Длина медианы формула – Медиана треугольника, Медианы, Формулы нахождения медианы

Формула медианы - это... Что такое Формула медианы?


Формула медианы

Треугольник и его медианы.

Медиана треугольника ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

  • Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Из векторов, образующих медианы, можно составить треугольник.
  • Формула медианы через стороны:
, где mc — медиана к стороне c; a, b, c — стороны треугольника,
поэтому сумма квадратов медиан произвольного треугольника всегда в 4/3 раза меньше суммы квадратов его сторон.
  • Формула стороны через медианы:
, где ma,mb,
m
c медианы к соответствующим сторонам треугольника, a,b,c — стороны треугольника.

Медиана — это обезьяна, лазает по сторонам, делит их напополам.

См. также

Ссылки

Wikimedia Foundation. 2010.

  • Улица Академика Королёва
  • Гавал (музыкальный инструмент)

Смотреть что такое "Формула медианы" в других словарях:

  • Медиана треугольника — У этого термина существуют и другие значения, см. Медиана. Треугольник и его медианы. Медиана треугольника (лат.  …   Википедия

  • Медиана (геометрия) — Треугольник и его медианы. Медиана треугольника ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок. Содержание 1 Свойства 2 Формулы …   Википедия

  • Треугольник — У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве)  это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… …   Википедия

  • Теорема Лейбница (геометрия) — У этого термина существуют и другие значения, см. Список объектов, названных в честь Лейбница. Теорема или формула Лейбница  утверждение о медианах: Медианы треугольника ABC пересекаются в точке M. Для произвольной точки O плоскости имеет… …   Википедия

  • Ящик с усами — Не следует путать с японскими свечами. График 1. Результаты эксперимента Майкельсона Морли …   Википедия

  • АЛГЕБРА ЛОГИКИ —         система алгебраич. методов решения логич. задач, а также совокупность задач, решаемых такими методами. А. л. в узком смысле слова алгебраич. (табличное, матричное) построение классич. логики высказываний, в котором рассматриваются… …   Философская энциклопедия

  • Пренатальный скрининг — У этого термина существуют и другие значения, см. Скрининг. Пренатальный скрининг  комплекс медицинских исследований (лабораторных, ультразвуковых), направленный на выявление группы риска по развитию пороков плода во время беременности.… …   Википедия

  • Лейбниц, Готфрид Вильгельм — Готфрид Вильгельм Лейбниц Gottfried Wilhelm Leibniz …   Википедия

  • Математическое ожидание — (Population mean) Математическое ожидание – это распределение вероятностей случайной величины Математическое ожидание, определение, математическое ожидание дискретной и непрерывной случайных величин, выборочное, условное матожидание, расчет,… …   Энциклопедия инвестора

  • Список объектов, названных в честь Леонарда Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 …   Википедия

dic.academic.ru

Медиана, высота и биссектриса треугольника

Для решения задач по геометрии, связанных с треугольниками, важно усвоить одну простую, но важную истину. Существует третий признак равенства треугольников («по трем сторонам»), из которого следует, что не существует двух различных треугольников с одинаковыми сторонами. Следовательно, зная длины всех сторон треугольника, можно узнать об этом треугольнике все, что нужно. В том числе длины его медиан, биссектрис и высот. Разберем более подробно, каким образом это можно сделать.

Теорема о длине высоты треугольника

Для нахождения длины высоты треугольника можно расписать его площадь двумя способами. Во-первых, используя формулу Герона, во-вторых, как половину произведения высоты на основание, к которому проведена данная высота.

   

здесь — полупериметр треугольника.

Из сравнения данных формул находим:

   

Отметим, что это лишь один из способов нахождения длины высоты треугольника по его сторонам, который удобен далеко не всегда. Существует огромное множество альтернативных способов, с которыми читатель может ознакомиться в предыдущих уроках.

Пример 1. Известно, что расстояние от центра описанной окружности до стороны AB треугольника ABC равняется половине радиуса этой окружности. Найдите высоту треугольника ABC, опущенную на сторону AB, если она (высота) меньше а две другие стороны равны 2 и 3.

Решение. Треугольник BOA на рисунке является равнобедренным, поэтому ∠ OAH = ∠ OBH = 30° (катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы). Тогда ∠ BOA и соответствующая дуга окружности, на которую он опирается, равны по 120°. Тогда дуга, на которую опирается ∠ BCA, равна 240°, а значит сам угол ∠ BCA = 120°.

Площадь треугольника ABC находим по формуле: Длину стороны AB находим по теореме косинусов для треугольника ABC, она равна . С другой стороны, площадь треугольника есть половина произведения высоты на основание, к которому данная высота проведена. Отсюда выражаем требуемую длину высоты что меньше 

yourtutor.info

Ответы@Mail.Ru: Как найти медиану

1)Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей) : mc= √ (2a^2 +2b^2-c^2)/4 где mc — медиана к стороне c; a, b, c — стороны треугольника 2)Формула стороны через медианы: а = 2/3√ ( 2(mb^2+mc^2)-ma^2) , где ma,mb,mc медианы к соответствующим сторонам треугольника, a,b,c — стороны

Спасибо за решение

В тре­уголь­ни­ке ABC AB = BC = 95, AC = 114. Най­ди­те длину ме­ди­а­ны BM.(вариант ОГЭ). РЕШЕНИЕ: в таблице квадратов находим число 95(9025) и число 57((3249) 57 это 114/2),от 9025-3249=5776. ищем число 5776 в таблице квадратов, это получается цисло 76. Ответ ВМ= 76.

touch.otvet.mail.ru

Медиана прямоугольного треугольника

Примечание. В данном уроке изложены теоретические материалы и решение задач по геометрии на тему "медиана в прямоугольном треугольнике". Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Почти наверняка курс будет дополнен.

Определение медианы


Медианой треугольника называется отрезок, соединяющий один из углов треугольника с серединой противолежащей ему стороны.

(медианой также называют прямую, содержащую данный отрезок)

  • Медианы треугольника пересекаются в одной точке и делятся этой точкой на две части в отношении 2:1, считая от вершины угла. Точка их пересечения называется центром тяжести треугольника (относительно редко в задачах для обозначения этой точки используется термин "центроид"), 
  • Медиана разбивает треугольник на два равновеликих треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Большей стороне треугольника соответствует меньшая медиана.

Задачи по геометрии, предлагаемые для решения, в основном, используют следующие свойства медианы прямоугольного треугольника.

  • Сумма квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти квадратам медианы, опущенной на гипотенузу (Формула 1)
  • Медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы (Формула 2)
  • Медиана, опущенная на гипотенузу прямоугольного треугольника, равна радиусу окружности, описанной вокруг данного прямоугольного треугольника (Формула 2)
  • Медиана, опущенная на гипотенузу, равна половине корня квадратного из суммы квадратов катетов (Формула 3)
  • Медиана, опущенная на гипотенузу, равна частному от деления длины катета на два синуса противолежащего катету острого угла (Формула 4)
  • Медиана, опущенная на гипотенузу, равна частному от деления длины катета на два косинуса прилежащего катету острого угла (Формула 4)
  • Сумма квадратов сторон прямоугольного треугольника равна восьми квадратам медианы, опущенной на его гипотенузу (Формула 5)

Обозначения в формулах:

a, b - катеты прямоугольного треугольника

c - гипотенуза прямоугольного треугольника

Если обозначить треугольник, как ABC, то 

ВС = а

AC = b

AB = c

(то есть стороны a,b,c - являются противолежащими соответствующим углам)

ma - медиана, проведенная к катету а 

mb - медиана, проведенная к катету b

mc - медиана прямоугольного треугольника, проведенная к гипотенузе с

α (альфа) - угол CAB, противолежащий стороне а

Задача про медиану в прямоугольном треугольнике

Медианы прямоугольного треугольника, проведенные к катетам, равны, соответственно,  3 см и 4 см. Найдите гипотенузу треугольника

Решение

Прежде чем начать решение задачи, обратим внимание на соотношение длины гипотенузы прямоугольного треугольника и медианы, которая опущена на нее. Для этого обратимся к формулам 2, 4, 5 свойств медианы в прямоугольном треугольнике. В этих формулах явно указано соотношение гипотенузы и медианы, которая на нее опущена как 1 к 2. Поэтому,для удобства будущих вычислений (что никак не повлияет на правильность решения, но сделает его более удобным), обозначим длины катетов AC и BC через переменные x и y как 2x и 2y (а не x и y). 

Рассмотрим прямоугольный треугольник ADC. Угол C у него прямой по условию задачи, катет AC - общий с треугольником ABC, а катет CD равен половине BC согласно свойствам медианы. Тогда, по теореме Пифагора   

AC2 + CD2 = AD2

Поскольку AC = 2x, CD = y (так как медиана делит катет на две равные части), то
4x2 + y2 = 9 

Одновременно, рассмотрим прямоугольный треугольник EBC. У него также угол С прямой по условию задачи, катет BC является общим с катетом BC исходного треугольника ABC, а катет EC по свойству медианы равен половине катета AC исходного треугольника ABC.
По теореме Пифагора:
EC2 + BC2  = BE2

Поскольку EC = x (медиана делит катет пополам), BC = 2y, то
x2 + 4y2  = 16

Так как треугольники ABC, EBC и ADC связаны между собой общими сторонами, то оба полученных уравнения также связаны между собой.
Решим полученную систему уравнений. 
4x2 + y2 = 9
x2 + 4y2  = 16 

Сложим оба уравнения (впрочем, можно было выбрать и любой другой способ решения).
5x2 + 5y2 = 25  
5( x2 + y2 ) = 25
x2 + y2 = 5 

Обратимся к исходному треугольнику ABC. По теореме Пифагора  
AC2 + BC2  = AB2

Так как длина каждого из катетов нам "известна", мы приняли, что их длина равна 2x и 2y, то есть
4x2 + 4y2 = AB2
Так как оба слагаемых имеют общий множитель 4, вынесем его за скобки      
4 ( x2 + y2 ) = AB2  
Чему равно  x2 + y2 мы уже знаем (см. выше x2 + y2 = 5), поэтому просто подставим значения вместо  x2 + y2 

AB2 = 4 х 5
AB2 = 20
AB = √20 = 2√5  

Ответ: длина гипотенузы равна 2√5     

 Угол между высотой и медианой треугольника | Описание курса | Медіана прямокутного трикутника 

   

profmeter.com.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *