Написать уравнение касательной функции f x. Калькулятор онлайн
Инструкция
Определяем угловой коэффициент касательной к кривой в точке М.
Кривая, представляющая собой график функции y = f(x), непрерывна в некоторой окрестности точки М (включая саму точку М).
Если значения f‘(x0) не существует, то либо касательной нет, либо она проходит вертикально. Ввиду этого, наличие производной функции в точке х0 обусловлено существованием невертикальной касательной, соприкасающейся с графиком функции в точке (х0, f(х0)). В этом случае угловой коэффициент касательной равен будет f»(х0). Таким образом, становится ясен геометрический смысл производной – расчет углового коэффициента касательной.
Найдите значение абсциссы точки касания, которую обозначаются буквой «а». Если она совпадает с заданной точкой касательной, то «а» будет ее х-координате. Определите значение функции f(a), подставив в уравнение функции величину абсциссы.
Определите первую производную уравнения функции f’(x) и подставьте в него значение точки «а».
Возьмите общее уравнение касательной, которое определяется как y = f(a) = f (a)(x – a), и подставьте в него найденные значения a, f(a), f «(a). В результате будет найдено решение графика и касательной.
Решите задачу иным способом, если заданная точка касательной не совпала с точкой касания. В этом случае необходимо в уравнение касательной вместо цифр подставить «а». После этого вместо букв «х» и «у» подставьте значение координат заданной точки. Решите получившееся уравнение, в котором «а» является неизвестной. Поставьте полученное значение в уравнение касательной.
Составьте уравнение касательной с буквой «а», если в условии задачи задано уравнение функции и уравнение параллельной линии относительно искомой касательной. После этого необходимо производную функции , чтобы координату у точки «а». Подставьте соответствующее значение в уравнение касательной и решите функцию.
Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.
Решение. Производная функции f (x ) существует для любого x R . Найдем ее:
= (3x 2 + 4x – 5)′ = 6x + 4.
Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:
y = (x 0) (x – x 0) + f (x 0),
y = 10(x – 1) + 2,
y = 10x – 8.
Ответ. y = 10x – 8.
Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.
Решение.
= (x 3 – 3x 2 + 2x + 5)′ = 3x 2 – 6x + 2.
Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).
В первом случае верно числовое равенство 5 = 2×0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2×2 + b , откуда b = 1.
Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.
Ответ. y = 2x + 5, y = 2x + 1.
Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).
Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 — абсцисса точки касания.
Производная функции f (x ) существует для любого x R . Найдем ее:
= (x 2 – 6x + 1)′ = 2x – 6.
Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:
y = (2x
y = (2x 0 – 6)x – x + 7.
Так как точка A принадлежит касательной, то справедливо числовое равенство
–5 = (2x 0 – 6)×2– x + 7,
откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).
Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.
Ответ. y = –6x + 7, y = 2x – 9.
Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.
Решение.
Пусть x 1 — абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 — абсцисса точки касания той же прямой с графиком функции g (x ).Производная функции f (x ) существует для любого x R . Найдем ее:
= (x 2 – 2x + 2)′ = 2x – 2.
Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:
y = (2x 1 – 2)(x – x 1) + x – 2x 1 + 2,
y = (2x 1 – 2)x – x + 2. (1)
Найдем производную функции g (x ):
= (–x 2 – 3)′ = –2x .
У = f(х) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f»(а). Мы этим уже несколько раз пользовались. Например, в § 33 было установлено, что график функции у = sin х(синусоида) в начале координат образует с осью абсцисс угол 45° (точнее, касательная к графику в начале координат составляет с положительным направлением оси х угол 45°), а в примере 5 § 33 были найдены точки на графике заданной к графику любой функции.
Пусть даны функция у = f(х) и точка М (а; f(а)), а также известно, что существует f»(а). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид у = кх+m, поэтому задача состоит в отыскании значений коэффициентов к и m.
С угловым коэффициентом к проблем нет: мы знаем, что к = f»(а). Для вычисления значения т воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(а) = ка+m, откуда находим, что m = f(а) — ка.
Осталось подставить найденные значения коэффициентов кит в уравнение прямой:
Нами получено уравнение касательной к графику функции у = f(х) в точке х=а.
Если, скажем,
Подставив в уравнение (1) найденные значения а = 1, f(а) = 1 f»(а) = 2, получим: у = 1+2(х-f), т.е. у = 2х-1.
Сравните этот результат с тем, что был получен в примере 2 из § 33. Естественно, получилось то же самое.
Именно поэтому мы и провели тангенсоиду в § 15 (см. рис. 62) через начало координат под углом 45° к оси абсцисс.
Решая эти достаточно простые примеры, мы фактически пользовались определенным алгоритмом, который заложен в формуле (1). Сделаем этот алгоритм явным.
АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x)
1) Обозначить абсциссу точки касания буквой а.
2) Вычислить 1 (а).
3) Найти f»(х) и вычислить f»(а).
4) Подставить найденные числа а, f(а), (а) в формулу (1).
Пример 1. Составить уравнение касательной к графику функции в точке х = 1.
Воспользуемся алгоритмом, учитывая, что в данном примере
На рис. 126 изображена гипербола , построена прямая у= 2-х.
Чертеж подтверждает приведенные выкладки: действительно, прямая у = 2-х касается гиперболы в точке(1; 1).
Ответ: у =2- х.
Пример 2. К графику функции провести касательную так, чтобы она была параллельна прямой у =4х — 5.
Уточним формулировку задачи. Требование «провести касательную» обычно означает «составить уравнение касательной». Это логично, ибо если человек смог составить уравнение касательной, то вряд ли он будет испытывать затруднения с построением на координатной плоскости прямой по ее уравнению.
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Но в отличие от предыдущего примера здесь имеется неясность: не указана явно абсцисса точки касания.
Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = 4х-5. Две прямые параллельны тогда и только тогда, когда равны их угловые коэффициенты. Значит, угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: Таким образом, значение а мы можем найти из уравнения f»(а)= 4.
Из уравнения Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2.

Теперь можно действовать по алгоритму.
Пример 3. Из точки (0; 1) провести касательную к графику функции
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее действуем по алгоритму.
По условию касательная проходит через точку (0; 1). Подставив в уравнение (2) значения х = 0, у = 1, получим:
Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение а =4 в уравнение (2), получим:
На рис. 127 представлена геометрическая иллюстрация рассмотренного примера: построен график функции
В § 32 мы отметили, что для функции у = f(х), имеющей производную в фиксированной точке х, справедливо приближенное равенство:
Для удобства дальнейших рассуждений изменим обозначения: вместо х будем писать а, вместо будем писать х и соответственно вместо будем писать х-а. Тогда написанное выше приближенное равенство примет вид:
А теперь взгляните на рис. 128. К графику функции у = f(х) проведена касательная в точке М (а; f (а)). Отмечена точка х на оси абсцисс близко от а. Ясно, что f(х) — ордината графика функции в указанной точке х. А что такое f(а) + f»(а) (х-а)? Это ордината касательной, соответствующая той же точке х — см. формулу (1). В чем же смысл приближенного равенства (3)? В том, что для вычисления приближенного значения функции берут значение ординаты касательной.
Пример 4. Найти приближенное значение числового выражения 1,02 7 .
Речь идет об отыскании значения функции у = х 7 в точке х = 1,02. Воспользуемся формулой (3), учтя, что в данном примере
В итоге получаем:
Если мы воспользуемся калькулятором, то получим: 1,02 7 = 1,148685667…
Как видите, точность приближения вполне приемлема.
Ответ: 1,02 7 =1,14.
А.Г. Мордкович Алгебра 10 класс
Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие
Совершенствование учебников и уроковисправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.
Сбор и использование персональной информации
Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.
От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.
Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.
Какую персональную информацию мы собираем:
- Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.
Как мы используем вашу персональную информацию:
- Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
- Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
- Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
- Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.
Раскрытие информации третьим лицам
Мы не раскрываем полученную от Вас информацию третьим лицам.
Исключения:
- В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
- В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.
Защита персональной информации
Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.
Соблюдение вашей конфиденциальности на уровне компании
Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.
В этой статье мы разберем все типы задач на нахождение
Вспомним геометрический смысл производной : если к графику функции в точке проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси ) равен производной функции в точке .
Возьмем на касательной произвольную точку с координатами :
И рассмотрим прямоугольный треугольник :
В этом треугольнике
Отсюда
Это и есть уравнение касательной, проведенной к графику функции в точке .
Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти и .
Есть три основных типа задач на составление уравнения касательной.
1. Дана точка касания
2. Дан коэффициент наклона касательной, то есть значение производной функции в точке .
3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.
Рассмотрим каждый тип задач.
1 . Написать уравнение касательной к графику функции в точке .
.
б) Найдем значение производной в точке . Сначала найдем производную функции
Подставим найденные значения в уравнение касательной:
Раскроем скобки в правой части уравнения. Получим:
Ответ: .
2 . Найти абсциссы точек, в которых касательные к графику функции параллельны оси абсцисс.
Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции в точках касания равно нулю.
а) Найдем производную функции .
б) Приравняем производную к нулю и найдем значения , в которых касательная параллельна оси :
Приравняем каждый множитель к нулю, получим:
Ответ: 0;3;5
3 . Написать уравнения касательных к графику функции , параллельных прямой .
Касательная параллельна прямой . Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной , а, тем самым, значение производной в точке касания . 2}»>. Мы получили под корнем отрицательное число, равенство не верно, и точка не принадлежит графику функции и не является точкой касания.
Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания .
Найдем значение .
Пусть — точка касания. Точка принадлежит касательной к графику функции . Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:
.
Значение функции в точке равно .
Найдем значение производной функции в точке .
Сначала найдем производную функции . Это .
Производная в точке равна .
Подставим выражения для и в уравнение касательной. Получим уравнение относительно :
Решим это уравнение.
Сократим числитель и знаменатель дроби на 2:
Приведем правую часть уравнения к общему знаменателю. Получим:
Упростим числитель дроби и умножим обе части на — это выражение строго больше нуля. 2} {8-3x_0>=0} }}{ }»>
Решим первое уравнение.
Решим квадратное уравнение, получим
Второй корень не удовлетворяет условию title=»8-3x_0>=0″>, следовательно, у нас только одна точка касания и её абсцисса равна .
Напишем уравнение касательной к кривой в точке . Для этого подставим значение в уравнение — мы его уже записывали.
Ответ:
.
Калькулятор онлайн. Уравнение прямой касательной к графику функции в заданной точке
Инструкция
Определяем угловой коэффициент касательной к кривой в точке М.
Кривая, представляющая собой график функции y = f(x), непрерывна в некоторой окрестности точки М (включая саму точку М).
Если значения f‘(x0) не существует, то либо касательной нет, либо она проходит вертикально. Ввиду этого, наличие производной функции в точке х0 обусловлено существованием невертикальной касательной, соприкасающейся с графиком функции в точке (х0, f(х0)). В этом случае угловой коэффициент касательной равен будет f»(х0). Таким образом, становится ясен геометрический смысл производной – расчет углового коэффициента касательной.
Найдите значение абсциссы точки касания, которую обозначаются буквой «а». Если она совпадает с заданной точкой касательной, то «а» будет ее х-координате. Определите значение функции f(a), подставив в уравнение функции величину абсциссы.
Определите первую производную уравнения функции f’(x) и подставьте в него значение точки «а».
Возьмите общее уравнение касательной, которое определяется как y = f(a) = f (a)(x – a), и подставьте в него найденные значения a, f(a), f «(a). В результате будет найдено решение графика и касательной.
Решите задачу иным способом, если заданная точка касательной не совпала с точкой касания. В этом случае необходимо в уравнение касательной вместо цифр подставить «а». После этого вместо букв «х» и «у» подставьте значение координат заданной точки. Решите получившееся уравнение, в котором «а» является неизвестной. Поставьте полученное значение в уравнение касательной.
Составьте уравнение касательной с буквой «а», если в условии задачи задано уравнение функции и уравнение параллельной линии относительно искомой касательной. После этого необходимо производную функции , чтобы координату у точки «а». Подставьте соответствующее значение в уравнение касательной и решите функцию.
Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.
Решение. Производная функции f (x ) существует для любого x R . Найдем ее:
= (3x 2 + 4x – 5)′ = 6x + 4.
Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:
y = (x 0) (x – x 0) + f (x 0),
y = 10(x – 1) + 2,
y = 10x – 8.
Ответ. y = 10x – 8.
Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.
Решение. Производная функции f (x ) существует для любого x R . Найдем ее:
= (x 3 – 3x 2 + 2x + 5)′ = 3x 2 – 6x + 2.
Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).
В первом случае верно числовое равенство 5 = 2×0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2×2 + b , откуда b = 1.
Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.
Ответ. y = 2x + 5, y = 2x + 1.
Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).
Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 — абсцисса точки касания.
Производная функции f (x ) существует для любого x R . Найдем ее:
= (x 2 – 6x + 1)′ = 2x – 6.
Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:
y = (2x 0 – 6)(x – x 0) + x – 6x + 7,
y = (2x 0 – 6)x – x + 7.
Так как точка A принадлежит касательной, то справедливо числовое равенство
–5 = (2x 0 – 6)×2– x + 7,
откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).
Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.
Ответ. y = –6x + 7, y = 2x – 9.
Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.
Решение. Пусть x 1 — абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 — абсцисса точки касания той же прямой с графиком функции g (x ).
Производная функции f (x ) существует для любого x R . Найдем ее:
= (x 2 – 2x + 2)′ = 2x – 2.
Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:
y = (2x 1 – 2)(x – x 1) + x – 2x 1 + 2,
y = (2x 1 – 2)x – x + 2. (1)
Найдем производную функции g (x ):
= (–x 2 – 3)′ = –2x .
Рассмотрим следующий рисунок:
На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ∆x; f(a + ∆x)) графика проведена секущая МР.
Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ∆х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.
Касательная к графику функции
Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.
При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f — это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).
Уравнение касательной
Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:
Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.
Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.
f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) — f’(x0)*x0.
Подставляем полученное значение в уравнение касательной:
y = f’(x0)*x + b = f’(x0)*x + f(x0) — f’(x0)*x0 = f(x0) + f’(x0)*(x — x0).
y = f(x0) + f’(x0)*(x — x0).
Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 — 2*x 2 + 1 в точке х = 2.
2. f(x0) = f(2) = 2 2 — 2*2 2 + 1 = 1.
3. f’(x) = 3*x 2 — 4*x.
4. f’(x0) = f’(2) = 3*2 2 — 4*2 = 4.
5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x — 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x — 7.
Ответ: y = 4*x — 7.
Общая схема составления уравнения касательной к графику функции y = f(x):
1. Определить х0.
2. Вычислить f(x0).
3. Вычислить f’(x)
В этой статье мы разберем все типы задач на нахождение
Вспомним геометрический смысл производной : если к графику функции в точке проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси ) равен производной функции в точке .
Возьмем на касательной произвольную точку с координатами :
И рассмотрим прямоугольный треугольник :
В этом треугольнике
Отсюда
Это и есть уравнение касательной, проведенной к графику функции в точке .
Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти и .
Есть три основных типа задач на составление уравнения касательной.
1. Дана точка касания
2. Дан коэффициент наклона касательной, то есть значение производной функции в точке .
3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.
Рассмотрим каждый тип задач.
1 . Написать уравнение касательной к графику функции в точке .
.
б) Найдем значение производной в точке . Сначала найдем производную функции
Подставим найденные значения в уравнение касательной:
Раскроем скобки в правой части уравнения. Получим:
Ответ: .
2 . Найти абсциссы точек, в которых касательные к графику функции параллельны оси абсцисс.
Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции в точках касания равно нулю.
а) Найдем производную функции .
б) Приравняем производную к нулю и найдем значения , в которых касательная параллельна оси :
Приравняем каждый множитель к нулю, получим:
Ответ: 0;3;5
3 . Написать уравнения касательных к графику функции , параллельных прямой .
Касательная параллельна прямой . Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной , а, тем самым, значение производной в точке касания .
Это второй тип задач на нахождение уравнения касательной.
Итак, у нас дана функция и значение производной в точке касания.
а) Найдем точки, в которых производная функции равна -1.
Сначала найдем уравнение производной.
Приравняем производную к числу -1. 2}»>. Мы получили под корнем отрицательное число, равенство не верно, и точка не принадлежит графику функции и не является точкой касания.
Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания .
Найдем значение .
Пусть — точка касания. Точка принадлежит касательной к графику функции . Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:
.
Значение функции в точке равно .
Найдем значение производной функции в точке .
Сначала найдем производную функции . Это .
Производная в точке равна .
Подставим выражения для и в уравнение касательной. Получим уравнение относительно :
Решим это уравнение.
Сократим числитель и знаменатель дроби на 2:
Приведем правую часть уравнения к общему знаменателю. Получим:
Упростим числитель дроби и умножим обе части на — это выражение строго больше нуля. 2} {8-3x_0>=0} }}{ }»>
Решим первое уравнение.
Решим квадратное уравнение, получим
Второй корень не удовлетворяет условию title=»8-3x_0>=0″>, следовательно, у нас только одна точка касания и её абсцисса равна .
Напишем уравнение касательной к кривой в точке . Для этого подставим значение в уравнение — мы его уже записывали.
Ответ:
.
Касательная — это прямая , которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.
Уравнение касательной выводится из уравнения прямой .
Выведем уравнение касательной, а затем — уравнение нормали к графику функции.
y = kx + b .
В нём k — угловой коэффициент.
Отсюда получаем следующую запись:
y — y 0 = k (x — x 0 ) .
Значение производной f «(x 0 ) функции y = f (x ) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f (x 0 ) . В этом состоит геометрический смысл производной .
Таким образом, можем заменить k на f «(x 0 ) и получить следующее уравнение касательной к графику функции :
y — y 0 = f «(x 0 )(x — x 0 ) .
В задачах на составление уравнения касательной к графику функции (а мы уже скоро
к ним перейдём) требуется привести
получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде . Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.
Теперь об уравнении нормали. Нормаль — это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали :
(x — x 0 ) + f «(x 0 )(y — y 0 ) = 0
Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет «холодным душем».
Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .
Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Найдём производную функции:
Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем
В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому
отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:
На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.
Следующий пример — тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг — приведение уравнения к общему виду.
Пример 2.
Решение. Найдём ординату точки касания:
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
Подставляем все полученные данные в «формулу-болванку» и получаем уравнение касательной:
Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):
Составляем уравнение нормали:
Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Находим уравнение касательной:
Перед тем, как привести уравнение к общему виду, нужно его немного «причесать»: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Распространённая ошибка при составлении уравнений касательной и нормали —
не заметить, что функция, данная в примере, — сложная и вычислять её производную как производную
простой функции. Следующие примеры — уже со сложными функциями (соответствующий урок откроется в новом окне).
Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
Внимание! Данная функция — сложная, так как аргумент тангенса (2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции.
Онлайн-калькулятор касательной с пошаговыми инструкциями и решением
Введение в калькулятор касательной
Калькулятор наклона касательной — это расширенный онлайн-инструмент, который может помочь вам в расчете касательных линий. Он использует наклон касательной для расчета уравнения касательной. Ему нужно только входное значение, чтобы предоставить вам касательную. Это позволяет сэкономить ваше время и энергию от ручных вычислений.
Калькулятор уравнения касательной линии сделан с использованием понятия производных. Поскольку он использует производную для вычисления наклона касательной, которая дает уравнение касательной, мы представляем этот инструмент, чтобы вы могли легко вычислить уравнение касательной без каких-либо ручных вычислений.
Формула, используемая Калькулятором горизонтальной касательной
Касательная линия — это линия, проведенная на кривой в точке изменения. Он представляет собой мгновенную скорость изменения в этой точке. Наклон линии кривой в этой точке вычисляется с использованием производной. Затем этот наклон используется для расчета уравнения касательной. Калькулятор уравнения касательной делает эти шаги быстро, чтобы получить результаты в течение нескольких секунд.
Формула, которую использует этот инструмент, выражается как;
$$y-y_1=m(x-x_1)$$
Также известна как стандартная форма касательной. Где (x1,y1) — координаты точек на кривой. Вы также можете использовать калькулятор нормальной линии, который предоставляет вам уравнение касательной линии и уравнение нормальной линии.
Искатель касательной использует приведенную выше формулу, чтобы легко и быстро получить уравнение касательной линии.
Как использовать калькулятор касательной с шагами?
Наш онлайн-калькулятор удобен и прост в использовании. Есть несколько простых и легких шагов, которые вы можете использовать для выполнения расчета с помощью этого инструмента. Эти шаги;
- На первом этапе вам необходимо ввести функцию кривой линии. На этом шаге вам нужно написать функцию, для которой вы хотите вычислить касательную.
- Теперь введите точку для расчета касательной в этой точке.
- Просмотрите функцию и нажмите кнопку расчета.
После нажатия кнопки расчета мы получим уравнение касательной в течение нескольких секунд. Он также предоставит вам график производной функции кривой и все расчеты.
Как найти калькулятор наклона касательной полярной кривой?
Калькулятор производных предлагает множество онлайн-инструментов, связанных с концепцией производных, которые можно легко найти в Интернете. Таким образом, вы можете легко найти онлайн-калькулятор касательной, выполнив следующие действия.
- Используйте основное ключевое слово для поиска инструмента в нужном браузере.
- Ваша поисковая система выдаст вам разные результаты. Из этих результатов вы можете выбрать калькулятор уравнения касательной.
- На странице сайта будет список производных инструментов.
Выберите нужный инструмент из списка. Или вы также можете использовать наши различные инструменты, такие как калькулятор экстремальных точек, который поможет вам рассчитать максимальные и минимальные баллы.
Зачем использовать калькулятор касательной параболы?
Производная имеет множество применений в исчислении. Одним из наиболее важных приложений является линейная аппроксимация. Он аппроксимирует функцию в ближайшей точке кривой данной функции. Другим производным приложением является касательная линия, рассчитанная с использованием скорости изменения. Поскольку он содержит сложные вычисления, наш калькулятор вертикальной касательной упрощает вам задачу.
При расчете уравнения касательной сначала необходимо вычислить наклон касательной. Но вам может понадобиться разъяснение, потому что это очень сложная концепция. Предлагаем воспользоваться этим калькулятором, позволяющим производить расчеты без посторонней помощи.
Преимущества использования касательной к калькулятору неявной кривой
Этот онлайн-калькулятор имеет множество преимуществ. Некоторые из них перечислены здесь;
- Он прост в использовании, потому что для его использования необходимо выполнить несколько простых шагов.
- Это бесплатно. Вам не нужно платить за другие премиальные инструменты.
- Он обеспечивает быстрые и 100% точные результаты, поэтому он надежен.
- Касательная линия к калькулятору неявной кривой поможет вам узнать больше о касательной линии.
Мы надеемся, что наш инструмент окажется для вас полезным. Вы также можете воспользоваться нашим калькулятором графика производной, который предоставит вам график производной функции.
Часто задаваемые вопросы
Как найти касательную?
Вы можете легко найти касательную, используя общую форму уравнения касательной. Это выражается как;
$$y-y1=m(x-x1)$$
Что такое касательная в тригонометрии?
Тангенс угла в тригонометрии — это отношение длин прилежащей стороны к противолежащей стороне. Чтобы значение функции косинуса не было равно нулю, это отношение функций синуса и косинуса острого угла.
Почему мы используем касательную?
Мы можем определить наклон криволинейной функции в определенном месте на кривой, используя касательную, что полезно. Также важно рассчитать наклон прямой линии.
Алан Уокер
Последнее обновление 01 марта, 2023Я математик, технарь и автор контента. Я люблю решать шаблоны различных математических запросов и писать так, чтобы все могли понять. Математика и технология сделали свое дело, и теперь пришло время извлечь из этого пользу.
Калькулятор касательной – Примеры, Калькулятор касательной онлайн
Калькулятор касательной используется для определения уравнения касательной к заданной кривой. В геометрии касательная — это линия, проведенная из внешней точки и проходящая через точку на кривой. Касательная – это линия или плоскость, которая касается кривой или изогнутой поверхности ровно в одной точке.
Что такое калькулятор касательной?
Калькулятор касательной линии — это онлайн-инструмент, который помогает найти уравнение касательной линии к заданной кривой, когда мы знаем координату x точки пересечения. Форму точки-наклона линии можно использовать для нахождения уравнения касательной. Чтобы использовать Калькулятор касательной введите значения в соответствующие поля ввода.
Калькулятор касательной
Как пользоваться калькулятором касательной?
Чтобы найти уравнение касательной с помощью онлайн-калькулятора касательной, выполните следующие действия:
- Шаг 1: Перейдите к онлайн-калькулятору касательной.
- Шаг 2: Введите значения в указанные поля ввода.
- Шаг 3: Нажмите кнопку » Кнопка «Вычислить «, чтобы найти уравнение касательной.
- Шаг 4: Нажмите кнопку « Сброс », чтобы очистить поля и ввести новые значения.
Мотыги Работает ли калькулятор касательной?
Чтобы определить уравнение касательной, нам нужно знать наклон прямой, а также точку, где она касается кривой. Если мы возьмем производную первого порядка данной функции и оценим ее в точке пересечения, мы сможем найти наклон касательной. Предположим, мы знаем функцию кривой f(x), которой касается касательная, и координату x, x 1 , точки пересечения. Затем мы можем выполнить шаги, указанные ниже, чтобы найти уравнение касательной.
- Подставьте значение координаты x, x 1 , в заданную функцию f(x). Это дает нам координату y, y 1 , точки пересечения.
- Дифференцировать заданную функцию кривой; f'(х).
- Подставить значение координаты x в f'(x). Это даст нам наклон касательной.
- Согласно точечно-наклонной форме уравнение прямой, проходящей через некоторую точку (x 0 , y 0 ) с наклоном m, задается как y — y 0 = m (x — x 0 ).
- Таким образом, используя эту концепцию, уравнение касательной может быть записано как y — y 1 = f'(x) (x — x 1 ). Подставьте значения в это уравнение, чтобы найти уравнение касательной линии.
Хотите найти сложные математические решения за считанные секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.
Запишитесь на бесплатный пробный урок
Решенные примеры на калькуляторе касательной
Пример 1:
Найдите уравнение касательной для заданной функции f(x) = 3x 2 при x = 2 и проверьте Это с помощью онлайн-калькулятора касательной.