Кубический и квадратный корень в одном уравнении. Решение примера.
Попробуем решить иррациональное уравнение методом возведения обеих частей уравнения в одну и ту же степень. Напомним его алгоритм:
-
Переходим к более простому уравнению, для чего один или большее число раз выполняем по кругу три следующих действия:
- Уединяем радикал.
- Возводим обе части уравнения в одну и ту же степень.
- Упрощаем вид полученного после возведения в степень уравнения.
- Решаем полученное уравнение.
- Отсеиваем посторонние корни, если раннее мы проводили возведение в четную степень.
Начнем с первого прохода тройки действий – уединим радикал, возведем обе части в степень и упростим полученное уравнение.
Уединение радикала приводит к уравнению .
Теперь возведем обе части уравнения в квадрат, что позволит в дальнейшем избавиться от корня в левой части. Имеем .
Упрощаем вид полученного уравнения при помощи преобразования уравнений. Отталкиваясь от определения корня, заменяем выражение в левой части уравнения тождественно равным ему выражением 2·x+1, это дает уравнение . Что касается дальнейшего упрощения вида уравнения, то целесообразно по одному из свойств корней вторую степень отправить под кубический корень, то есть, перейти к уравнению .
Как видно, первый проход цикла тройки действий (уединение радикала, возведение обеих частей уравнения в степень и упрощение вида уравнения) позволил избавиться от одного корня, но остался еще один корень. Чтобы избавиться от него, еще раз выполним три уже упомянутых действия.
Радикал у нас уже уединен в правой части. Переходим к возведению в степень.
Степень корня равна трем, поэтому обе части возведем в третью степень: .
Упростим вид полученного уравнения. Для этого заменим выражение в правой части уравнения тождественно равным ему выражением (x+1)2, получим (2·x+1)3=(x+1)2. После этого перенесем это выражение в левую часть: (2·x+1)3−(x+1)2=0. Дальше воспользуемся формулами сокращенного умножения квадрат суммы и куб суммы, раскроем скобки, а также сгруппируем и приведем подобные слагаемые:
8·x3+12·x2+6·x+1−(x2+2·x+1)=0,
8·x3+12·x2+6·x+1−x2−2·x−1=0,
8·x3+(12·x2−x2)+(6·x−2·x)+(1−1)=0,
8·x3+11·x2+4·x=0.
Так мы получили кубическое уравнение. В еще одном проходе тройки действий нет необходимости, так как полученное уравнение не содержит корней, и мы знаем, как решать кубические уравнения.
Для решения полученного кубического уравнения подходит метод разложения на множители. После вынесения за скобки переменной x, уравнение принимает вид x·(8·x2+11·x+4)=0, а оно равносильно совокупности двух уравнений x=0 и 8·x2+11·x+4=0. Отсюда первый корень уравнения очевиден: x1=0. Остальные корни найдем, решив квадратное уравнение 8·x2+11·x+4=0. Вычисляем дискриминант D=112−4·8·4=121−128=−7, он отрицательный, следовательно, квадратное уравнение не имеем действительных корней. Таким образом, кубическое уравнение 8·x 3+11·x2+4·x=0 имеет единственный корень x1=0.
Остался последний этап решения – отсеивание посторонних корней. В нашем случае этот этап необходим, так как найденный корень может оказаться посторонним для решаемого иррационального уравнения. Причин для этого две. Первая — выше мы проводили возведение обеих частей уравнения квадрат, а, как известно, это преобразование может привести к появлению посторонних корней. Вторая – мы переходили от уравнения к уравнению , при таком переходе происходит расширение ОДЗ, а это может привести к появлению посторонних корней. Итак, отсеем посторонние корни. Сделаем это через проверку подстановкой. Подставляем x1=0 в исходное уравнение:
Так как подстановка дала верное числовое равенство, то x1=0 – корень исходного уравнения. Других корней уравнение не имеет.
На первом этапе мы избавлялись от корней по очереди, в два приема, сначала от квадратного, затем — от кубического. При этом нам пришлось два раза проходить цикл из трех действий – уединение радикала, возведение в степень, упрощение вида. Но можно было избавиться сразу от обоих радикалов, прибегнув к одному возведению в степень. В какую именно степень? Несложно догадаться, что в шестую, или в двенадцатую, или в восемнадцатую, и т.д., то есть, в любую степень, равную кратному показателей корней. Целесообразно брать наименьшее общее кратное (НОК), так как это дает наиболее простое уравнение из возможных. В нашем случае НОК(2, 3)=6, поэтому, следует выполнять возведение в шестую степень. Покажем, как выглядит решение иррационального уравнения при таком подходе.
Что сумма корней. Действие с корнями: сложение и вычитание
Тема про квадратные корни является обязательной в школьной программе курса математики. Без них не обойтись при решении квадратных уравнений. А позже появляется необходимость не только извлекать корни, но и выполнять с ними другие действия. Среди них достаточно сложные: возведение в степень, умножение и деление. Но есть и достаточно простые: вычитание и сложение корней. Кстати, они только на первый взгляд кажутся такими. Выполнить их без ошибок не всегда оказывается просто для того, кто только начинает с ними знакомиться.
Что такое математический корень?
Это действие возникло в противовес возведению в степень. Математика предполагает наличие двух противоположных операций. На сложение существует вычитание. Умножению противостоит деление. Обратное действие степени — это извлечение соответствующего корня.
Если в степени стоит двойка, то и корень будет квадратным. Он является самым распространенным в школьной математике. У него даже нет указания, что он квадратный, то есть возле него не приписывается цифра 2. Математическая запись этого оператора (радикала) представлена на рисунке.
Из описанного действия плавно вытекает его определение. Чтобы извлечь квадратный корень из некоторого числа, нужно выяснить, какое даст при умножении на себя подкоренное выражение. Это число и будет квадратным корнем. Если записать это математически, то получится следующее: х*х=х 2 =у, значит √у=х.
Какие действия с ними можно выполнять?
По своей сути корень — это дробная степень, у которой в числителе стоит единица. А знаменатель может быть любым. Например, у квадратного корня он равен двум. Поэтому все действия, которые можно выполнить со степенями, будут справедливы и для корней.
И требования к этим действиям у них одинаковые. Если умножение, деление и возведение в степень не встречают затруднений у учеников, то сложение корней, как и их вычитание, иногда приводит в замешательство. А все потому что хочется выполнить эти операции без оглядки на знак корня. И здесь начинаются ошибки.
По каким правилам выполняется их сложение и вычитание?
Сначала нужно запомнить два категорических «нельзя»:
- нельзя выполнять сложение и вычитание корней, как у простых чисел, то есть невозможно записать подкоренные выражения суммы под один знак и выполнять с ними математические операции;
- нельзя складывать и вычитать корни с разными показателями, например квадратный и кубический.
Наглядный пример первого запрета: √6 + √10 ≠ √16, но √(6 + 10) = √16 .
Во втором случае лучше ограничиться упрощением самих корней. А в ответе оставить их сумму.
Теперь к правилам
- Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
- Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
- Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
- Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
- Вынести из-под знака радикала множитель, который дает целую степень.
- Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.
В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.
Это вся информация о том, как выполняется сложение корней.
Примеры, расположенные ниже, проиллюстрируют вышесказанное.Первое задание
Вычислить значение выражений:
а) √2 + 3√32 + ½ √128 — 6√18;
б) √75 — √147 + √48 — 1/5 √300;
в) √275 — 10√11 + 2√99 + √396.
а) Если следовать приведенному выше алгоритму, то видно, что для первых двух действий в этом примере ничего нет. Зато можно упростить некоторые подкоренные выражения.
Например, 32 разложить на два множителя 2 и 16; 18 будет равно произведению 9 и 2; 128 — это 2 на 64. Учитывая это, выражение будет записано так:
√2 + 3√(2 * 16) + ½ √(2 * 64) — 6 √(2 * 9).
Теперь нужно вынести из-под знака радикала те множители, которые дают квадрат числа. Это 16=4 2 , 9=3 2 , 64=8 2 . Выражение примет вид:
√2 + 3 * 4√2 + ½ * 8 √2 — 6 * 3√2.
Нужно немного упростить запись. Для этого производится умножение коэффициентов перед знаками корня:
√2 + 12√2 + 4 √2 — 12√2.
В этом выражении все слагаемые оказались подобными. Поэтому их нужно просто сложить. В ответе получится: 5√2.
б) Подобно предыдущему примеру, сложение корней начинается с их упрощения. Подкоренные выражения 75, 147, 48 и 300 будут представлены такими парами: 5 и 25, 3 и 49, 3 и 16, 3 и 100. В каждой из них имеется число, которое можно вынести из-под знака корня:
5√5 — 7√3 + 4√3 — 1/5 * 10√3.
После упрощения получается ответ: 5√5 — 5√3. Его можно оставить в таком виде, но лучше вынести общий множитель 5 за скобку: 5 (√5 — √3).
в) И снова разложение на множители: 275 = 11 * 25, 99 = 11 * 9, 396 = 11 * 36. После вынесения множителей из-под знака корня имеем:
5√11 — 10√11 + 2 * 3√11 + 6√11. После приведения подобных слагаемых получим результат: 7√11.
Пример с дробными выражениями
√(45/4) — √20 — 5√(1/18) — 1/6 √245 + √(49/2).
На множители нужно будет разложить такие числа: 45 = 5 * 9, 20 = 4 * 5, 18 = 2 * 9, 245 = 5 * 49. Аналогично уже рассмотренным, нужно вынести множители из-под знака корня и упростить выражение:
3/2 √5 — 2√5 — 5/ 3 √(½) — 7/6 √5 + 7 √(½) = (3/2 — 2 — 7/6) √5 — (5/3 — 7) √(½) = — 5/3 √5 + 16/3 √(½).
Это выражение требует того, чтобы избавиться от иррациональности в знаменателе. Для этого нужно умножить на √2/√2 второе слагаемое:
5/3 √5 + 16/3 √(½) * √2/√2 = — 5/3 √5 + 8/3 √2.
Для полноты действий нужно выделить целую часть у множителей перед корнями. У первого она равна 1, у второго — 2.
Квадратным корнем из числа X называется число A , которое в процессе умножения самого на себя (
Т.е. A * A = A 2 = X , и √X = A .
Над квадратными корнями (√x ), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y ).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.
Шаг 1. Извлечение квадратных корней
Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9 . Первое число 4 является квадратом числа 2 . Второе число 9 является квадратом числа 3 . Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5 .
Все, пример решен. Но так просто бывает далеко не всегда.
Шаг 2. Вынесение множителя числа из-под корня
Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54 .
Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3 ,
54 = 2 * 3 * 3 * 3 .
В числе 24 мы имеем множитель 4 , его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9 .
Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6
Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.
Шаг 3. Сокращение знаменателя
Рассмотрим следующую ситуацию: сумма двух квадратных корней — это знаменатель дроби, например, A / (√a + √b) .
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b .
Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a — b .
Аналогично, если в знаменателе имеется разность корней: √a — √b , числитель и знаменатель дроби умножаем на выражение √a + √b .
Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3) .
Пример сложного сокращения знаменателя
Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.
Для примера берём дробь: 12 / (√2 + √3 + √5) .
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5 .
Получаем:
12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.
Шаг 4. Вычисление приблизительного значения на калькуляторе
Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.
Пример вычисления приблизительного значения
Необходимо вычислить приблизительное значение данного выражения √7 + √5 .
В итоге получаем:
√7 + √5 ≈ 2,65 + 2,24 = 4,89 .
Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.
Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.
Формулы корней. Свойства квадратных корней.
Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)
В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.
Формулы корней, свойства корней и правила действий с корнями — это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да…
Начнём с самой простой. Вот она:
Если Вам нравится этот сайт…Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)
можно познакомиться с функциями и производными.
Факт 1.
\(\bullet\)
Возьмем некоторое неотрицательное число \(a\)
(то есть \(a\geqslant 0\)
). Тогда (арифметическим) квадратным корнем из числа \(a\)
называется такое неотрицательное число \(b\)
, при возведении которого в квадрат мы получим число \(a\)
: \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\]
Из определения следует, что \(a\geqslant 0, b\geqslant 0\)
. 2=400\\
\hline \end{array}\]
Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\]
Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\)
, то первоначально вы должны найти значения \(\sqrt{25}\)
и \(\sqrt{49}\)
, а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\)
или \(\sqrt b\)
при сложении \(\sqrt
a+\sqrt b\)
найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt
2+ \sqrt {49}\)
мы можем найти \(\sqrt{49}\)
– это \(7\)
, а вот \(\sqrt
2\)
никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt
2+7\)
. Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\)
Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad
\sqrt a:\sqrt b=\sqrt{a:b}\]
(при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot
2}=\sqrt{64}=8\)
;
\(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\)
;
\(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}=
5\cdot 8=40\)
. \(\bullet\)
Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\)
. Так как \(44100:100=441\)
, то \(44100=100\cdot 441\)
. По признаку делимости число \(441\)
делится на \(9\)
(так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\)
, то есть \(441=9\cdot 49\)
.
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}=
\sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\]
Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}=
\sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{
\dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot
\sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\)
Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\)
(сокращенная запись от выражения \(5\cdot
\sqrt2\)
). Так как \(5=\sqrt{25}\)
, то \
Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\)
,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\)
. 2\)
, поэтому \(\sqrt{16}=4\)
. А вот извлечь корень из числа \(3\)
, то есть найти \(\sqrt3\)
, нельзя, потому что нет такого числа, которое в квадрате даст \(3\)
.
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\)
и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\)
(число “пи”, приблизительно равное \(3,14\)
), \(e\)
(это число называют числом Эйлера, приблизительно оно равно \(2,7\)
) и т.д.
\(\bullet\)
Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\)
.
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
Факт 5.
\(\bullet\)
Модуль вещественного числа \(a\)
– это неотрицательное число \(|a|\)
, равное расстоянию от точки \(a\)
до \(0\)
на вещественной прямой. 2\\
&2>2,25 \end{aligned}\]
Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3
\(\bullet\)
Следует запомнить, что \[\begin{aligned}
&\sqrt 2\approx 1,4\\
&\sqrt 3\approx 1,7 \end{aligned}\]
Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
\(\bullet\)
Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. 2=168\cdot 168=28224\)
.
Следовательно, \(\sqrt{28224}=168\)
. Вуаля!
Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.
Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
- Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
- Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.
Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.
Содержимое:
Складывать и вычитать квадратные корни можно только при условии, что у них одинаковое подкоренное выражение, то есть вы можете сложить или вычесть 2√3 и 4√3, но не 2√3 и 2√5. Вы можете упростить подкоренное выражение, чтобы привести их к корням с одинаковыми подкоренными выражениями (а затем сложить или вычесть их).
Шаги
Часть 1 Постигаем основы
- 1 (выражение под знаком корня). Для этого разложите подкоренное число на два множителя, один из которых является квадратным числом (число, из которого можно извлечь целый корень, например, 25 или 9). После этого извлеките корень из квадратного числа и запишите найденное значение перед знаком корня (под знаком корня останется второй множитель). Например, 6√50 — 2√8 + 5√12. Числа, стоящее перед знаком корня, являются множителями соответствующих корней, а числа под знаком корня – это подкоренные числа (выражения). Вот как решать данную задачу:
- 6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Здесь вы раскладываете 50 на множители 25 и 2; затем из 25 извлекаете корень, равный 5, и 5 выносите из-под корня. Затем 5 умножаете на 6 (множитель у корня) и получаете 30√2.
- 2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. Здесь вы раскладываете 8 на множители 4 и 2; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 2 (множитель у корня) и получаете 4√2.
- 5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Здесь вы раскладываете 12 на множители 4 и 3; затем из 4 извлекаете корень, равный 2, и 2 выносите из-под корня. Затем 2 умножаете на 5 (множитель у корня) и получаете 10√3.
- 2 Подчеркните корни, подкоренные выражения которых одинаковы. В нашем примере упрощенное выражение имеет вид: 30√2 — 4√2 + 10√3. В нем вы должны подчеркнуть первый и второй члены (30√2 и 4√2 ), так как у них одинаковое подкоренное число 2. Только такие корни вы можете складывать и вычитать.
- 3 Если вам дано выражение с большим количеством членов, многие из которых имеют одинаковые подкоренные выражения, используйте одинарное, двойное, тройное подчеркивание для обозначения таких членов, чтобы облегчить решение этого выражения.
- 4
У корней, подкоренные выражения которых одинаковы, сложите или вычтите множители, стоящие перед знаком корня, а подкоренное выражение оставьте прежним (не складывайте и не вычитайте подкоренные числа!
). Идея в том, чтобы показать, сколько всего корней с определенным подкоренным выражением содержится в данном выражении.
- 30√2 — 4√2 + 10√3 =
- (30 — 4)√2 + 10√3 =
- 26√2 + 10√3
Часть 2 Практикуемся на примерах
- 1 Пример 1: √(45) + 4√5.
- Упростите √(45). Разложите 45 на множители: √(45) = √(9 x 5).
- Вынесите 3 из-под корня (√9 = 3): √(45) = 3√5.
- Теперь сложите множители у корней: 3√5 + 4√5 = 7√5
- 2 Пример 2: 6√(40) — 3√(10) + √5.
- Упростите 6√(40). Разложите 40 на множители: 6√(40) = 6√(4 x 10).
- Вынесите 2 из-под корня (√4 = 2): 6√(40) = 6√(4 x 10) = (6 x 2)√10.
- Перемножьте множители перед корнем и получите 12√10.
- Теперь выражение можно записать в виде 12√10 — 3√(10) + √5. Так как у первых двух членов одинаковые подкоренные числа, вы можете вычесть второй член из первого, а первый оставить без изменений.
- Вы получите: (12-3)√10 + √5 = 9√10 + √5.
- 3 Пример 3. 9√5 -2√3 — 4√5. Здесь ни одно из подкоренных выражений нельзя разложить на множители, поэтому упростить это выражение не получится. Вы можете вычесть третий член из первого (так как у них одинаковые подкоренные числа), а второй член оставить без изменений. Вы получите: (9-4)√5 -2√3 = 5√5 — 2√3.
- 4 Пример 4. √9 + √4 — 3√2.
- √9 = √(3 х 3) = 3.
- √4 = √(2 х 2) = 2.
- Теперь вы можете просто сложить 3 + 2, чтобы получить 5.
- Окончательный ответ: 5 — 3√2.
- 5 Пример 5. Решите выражение, содержащее корни и дроби. Вы можете складывать и вычислять только те дроби, у которых общий (одинаковый) знаменатель. Дано выражение (√2)/4 + (√2)/2.
- Найдите наименьший общий знаменатель этих дробей. Это число, которое делится нацело на каждый знаменатель. В нашем примере на 4 и на 2 делится число 4.
- Теперь вторую дробь умножьте на 2/2 (чтобы привести ее к общему знаменателю; первая дробь уже приведена к нему): (√2)/2 х 2/2 = (2√2)/4.
- Сложите числители дробей, а знаменатель оставьте прежним: (√2)/4 + (2√2)/4 = (3√2)/4 .
- Перед суммированием или вычитанием корней обязательно упростите (если возможно) подкоренные выражения.
Предупреждения
- Никогда не суммируйте и не вычитайте корни с разными подкоренными выражениями.
- Никогда не суммируйте и не вычитайте целое число и корень, например, 3 + (2x) 1/2 .
- Примечание: «х» в одной второй степени и квадратный корень из «х» – это одно и то же (то есть x 1/2 = √х).
Задавать вопрос
спросил
Изменено 3 года, 11 месяцев назад
Просмотрено 1к раз
$\begingroup$
Я знаю, что есть корни, потому что если мы примем уравнение как функцию и зададим -3 и 1 как $x$: 92 — 2(1) + 1 > 0 $$
Должен иметь корень между $[-3,1]$. Тем не менее, корень очень жесткий, и он появился на школьном тесте. Как я могу решить это просто?
Были даны варианты -10, -5, 0 , 5 и 10. Примечание: мы даже не выучили формулу кубического корня. В тесте были только логические задачи, и я не использовал никаких вычислений или сложных вещей. Поэтому должен быть более простой способ без использования концепций или формул кубического корня.
- полиномы
- конкурс-математика 92-3(ab+bc+ca)\right)$$
Формулы Виета — это формулы, связывающие коэффициенты многочлена с суммами и произведениями его корней.
$\endgroup$
4
$\begingroup$
Подсказка: используйте формулы Ньютона и формулы Виета https://brilliant.org/wiki/newtons-identities/
$\endgroup$
2
алгебраическое предварительное исчисление — сумма кубических корней комплексно-сопряженных чисел
спросил
Изменено 1 год, 9 месяцев назад
Просмотрено 3к раз
$\begingroup$
При решении следующего кубического уравнения: 93 — 15x — 4 = 0$$
Я получил одно из решений:
$$x = \sqrt[3]{2 {\color{red}+} 11i} + \sqrt[3]{2 { \color{red}-} 11i}$$
Когда я подсчитал на ручном калькуляторе, получилось ровно 4$. И действительно, когда я подставляю $x=4$ в исходное уравнение, получается решение. Итак, это похоже на правду:
$$\sqrt[3]{2 {\color{red}+} 11i} + \sqrt[3]{2 {\color{red}-} 11i} = 4$$
Итак, у нас есть сумма кубических корней из комплексных чисел, которая, тем не менее, дает реальный результат . Итак, я предполагаю, что эти два кубических корня должны быть комплексно-сопряженными друг другу, что, по-видимому, так и есть, судя по тому факту, что числа под кубическими корнями также являются комплексно-сопряженными друг другу (обратите внимание на знаки, отмеченные красным ).
Комплексные конъюгаты являются «зеркальными отражениями» друг друга, поэтому при сложении они дают реальный результат.
Кубические корни комплексно-сопряженных чисел делят их углы на 3, поэтому результаты должны оставаться комплексно-сопряженными числами, и я полагаю, что именно по этой причине их сумма также дает действительное число. Я прав? 93 — 15x — 4 = 0$$Почему я хожу по кругу с этим? И какие еще методы я могу использовать, чтобы взломать это и доказать, что эта сумма кубических корней действительно равна действительному числу $4$?
Inb4: Я уже установил геометрически, что эта сумма кубов действительно равна $4$, но теперь я хотел бы доказать это алгебраически и изучить общий метод работы с такими суммами кубов комплексно-сопряженных чисел.
Редактировать: Все ответы до сих пор, кажется, основаны на предположении, что я знаю, что это сложное выражение уже равно 2 (например, путем восстановления исходного кубического уравнения и нахождения его рациональных корней). Что меня больше интересует, так это то, как найти эквивалентные действительные решения, когда восстановление исходного кубического уравнения не работает, потому что оно не может быть решено с помощью теоремы о рациональных корнях. 93-15x-4$ на $x-4$.
$\endgroup$
4
$\begingroup$
Это не всегда будет работать так хорошо, и, вероятно, есть более короткий или, по крайней мере, более эффективный способ решения геометрических уравнений, но вот один подход, который работает для множества особых случаев, включая $\sqrt [3]{2+11i}+\sqrt[3]{2-11i}$.
Используя полярную форму комплексных чисел, мы видим, что искомое значение равно $2\sqrt{5}\cos\left(\dfrac{\arctan\frac{11}{2}}{3} \справа)$. Мы можем вычислить этот косинус, нарисовав на комплексной плоскости треугольник с вершинами $0$, $2$ и $2+11i$ и разделив угол на три части при $0$. 92-200000\шляпа{х}+1000000=0$. Проверка рациональных корней говорит нам, что у нас $\hat{x}=-5,1,-\frac{10}{11},\frac{10}{11}$ в качестве корней. Остальные являются корнями полученного квадратного числа: $\hat{x}=4(-2\pm\sqrt{3})$.
Мы знаем, что $\hat{x}$ должно быть положительным, так что это либо $1$, либо $10/11$, а проверка других уравнений показывает, что $\hat{x}=1$ верно, что приводит к косинусу равно $\dfrac{2}{\sqrt{5}*1}$, а исходное значение равно $2\sqrt{5}*\dfrac{2}{\sqrt{5}*1}=4\checkmark$.
$\endgroup$
1
$\begingroup$
В качестве альтернативы мы могли бы показать алгебраически, что
$$x=z+\bar z\имеет x=2Re(z)=2\sqrt 5\cdot \left(\cos \frac{\theta}3\right) =4$$
с
$$\theta = \arccos \frac{2}{5\sqrt5}$$
$\endgroup$
10
$\begingroup$
Цель состоит в том, чтобы показать, что
$$\sqrt[3]{2 + 11i} + \sqrt[3]{2 — 11i} = 4$$
Думаю, у вас возникнут проблемы с алгебраическим доказательством этого .
С точки зрения -неупорядоченного -поля, где доступны только операции $+ — \times\ \div$, это невозможно, так как три корня каждого числа неотличимы друг от друга, и для некоторых пар этих значения, тождество ложно.
Итак, нам предстоит работать в комплексной плоскости. Суть задачи состоит в том, чтобы найти действительную компоненту $\sqrt[3]{2+11i}$. «Очевидный» способ сделать это — вычислить арктангенс, разделить угол на три, а затем взять косинус. Реальное выполнение этого вычисления в общем случае и без приближения выходит за рамки возможностей нашей современной математики.
Это задача на три сечения угла, и это означает, что вы всегда будете возвращаться к решению кубического уравнения.
Я бы предложил подойти к проблеме факторизации иначе, используя алгоритм Кронекера (более старый, но более понятный) или алгоритм Кантора-Цассенхауса (наиболее широко применяемый в системах компьютерной алгебры). См. статью в Википедии о полиномиальной факторизации.
Идея состоит в том, чтобы разложить полином над полем рациональных чисел, а не над комплексным полем. Если ваш ответ не является рациональным, это не сработает (алгоритм сообщит вам, что полином неприводим), но если один из ваших корней является рациональным числом (например, 4), этот метод найдет его без циклических аргументов. .
Что делать, если ваш ответ нелогичен? Тогда лучшее, на что вы можете надеяться, — это найти неприводимый многочлен с одним действительным корнем, который и будет вашим решением, и я думаю, что вы упираетесь в фундаментальные теоретические ограничения, чтобы добиться большего.
$\endgroup$
$\begingroup$
Я думаю, что весь ваш путь совершенно неверен, потому что $\sqrt[3]{2+11i}$ — это набор из трех чисел, а $\sqrt[3]{2-11i}$ — это набор из трех чисел.
$\endgroup$
2
$\begingroup$
Вот странный подход: теорема о рациональном корне.