Смежные углы прямые: Могут ли смежные углы быть: а) оба прямые; б) оба острые в) оба тупые?

7 класс. Геометрия. Смежные и вертикальные углы. — Смежные и вертикальные углы.

Комментарии преподавателя

Нач­нем наш урок с по­ня­тия «смеж­ные углы». На ри­сун­ке 1 изоб­ра­жен раз­вер­ну­тый угол ∠АОС и луч ОВ, ко­то­рый делит дан­ный угол на 2 угла.

                                

Рис. 1. Угол ∠АОС

Рас­смот­рим углы ∠АОВ и ∠ВОС. Вполне оче­вид­но, что они имеют общую сто­ро­ну ВО, а сто­ро­ны АО и ОС яв­ля­ют­ся про­ти­во­ле­жа­щи­ми. Лучи ОА и ОС до­пол­ня­ют друг друга, а зна­чит, они лежат на одной пря­мой. Углы ∠АОВ и ∠ВОС яв­ля­ют­ся смеж­ны­ми.

Опре­де­ле­ние: Если два угла имеют общую сто­ро­ну, а две дру­гие сто­ро­ны яв­ля­ют­ся до­пол­ня­ю­щи­ми лу­ча­ми, то дан­ные углы на­зы­ва­ют­ся смеж­ны­ми.

Тео­ре­ма 1: Сумма смеж­ных углов – 180о.

                              

Рис. 2. Чер­теж к тео­ре­ме 1

∠МОL + ∠LON = 180o. Дан­ное утвер­жде­ние яв­ля­ет­ся вер­ным, так как луч OL делит раз­вер­ну­тый угол ∠MON на два смеж­ных угла. То есть мы не знаем гра­дус­ных мер ни од­но­го из смеж­ных углов, а знаем лишь их сумму – 180о.

Рас­смот­рим пе­ре­се­че­ние двух пря­мых. На ри­сун­ке изоб­ра­же­но пе­ре­се­че­ние двух пря­мых  в точке О.

    

Рис. 3. Вер­ти­каль­ные углы ∠ВОА и ∠СОD

Опре­де­ле­ние: Если сто­ро­ны од­но­го угла яв­ля­ют­ся про­дол­же­ни­ем вто­ро­го угла, то такие углы на­зы­ва­ют­ся вер­ти­каль­ны­ми. Имен­но по­это­му на ри­сун­ке изоб­ра­же­но две пары вер­ти­каль­ных углов: ∠АОВ и ∠СОD, а также ∠AOD и ∠ВОС.

Тео­ре­ма 2: Вер­ти­каль­ные углы равны.

Ис­поль­зу­ем ри­су­нок 3. Рас­смот­рим раз­вер­ну­тый угол ∠АОС. ∠АОВ = ∠АОС – ∠ВОС = 180о – β. Рас­смот­рим раз­вер­ну­тый угол ∠ВОD. ∠CОD = ∠BОD – ∠BОС = 180о – β.

Из этих со­об­ра­же­ний мы де­ла­ем вывод, что ∠АОВ = ∠СОD = α. Ана­ло­гич­но, ∠AOD = ∠ВОС = β.

След­ствие 1: Угол между бис­сек­три­са­ми смеж­ных углов равен 90о.

                             

Рис. 4. Чер­теж к след­ствию 1

По­сколь­ку ОL – бис­сек­три­са угла ∠ВОА, то угол ∠LOB =  , ана­ло­гич­но ∠ВОК =  . ∠LOK = ∠LOB + ∠BOK =  +    =  . Сумма углов α + β равна 180о, по­сколь­ку дан­ные углы – смеж­ные.

След­ствие 2: Угол между бис­сек­три­са­ми вер­ти­каль­ных углов равен 180о.

                  

Рис. 5. Чер­теж к след­ствию 2

Оче­вид­но, что ∠KOL = ∠KOB + ∠BOC + ∠COL =  o. Сумма углов α + β равна 180о, так как дан­ные углы – смеж­ные.

Рас­смот­рим неко­то­рые за­да­чи:

При­мер 1:

Най­ди­те угол, смеж­ный с ∠АOС, если ∠АOС = 111о.

Ре­ше­ние:

Вы­пол­ним чер­теж к за­да­че:

                             

Рис. 6. Чер­теж к при­ме­ру 1

Ре­ше­ние

По­сколь­ку ∠АОС = β и ∠СOD = α смеж­ные углы, то α + β = 180о. То есть 111о + β = 180о.

Зна­чит, β = 69о.

Этот тип задач экс­плу­а­ти­ру­ет тео­ре­му о сумме смеж­ных углов.

При­мер 2:

Один из смеж­ных углов пря­мой, каким (ост­рым, тупым или пря­мым) яв­ля­ет­ся дру­гой угол?

Ре­ше­ние:

Если один из углов пря­мой, а сумма двух углов 180о, то и дру­гой угол тоже пря­мой. Эта за­да­ча про­ве­ря­ет зна­ния о сумме смеж­ных углов.

При­мер 3:

Верно ли, что если смеж­ные углы равны, то они пря­мые?

Ре­ше­ние:

Со­ста­вим урав­не­ние: α + β = 180о, но по­сколь­ку α = β, то β + β = 180о, зна­чит, β = 90о.

Ответ: Да, утвер­жде­ние верно.

При­мер 4:

Даны два рав­ных угла. Верно ли, что и смеж­ные им углы тоже будут равны?

Ре­ше­ние:

                                                   

Рис. 7. Чер­теж к при­ме­ру 4

Если два угла равны α, то со­от­вет­ству­ю­щие им смеж­ные углы будут 180о – α. То есть они будут равны между собой.

Ответ: Утвер­жде­ние верно.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/7-klass/nachalnye-geometricheskie-svedeniya/smezhnye-i-vertikalnye-ugly

http://www.youtube.com/watch?v=ZUuItx4QsXY

http://school-assistant.ru/?predmet=geometr&theme=vertikalnie_i_smeznie_ugli

http://istudy. su/wp-content/uploads/2013/01/2_%D0%A1%D0%BC%D0%B5%D0%B6%D0%BD%D1%8B%D0%B5-%D0%B8-%D0%B2%D0%B5%D1%80%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D1%83%D0%B3%D0%BB%D1%8B-731×1024.jpg

https://www.euroki.net/books/gdzs/1204/585711.png

http://www.uchportal.ru/_ld/339/33950____.rar

 

Вертикальные и смежные углы. Смежные и вертикальные углы

по теме: Смежные и вертикальные углы, их свойства.

(3 занятия)

В результате изучения темы нужно:

УМЕТЬ:

Понятия: смежных и вертикальных углов, перпендикулярных прямых

Различать понятия смежные и вертикальные углы

Теоремы смежных и вертикальных углов

Решать задачи с использованием свойств смежных и вертикальных углов

Свойства смежных и вертикальных углов

Строить смежные и вертикальные углы, перпендикулярные прямые

ЛИТЕРАТУРА:

1. Геометрия. 7 класс. Ж. Кайдасов, Г. Досмагамбетова, В. Абдиев. Алматы «Мектеп». 2012

2. Геометрия. 7 класс. К.О.Букубаева, А.Т. Миразова. Алматы « Атамұра ». 2012

3. Геометрия. 7 класс. Методическое руководство. К.О.Букубаева. Алматы « Атамұра ». 2012

4. Геометрия. 7 класс. Дидактический материал. А.Н.Шыныбеков. Алматы « Атамұра ». 2012

5. Геометрия. 7 класс. Сборник задач и упражнений. К.О.Букубаева, А.Т.Миразова. Алматы « Атамұра ». 2012

Помни, что работать нужно по алгоритму!

Не забывай проходить проверку, делать пометки на полях,

Пожалуйста, не оставляй без ответа, возникшие у тебя вопросы.

Будь объективен во время взаимопроверки, это поможет и тебе, и тому,

кого ты проверяешь.

ЖЕЛАЮ УСПЕХА!

ЗАДАНИЕ №1.

    Прочитай определение и выучи (2б):

Определение. Углы, у которых одна сторона общая, а две другие стороны являются дополнительными лучами, называются смежными.

2) Выучи и запиши в тетрадь теорему: (2б)

Сумма смежных углов равна 180.

Дано:

∠ АОД и ∠ ДОВ –данные смежные углы

ОД — общая сторона

Доказать:

∠ АОД + ∠ ДОВ = 180

Доказательство:

На основе аксиомы III 4:

∠ АОД + ∠ ДОВ = ∠ АОВ.

∠ АОВ — развернутый. Следовательно,

∠ АОД + ∠ ДОВ = 180

Теорема доказана.

3) Из теоремы следует: (2б)

1) Если два угла равны, то смежные с ними углы равны;

2) если смежные углы равны, то градусная мера каждого из них равна 90°.

Запомни!

Угол, равный 90°, называется прямым углом.

Угол, меньше 90°, называется острым углом.

Угол, больше 90° и меньше 180°, называется тупым углом.

Прямой угол Острый угол Тупой угол

Так как сумма смежных углов равна 180°, то

1) угол, смежный с прямым углом, прямой;

2) угол, смежный с острым углом, тупой;

3) угол, смежный с тупым углом, острый.

4) Рассмотри образец решения з адачи:

а) Дано: ∠ h k и ∠ kl — смежные; ∠ h k больше ∠ kl на 50° .

Найти: ∠ h k и ∠ kl .

Решение: Пусть ∠ kl = х, тогда ∠ h k = х + 50°. По свойству о сумме смежных углов ∠ kl + ∠ h k = 180°.

х + х + 50° = 180°;

2х = 180° — 50°;

2х = 130°;

х = 65°.

∠ kl = 65°; ∠ h k = 65°+ 50° = 115°.

Ответ: 115° и 65°.

б) Пусть ∠ kl = х, тогда ∠ h k = 3х

х + 3х = 180°; 4х = 180°; х = 45°; ∠ kl = 45°; ∠ hk = 135°.

Ответ: 135° и 45°.

5) Работа с определением смежных углов: (2 б)

6) Найди ошибки в определениях: (2б)

Пройди проверку №1

Задание №2

1)Построй 2 смежных угла так, чтобы их общая сторона проходила через точку C и сторона одного из углов совпадала с лучом AB.(2б)

2). Практическая работа на открытие свойства смежных углов: (5б)

Ход работы

1. Построй угол смежный углу а , если а : острый, прямой, тупой.

2. Измерь величины углов.

3. Данные измерений занеси в таблицу.

4. Найди соотношение между величинами углов а и .

5. Сделай вывод о свойстве смежных углов.

Пройди проверку №2

Задание №3

    Начертите неразвернутый ∠ АОВ и назовите лучи, являющиеся сторонами этого угла.

    Проведите луч О, являющийся продолжение луча ОА, и луч ОД, являющийся продолжение луча ОВ.

    Запишите в тетради: углы ∠ АОВ и ∠ СОД называются вертикальными. (3б)

    Выучи и запиши в тетрадь: (4б)

Определение: Углы, у которых стороны одного из них являются дополнительными лучами другого, называются вертикальными углами.

1 и

Лучи OF и OA , OC и OE являются попарно дополнительными лучами.

Теорема: Вертикальные углы равны.

Доказательство.

Вертикальные углы образуются при пересечении двух прямых. Пусть прямые а и b пересекаются в точке О. ∠ 1 и ∠ 2 –вертикальные углы.

∠ АОС-развернутый, значит ∠ АОС= 180°. Однако ∠ 1+ ∠ 2= ∠ АОС, т.е.

∠ 3+ ∠ 1= 180°, отсюда имеем:

1= 180 — 3. (1)

Также имеем, что ∠ ДОВ= 180°, отсюда ∠ 2+ ∠ 3= 180°, или 2= 180°- 3. (2)

Так как в равенствах (1) и (2) прямые части равны, то ∠ 1= ∠ 2.

Теорема доказана.

5). Работа с определением вертикальных углов:(2б)

6) Найди ошибку в определении:(2б).

Пройди проверку №3

Задание №4

1)Практическая работа на открытие свойства вертикальных углов:(5б)

Ход работы:

1.Построй угол β вертикальный углу α , если α :

острый, прямой, тупой.

2.Измерь величины углов.

3.Данные измерений занеси в таблицу

4.Найди соотношение между величинами углов α и β.

5.Сделай вывод о свойстве вертикальных углов.

2)Доказательство свойств смежных и вертикальных углов. (3б)

2) Рассмотри образец решения з адачи.

Задача. Прямые АВ и СД пересекаются в точке О так, что ∠ AOД = 35°. Найдите углы АОС и ВОС.

Решение:

1) Углы АОД и АОС смежные, поэтому ∠ BOC = 180° — 35° = 145°.

2) Углы АОС и ВОС также смежные, поэтому ∠ BOC = 180° — 145° = 35°.

Значит, ∠ BOC = ∠ АОД = 35°, причем эти углы являются вертикальными. Вопрос: верно ли утверждение, что любые вертикальные углы равны?

3) Решение задач на готовых чертежах: (3б)

1. Найти углы АОВ, АОD, COD.

3) Найти углы BOC, FOA.: (3б)

3. Найди на рисунке смежные и вертикальные углы. Пусть известны величины двух углов, отмеченных на чертеже, 28? и 90?. Можно ли найти величины остальных углов, не выполняя измерений (2б)

Пройди проверку №4

Задание №5

Проверь свои знания, выполнив проверочную работу №1

Задание №6

1) Самостоятельно докажи свойства вертикальных углов и запиши эти доказательства в тетрадь. (3б)

Учащиеся самостоятельно, используя свойства вертикальных и смежных углов, должны обосновать тот факт, что если при пересечении двух прямых один из образовавшихся углов прямой, то остальные углы также прямые.

2) Реши на выбор две задачи:

1.Градусные меры смежных углов относятся как 7:2. Найдите эти углы.(2б)

2.Один из углов, образовавшихся при пересечении двух прямых, в 11 раз меньше другого.Найдите каждый из углов.(3б)

3.Найдите смежные углы,если их разность и их сумма относятся как 2:9.(3б)

Задание №7

Молодец! Можешь приступать к проверочной работе №2.

Проверочная работа №1.

Реши на выбор любой из вариантов (10б)

Вариант 1

г)

Смежные

д) Начертите (на глаз) угол в 30° и

е) Какие углы называются вертикальными?

Два угла называются вертикальными, если орни равны.

ж) Из точки А провести две прямые, перпендикулярные прямой а

Можно провести только одну прямую.

Вариант 2

1.Ученик, отвечая на вопросы учителя, дал соответствующие ответы. Проверьте, верны ли они, пометив в третьем столбике словом «ДА», «НЕТ», «НЕ ЗНАЮ». В случает «НЕТ» запишите там же верный ответ или добавьте недостающее.

Д)

Нет. Они вертикальные

Е) Какие прямые называются перпендикулярными?

Две прямые называются перпендикулярными, если они пересекаются под прямым углом

Ж) Начертите вертикальные углы так, чтобы их стороны были перпендикулярными прямыми.

2. Назовите вертикальные углы на данном рисунке.

Итого:10 баллов

«5»-10баллов;

«4»-8-9 баллов;

«3»-5-7 баллов.

Проверочная работа №2.

Реши на выбор любой вариант

Вариант I

    Найдите смежные углы, если их разность и их сумма относятся как 2:9. (4б)

    Найдите все неразвернутые углы, образованные при пересечении двух прямых, если один из них на 240°, меньше суммы двух других.(6б)

Вариант II

1) Найдите смежные углы, если их разность и их сумма относятся как 5:8(4б)

2) Найдите все неразвернутые углы, образованные при пересечении двух прямых, если один из них на 60°, больше суммы двух других.

(6б)

Итого:10 баллов

«5»-10баллов;

«4»-8-9 баллов;

«3»-5-7 баллов.

Равна двум прямым углам.

Даны два смежных угла : АОВ и ВОС . Требуется доказать, что:

∠АОВ+∠ВОС= d+ d = 2d

Восставим из точки О к прямой АС перпендикуляр OD . Мы разделили угол АОВ на две части AOD и DOB так, что можно написать:

∠AO B = AO D+∠ D OB

Прибавим к обеим частям этого равенства по одному и тому же углу BOС , отчего равенство не нарушится:

AO B + BO С = ∠ AOD + D OB + BO С

Так как сумма D OB + BOС составляет прямой угол DO С , то

AO B+ BO С = AO D + DO С = d + d = 2 d,

что и требовалось доказать.

Следствия .

1. Сумма углов (AO B, BOС , СOD , DOE ), расположенных вокруг общей вершины (O ) по одну сторону прямой (AE ) равна 2 d = 180 0 , потому что эта сумма составляет сумму двух смежных углов , например таких: АОС + СОЕ

2. Сумма углов , расположенных вокруг общей вершины (O ) по обе стороны какой-нибудь прямой равна 4 d=360 0 ,

Обратная теорема.

Если сумма двух углов , имеющих общую вершину и общую сторону и не покрывающих друг друга, равна двум прямым углам (2d), то такие углы — смежные , т.е. две другие их стороны составляют прямую линию .

Если из одной точки (O) прямой (AB) восстановить к ней, по каждую ее сторону, перпендикуляры, то эти перпендикуляры образуют одну прямую (СD). Из всякой точки вне прямой можно опустить на эту прямую перпендикуляр и притом только один. С D .

Два угла называются вертикальными , если стороны одного составляют продолжение сторон другого.

Так, при пересечении двух прямых AB и С D образуются две пары вертикальных углов: AO D и СOB ; AOС и D OB .

Теорема.

Два вертикальных угла равны.

Пусть даны два вертикальных угла: AOD и С OB т.е. OB есть продолжение OA , а O С продолжение OD .

Требуется доказать, что AOD = С OB.

По свойству смежных углов можем написать:

AO D + D OB = 2 d

DOB + BOС = 2d

Значит: AOD + DOB = DOB + BOС.

Если вычесть из обеих частей этого равенства по углу D OB , получим:

AO D = BOС , что и требовалось доказать.

Аналогично докажем, что AOС = D OB .

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Сумма смежных углов равна 180°

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Вертикальные углы равны

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

АН — перпендикуляр к прямой

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Чертежный угольник

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x , тогда согласно теореме 1.
44° + х = 180°.
Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.
∠ АОС = 180° — ∠ COD = 180° — 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х. Тогда градусная мера большего угла будет Зх. Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.
Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол АОС) смежный с углом COD, и, значит, по теореме 1
∠ BOD = ∠ АОС = 180° — 50° = 130°.

1. Смежные углы.

Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (рис. 72): ∠АВС и ∠СВD, у которых одна сторона ВС общая, а две другие, АВ и ВD, составляют прямую линию.

Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.

Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.

Например, ∠АDF и ∠FDВ — углы смежные (рис. 73).

Смежные углы могут иметь самые разнообразные положения (рис. 74).

Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 180°

Отсюда прямой угол можно определить как угол, равный своему смежному углу.

Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.

Например, если один из смежных углов равен 54°, то второй угол будет равен:

180° — 54° = l26°.

2. Вертикальные углы.

Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На рисунке 75 углы EOF и АОС- вертикальные; углы АОЕ и СОF — также вертикальные.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.

Пусть ∠1 = \(\frac{7}{8}\) ⋅ 90°(рис. 76). Смежный с ним ∠2 будет равен 180° — \(\frac{7}{8}\) ⋅ 90°, т. е. 1\(\frac{1}{8}\) ⋅ 90°.

Таким же образом можно вычислить, чему равны ∠3 и ∠4.

∠3 = 180° — 1\(\frac{1}{8}\) ⋅ 90° = \(\frac{7}{8}\) ⋅ 90°;

∠4 = 180° — \(\frac{7}{8}\) ⋅ 90° = 1\(\frac{1}{8}\) ⋅ 90° (рис. 77).

Мы видим, что ∠1 = ∠3 и ∠2 = ∠4.

Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.

Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.

Убедиться в справедливости свойства вертикальных углов необходимо путём доказательства.

Доказательство можно провести следующим образом (рис. 78):

a + c = 180°;

b + c = 180°;

(так как сумма смежных углов равна 180°).

a + c = ∠b + c

(так как и левая часть этого равенства равна 180°, и правая его часть тоже равна 180°).

В это равенство входит один и тот же угол с .

Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: a = ∠b , т. е. вертикальные углы равны между собой.

3. Сумма углов, имеющих общую вершину.

На чертеже 79 ∠1, ∠2, ∠3 и ∠4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.

∠1 + ∠2 + ∠3 + ∠4 = 180°.

На чертеже 80 ∠1, ∠2, ∠3, ∠4 и ∠5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360°.

Другие материалы

Смежные углы – два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой.

Сумма смежных углов равна 180°

Вертикальные углы — это два угла, у которых стороны одного угла являются продолжение сторон другого.

Вертикальные углы равны.

2. Признаки равенства треугольников:

I признак : Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

II признак : Если стороны и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

III признак : Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны

3. Признаки параллельности двух прямых: односторонние углы, накрест лежащие и соответственные:

Две прямые на плоскости называются параллельными , если они не пересекаются.

Накрест лежащие углы: 3 и 5, 4 и 6;

Односторонние углы: 4 и 5, 3 и 6; рис. Стр55

Соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7;

Теорема : Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Теорема : Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Теорема : Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Теорема : если две параллельные прямые пересечены секущей, то накрест лежащие углы равны

Теорема : если две параллельные прямые пересечены секущей, то соответственные углы равны

Теорема : если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°

4. Сумма углов треугольника:

Сумма углов треугольника равна 180°

5. Свойства равнобедренного треугольника:

Теорема: В равнобедренном треугольнике углы при основании равны.

Теорема: В равнобедренном треугольнике биссектриса, проведенная к основанию, являетсямедианой и высотой (медиана наоборот), (биссектриса делит угол пополам, медиана делит сторону пополам, высота образует угол 90°)

Признак: Если два угла треугольника равны, то треугольник равнобедренный.

6. Прямоугольный треугольник:

Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть составляет 90 градусов)

В прямоугольном треугольнике гипотенуза больше катета

1. Сумма двух острых углов прямоугольного треугольника равна 90°

2. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы

3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°

7. Равносторонний треугольник:

РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК, плоская фигура, имеющая три стороны равной длины; три внутренних угла, образуемых сторонами, также равны и составляют 60 °С.

Сумма углов четырёхугольника равна 2 π = 360°.

Четырёхугольник можно вписать в окружность тогда и только тогда, сумма противоположных углов равна 180°

10. Признаки подобия треугольников:

I признак : если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны

II признак : если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

III признак : если три стороны одного треугольника порциональны трем сторонам другого, то такие треугольники подобны

11. Формулы:

· Теорема Пифагора: a 2 +b 2 =c 2

· Теорема sin:

· Теорема cos:

· 3 формулы площади треугольника:

· Площадь прямоугольного треугольника: S= S=

· Площадь равностороннего треугольника:

· Площадь параллелограмма: S = ah

· Площадь квадрата: S = a2

· Площадь трапеции:

· Площадь ромба:

· Площадь прямоугольника: S=ab

· Равносторонний треугольник. Высота: h=

· Тригонометрическая единица: sin 2 a+cos 2 a=1

· Средняя линия треугольника: S=

· Средняя линия трапеции : МК=

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12

Могут ли два прямых угла быть смежными. Prove with diagram at Algebra Den

Arithmetic

Additive Identity
Arithmetic Progression
Associative Property
Averages
Brackets
Closure Property
Commutative Property
Conversion of Measurement Units
Cube Root
Decimal
Distributivity of Multiplication over Addition
Divisibility Принципы
Равенство
Показатели
Факторы
Fractions
Fundamental Operations
H.C.F / G.C.D
Integers
L.C.M
Multiples
Multiplicative Identity
Multiplicative Inverse
Numbers
Percentages
Profit and Loss
Ratio and Proportion
Simple Interest
Square Root
Unitary Method

Algebra

Cartesian System
Order Отношение
Многочлены
Вероятность
Стандартные тождества и их приложения
Транспонирование

Геометрия

Основные геометрические термины
Кружные
Кривые
Углы
Определите линию, сегмент линии и лучи
Неколлинеарные точки
Параллелограмма
RECTANGE
ROMBUS
Квадратные
TRAPONOMONTY
000
9 TRAPONOMPROMONOM 9000
9 TRONOMOMONTY 9000.
9 66 Обработка данных

Среднее арифметическое
Таблица распределения частот
Графики
Медиана
Режим
Диапазон

Видео
Решенные проблемы
Главная >> Углы >> Виды углов >> Смежные углы >> Примеры
Могут ли два прямых угла быть смежными. Докажите схемой.
на схеме ниже:

∠ 1 = 90°
∠ 2 = 90°
Итак, ∠ 1 и ∠ 2 оба являются прямыми углами ……(1)

Теперь ∠ 1 и ∠ 2 имеют:
Общая вершина, т.е. «o» и
Обычная рука, т.е. «op»
Итак, мы можем сказать, что ∠ 1 и ∠ 2 смежные углы …..(2)

Теперь из утверждений (1) и (2) доказано, что

«Два прямых угла могут быть смежными».

Примеры связанных вопросов

  • Представляет ли следующая диаграмма смежные углы?

  • На следующем рисунке изображены смежные углы?

  • Докажите, что ∠ POQ и ∠ ROQ смежные углы?

  • На следующем рисунке изображены смежные углы?

  • Назовите на следующей диаграмме все смежные углы?

  • На следующей диаграмме; проверьте, какие из следующих углов являются смежными?

    1. ∠ AOB и ∠ BOC
    2. ∠ БПК и ∠ ВОС
    3. ∠ AOC и ∠ BOC

  • Могут ли два острых угла быть смежными. Объясните с помощью схемы.
  • Могут ли два тупых угла быть смежными. Объясните с помощью схемы.
  • Могут ли два прямых угла быть смежными. Докажите схемой.
  • Может ли острый угол примыкать к тупому углу. Докажите с помощью схемы.
  • Могут ли острый угол и прямой угол быть смежными углами. Объясните с помощью схемы.
  • Могут ли тупой и прямой углы быть смежными углами? Докажите схемой.
  • Могут ли два смежных угла быть дополнительными. Объясните с помощью схемы.
  • Могут ли два смежных угла быть дополнительными? Докажите с помощью схемы.
  • Две прямые линии на одной прямой.

    Евклид I. 13, 14.

    Содержание | Введение | Дом

    П л а н е   Г е е м е т р и я

    Приключение в языке и логике

    на основе

    Книга I. Предложения 13 и 14

    Предложение 13

    Предложение 14

    Уголки прямые. Дополнительные углы.

    МЫ ЗНАЕМ, ЧТО КОГДА ПРЯМАЯ ЛИНИЯ EB стоит на другой прямой

    и делаем смежные углы равными, то имеем два прямых угла. Но должно быть очевидно, что когда какая-либо прямая опирается на другую, то смежные углы ABC, ABD вместе равны двум прямым углам. Это следующее предложение.

    (Доказательство покажет, что два прямых угла CBE, EBD
    равны трем углам CBA, ABE, EBD;
    но углы CBA, ABD также равны этим трем углам;
    , поэтому CBA, ABD равны двум прямым углам.)

    Когда прямая линия, находящаяся на другой прямой, образует два угла, она либо образует два прямых угла, либо образует углы, которые вместе равны двум прямым углам.
     
    Пусть прямая AB проходит через прямую CD и образует
    два уголка CBA, ABD;
     
    то либо углы CBA, ABD два прямых угла, либо вместе они равны
    равны двум прямым углам.
     
    Ибо если угол CBA равен углу ABD, то они прямые
    уголки. (Определение 3)
     
    Но если они не равны, то провести ВЕ из точки В под прямым углом
    на CD; (л. 11)
     
    поэтому углы CBE, EBD два прямых угла.
     
    Теперь, начиная с углов
    CBA, ABE равны углу CBE,
     
    к каждому из которых присоединяется прямой угол EBD;
     
    поэтому три угла
     
    CBA, ABE, EBD равны углам CBE, EBD. (Аксиома 2)
     
    А, т.к. уголки
     
    ABE, EBD равны углу ABD,
     
    к каждому из этих стыковочных уголков CBA;
     
    поэтому три угла
     
    CBA, ABE, EBD равны углам CBA, ABD. (Аксиома 2)
     
    Но мы показали, что углы CBE, EBD равны тем же трем углам;
     
    и вещи, равные одной и той же вещи, равны друг другу;
    (Аксиома 1)
    поэтому уголки
    CBA, ABD равны углам CBE, EBD.
     
    Но CBE, EBD — два прямых угла;
     
    поэтому углы CBA, ABD вместе равны двум прямым углам.
     
    Поэтому когда прямая стоит на другой прямой и т.д. К.Э.Д.
    Следствие 1 . Когда две прямые пересекают друг друга, четыре угла, которые они образуют, вместе равны четырем прямым углам.
    Следствие 2 . Следовательно, когда любое количество прямых пересекается в одной точке, все углы, которые они образуют, вместе равны четырем прямым углам.

    Гипотеза предложения 13 состоит в том, что прямая, лежащая на другой, образует два угла. Но как не сделать два угла? Если бы он стоял на краю линии. В этом случае получится только один угол.

    Однако, когда он не стоит на краю, тогда образующиеся углы равны двум прямым углам. И наоборот — если углы

    ABC, ABD вместе равны двум прямым углам, тогда BD лежит на одной прямой с CB.

    Это предложение 14. Но нет предыдущего предложения или определения, которое давало бы критерий того, что две прямые составляют прямую. Это предложение есть критерий. Поэтому доказать это можно только косвенным методом.

    Таким образом, если мы предположим, что BD представляет собой , а не , лежащую на прямой линии с CB, то мы можем предположить, что это BE, поскольку прямая линия CB может быть продолжена в виде прямой линии. Но это приводит к выводу, что угол ABE равен углу ABD, меньший большему; что абсурдно. (Вы можете это показать?) Отсюда следует, что BD — единственная прямая, которая лежит на прямой с CB.

    Если две прямые лежат по разные стороны от данной прямой и, пересекаясь в одной точке этой прямой, образуют смежные углы, равные двум прямым углам, то эти две прямые лежат на одной прямой .
     
    Пусть две прямые CB, BD лежат по разные стороны от прямой AF, пересекаясь в точке B, и пусть смежные углы ABC, ABD равны двум прямым углам;
    , то BD будет на одной линии с CB.
     
    Ибо, если BD не лежит на прямой линии с CB, пусть BE находится на прямой линии с CB.
     
    Тогда, поскольку прямая AB лежит на (предполагаемой) прямой CBE,
     
    делает смежные углы ABC, ABE равными двум прямым. (л. 13)
    Но углы ABC, ABD также равны двум прямым углам. (гипотеза)
     
    Следовательно, углы ABC, ABE равны углам ABC, ABD.
    (Постулат 4 и Аксиома 1)
     
    От каждой пары отнять угол ABC;
     
    тогда остаточный угол ABE равен оставшемуся углу ABD,
    (Аксиома 3)
    меньшее к большему — что абсурдно.
     
    Следовательно, BE не находится на прямой линии с CB.
     
    Таким же образом можно доказать, что ни одна из прямых не является какой-либо другой прямой, кроме BD.
     
    Следовательно, , если две прямые и т. д.  Q.E.D.

    Уголки прямые. Дополнительные углы.

    Угол в планиметрии строго меньше двух прямых углов.

    Мы не думаем об углах ABC, CBD вместе как об одном угле. Угол, который мы называем углом ABD, — это тупой угол ABD, который меньше двух прямых углов.

    Если CD прямая, то и AB пересекается с ней, то в классическом

    Геометрию

    мы не называем CBD углом. Однако в современных методах лечения стало характерно называть КБД прямым углом.

    Прямой угол — это угол, стороны которого лежат на одной прямой
    друг с другом.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

    Карта сайта