos(2x) = 3•cos(2•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

40A = 0

-40B = 3

Решая ее, находим: A = 0;B =-3/40;

Частное решение имеет вид:

Y* = -3/40*sin(2x)

F3(x) = — sin(x)

Поиск частного решения.

Уравнение имеет частное решение вида: y* = Acos(x) + Bsin(x)

Вычисляем производные:

Y’ = B•cos(x)-A•sin(x)

Y» = — A•cos(x)-B•sin(x)

Y»’ = A•sin(x)-B•cos(x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (A•sin(x)-B•cos(x)) -16(B•cos(x)-A•sin(x)) = — sin(x)

или 17•A•sin(x)-17•B•cos(x) = — sin(x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

17A = -1

-17B = 0

Решая ее, находим: A = -1/17;B = 0;

Частное решение имеет вид: y* = -1/17cos(x) + 0sin(x) или y* = -1/17cos(x)

Окончательно, общее решение данного уравнения

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -6 r + 8 = 0

Корни характеристического уравнения: r1 = 2, r2 = 4

Следовательно, фундаментальную систему решений составляют функции: y1 = e4x, y2 = e2x

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -4 r + 4 = 0

Корни характеристического уравнения:

Корень характеристического уравнения r1 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e2x, y2 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = e2•x•sin(5•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 5.

Следовательно, число α + βi = 2 + 5i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = e2x(Acos(5x) + Bsin(5x))

Вычисляем производные:

Y’ = e2x((2•B-5•A)•sin(5x)+(2•A+5•B)•cos(5x))

Y» = — e2x((20•A+21•B)•sin(5x)+(21•A-20•B)•cos(5x))

Которые подставляем в исходное дифференциальное уравнение:

Y» -4y’ + 4y = (-e2x((20•A+21•B)•sin(5x)+(21•A-20•B)•cos(5x))) -4(e2x((2•B-5•A)•sin(5x)+(2•A+5•B)•cos(5x))) + 4(e2x(Acos(5x) + Bsin(5x))) = e2•x•sin(5•x)

или -25•A•e2x•cos(5x)-25•B•e2x•sin(5x) = e2•x•sin(5•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

-25A = 0

0A -25B = 1

Решая ее, находим: A = 0;B = -1/25;

Частное решение имеет вид: y* = e2x(0cos(5x) -1/25sin(5x)) илиy* =-1/25 e2x sin(5x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Решение

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Тогда . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Решение

Метод исключения неизвестных.

Продифференцируем по х первое уравнение

Исключая с помощью второго уравнения , получим ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное ,

Тогда частное решение

Общее решение неоднородного примет вид:

Из первого уравнения

Ответ:

Решение

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения , получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Решение

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Решение

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решение

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решение

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид

.

Частное решение неоднородного уравнения будем искать в виде , тогда , . , , .

Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 — r= 0

Вынесем r за скобку. Получим: r(r-1) = 0

Корни характеристического уравнения:r1 = 0, r2 = 1

Следовательно, фундаментальную систему решений составляют функции: y1 = e0x, y2 = ex.

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) =

Уравнение имеет частное решение вида:

Вычисляем производные:

которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

Корни характеристического уравнения:(комплексные корни): r1 = 4i, r2 = -4i

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 16•cos(4•x)-16•e4x, будем искать отдельно частные решения для f1(x)= 16•cos(4•x) и для f2(x)= 16•e4x

Для f1(x) = 16•cos(4•x) имеем

Уравнение имеет частное решение вида: y ч1* = x (Acos(4x) + Bsin(4x))

Вычисляем производные:

Y’ = Acos(4x)+Bsin(4x)-4Axsin(4x)+4Bxcos(4x))

Y» = -4Asin(4x)+4Bcos(4x)-16Axcos(4x)-4Asin(4x)+4Bcos(4x))-16Bxsin(4x))=

=-8Asin(4x)+8Bcos(4x)-16Axcos(4x)-16Bxsin(4x))

Которые подставляем в исходное дифференциальное уравнение:

-8Asin(4x)+8Bcos(4x)-16Axcos(4x)-16Bxsin(4x))+16xAcos(4x)+16xBsin(4x))=

=16cos(4x)

или -8Asin(4x)+8Bcos(4x)=16cos(4x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

-8A = 0

8B = 16

Решая ее, находим: A = 0;B = 2;

Частное решение имеет вид: yч1* = x (0cos(4x) + 2sin(4x)) или y ч1* = 2xsin(4x)

Для f2(x) = 16•e4x

Частное решение ищем в виде y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 16, Q(x) = 0, α = 4, β = 0.

Следовательно, число α + βi = 4 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Вычисляем производные:

Y’ = 4•A•e4x

Y» = 16•A•e4x

Которые подставляем в исходное дифференциальное уравнение:

Y» + 16y = (16•A•e4x) + 16(Ae4x) = 16•e4•x или 32•A•e4x = 16•e4•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

32A = 16

Решая ее, находим: A = 1/2;

Частное решение имеет вид: y*ч2 = 1/2e4x

Таким образом, общее решение дифференциального уравнения имеет вид:

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 9 = 0

Корни характеристического уравнения: r1 = -3i, r2 = 3i

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Решение

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 1 = 0

Корни характеристического уравнения:(комплексные корни): r1 = i,

Следовательно, фундаментальную систему решений составляют функции:

,

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 2•cos(3•x)-3•sin(3•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 2, Q(x) = -3, α = 0, β = 3.

Следовательно, число α + βi = 0 + 3i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = Acos(3x) + Bsin(3x)

Вычисляем производные:

Y’ = 3•B•cos(3x)-3•A•sin(3x)

Y» = -9(A•cos(3x)+B•sin(3x))

Которые подставляем в исходное дифференциальное уравнение:

Y» + y = (-9(A•cos(3x)+B•sin(3x))) + (Acos(3x) + Bsin(3x)) = 2•cos(3•x)-3•sin(3•x)

или -8•A•cos(3x)-8•B•sin(3x) = 2•cos(3•x)-3•sin(3•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

-8A = 2

-8B = -3

Решая ее, находим: A = -1/4;B = 3/8;

Частное решение имеет вид: y* = -1/4cos(3x) + 3/8sin(3x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Решение

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Решение

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения

Ответ:

Решение

Найдём сначала общее решение соответствующей однородной системы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения Общее решение однородной системы:

Принимаем частное решение первоначальной системы в виде:

Тогда

Решаем данную систему по формулам Крамера, получим два дифференциальных уравнения первого порядка:

Тогда

Окончательно,

Или

Или

Ответ:

< Предыдущая   Следующая >

Мэтуэй | Популярные задачи

92
1 Найти точное значение грех(30)
2 Найти точное значение грех(45)
3 Найти точное значение грех(30 градусов)
4 Найти точное значение грех(60 градусов)
5 Найти точное значение загар (30 градусов)
6 Найти точное значение угловой синус(-1)
7 Найти точное значение грех(пи/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение грех(45 градусов)
10 Найти точное значение грех(пи/3)
11 Найти точное значение арктан(-1)
12 Найти точное значение cos(45 градусов)
13 Найти точное значение cos(30 градусов)
14 Найти точное значение желтовато-коричневый(60)
15 Найти точное значение csc(45 градусов)
16 Найти точное значение загар (60 градусов)
17 Найти точное значение сек(30 градусов)
18 Найти точное значение cos(60 градусов)
19 Найти точное значение cos(150)
20 Найти точное значение грех(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение загар (45 градусов)
23 Найти точное значение arctan(- квадратный корень из 3)
24 Найти точное значение csc(60 градусов)
25 Найти точное значение сек(45 градусов)
26 Найти точное значение csc(30 градусов)
27 Найти точное значение грех(0)
28 Найти точное значение грех(120)
29 Найти точное значение соз(90)
30 Преобразовать из радианов в градусы пи/3
31 Найти точное значение желтовато-коричневый(30)
32
35 Преобразовать из радианов в градусы пи/6
36 Найти точное значение детская кроватка(30 градусов)
37 Найти точное значение арккос(-1)
38 Найти точное значение арктан(0)
39 Найти точное значение детская кроватка(60 градусов)
40 Преобразование градусов в радианы 30
41 Преобразовать из радианов в градусы (2 шт. )/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение тан(пи/2)
45 Найти точное значение грех(300)
46 Найти точное значение соз(30)
47 Найти точное значение соз(60)
48 Найти точное значение соз(0)
49 Найти точное значение соз(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение сек(60 градусов)
53 Найти точное значение грех(300 градусов)
54 Преобразование градусов в радианы 135
55 Преобразование градусов в радианы 150
56 Преобразовать из радианов в градусы (5 дюймов)/6
57 Преобразовать из радианов в градусы (5 дюймов)/3
58 Преобразование градусов в радианы 89 градусов
59 Преобразование градусов в радианы 60
60 Найти точное значение грех(135 градусов)
61 Найти точное значение грех(150)
62 Найти точное значение грех(240 градусов)
63 Найти точное значение детская кроватка(45 градусов)
64 Преобразовать из радианов в градусы (5 дюймов)/4
65 Найти точное значение грех(225)
66 Найти точное значение грех(240)
67 Найти точное значение cos(150 градусов)
68 Найти точное значение желтовато-коричневый(45)
69 Оценить грех(30 градусов)
70 Найти точное значение сек(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение КСК(30)
73 Найти точное значение arcsin(( квадратный корень из 2)/2)
74 Найти точное значение загар((5pi)/3)
75 Найти точное значение желтовато-коричневый(0)
76 Оценить грех(60 градусов)
77 Найти точное значение arctan(-( квадратный корень из 3)/3)
78 Преобразовать из радианов в градусы (3 пи)/4 
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение угловой синус(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение КСК(45)
83 Упростить арктан(квадратный корень из 3)
84 Найти точное значение грех(135)
85 Найти точное значение грех(105)
86 Найти точное значение грех(150 градусов)
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение загар((2pi)/3)
89 Преобразовать из радианов в градусы пи/4
90 Найти точное значение грех(пи/2)
91 Найти точное значение сек(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение угловой синус(0)
95 Найти точное значение грех(120 градусов)
96 Найти точное значение желтовато-коричневый ((7pi)/6)
97 Найти точное значение соз(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень из 2)/2)
100 Преобразование градусов в радианы 88 градусов

Как вы можете доказать, что sin3x = sinx(3cos^2x — sin^2x).

Есть ли личность, которую можно использовать? 92х). Есть ли идентификатор, который можно использовать?» eNotes Editorial , 25 мая 2015 г., https://www.enotes.com/homework-help/how-can-you-prove-sin3x-sinx-3cos-2x-sin -2х-там-480044. По состоянию на 7 декабря 2022 г.

Ответы экспертов

Сначала вы можете использовать закон сложения синусов:

Где «a» равно 2x, а «b» равно x. Итак, у нас будет:

sin(2x+x) = sin2x cosx + sinx cos2x

Затем мы используем формулы двойного угла для sin и cos:

sin(2x) = 2 sinx cosx 92x)

   …

См.


Этот ответ сейчас

Запустите 48-часовую бесплатную пробную версию , чтобы разблокировать этот и тысячи других ответов. Наслаждайтесь eNotes без рекламы и отмените подписку в любое время.

Получите 48 часов бесплатного доступа

Уже зарегистрированы? Войдите здесь.

Сначала вы можете использовать закон сложения синусов:

Где «a» равно 2x, а «b» равно x. Итак, у нас будет:

sin(2x+x) = sin2x cosx + sinx cos2x 92x)

Утверждено редакцией eNotes

Математика

Последний ответ опубликован 07 сентября 2010 г. в 12:47:25.

Что означают буквы R, Q, N и Z в математике?

14 Ответы педагога

Математика

Последний ответ опубликован 07 октября 2013 г. в 20:13:27.

Как определить, является ли это уравнение линейной или нелинейной функцией?

84 Ответы педагога

Математика

Последний ответ опубликован 14 ноября 2011 г. в 5:49:28.

Решите для b2:A= 1/2h (b1+b2)

1 Ответ учителя

Математика

Последний ответ опубликован 3 октября 2011 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *