Интегрирование функций – Интегрирование некоторых функций

Содержание

Интегрирование некоторых функций

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Интегрирование некоторых функций» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Интегрирование некоторых функций

  1. Интегрирование рациональных функций

Функция вида называется рациональной дробью, если её числитель и знаменатель являются многочленами. Рациональная дробь называется правильной

, если степень числителя меньше степени знаменателя. Если же степень числителя больше либо равна степени знаменателя, то рациональная дробь называется неправильной.

Так как всякая неправильная дробь может быть представлена в виде суммы многочлена и правильной дроби, то интегрирование неправильной рациональной дроби сводится к интегрированию многочлена и правильной рациональной дроби.

Многочлены интегрируются просто. Рассмотрим интегрирование дробей вида , , которые называютсяпростейшими рациональными дробями.

.

.

Пусть знаменатель дробиимеет действительные корни и может быть представлен произведением множителей вида

. Тогда для каждого такого множителя имеет место разложение вида. Таким образом, всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших дробей. Выполняется это с помощью метода неопределённых коэффициентов.

Пример 1. Проинтегрировать дробь .

Решение. Разложим подынтегральную функцию на простейшие дроби:

. Приравняем коэффициенты при и свободные члены:Решим эту систему уравнений и получим,

. Тогда

.

  1. Интегрирование некоторых иррациональных функций

Если подынтегральная функция иррациональна, то с помощью замены переменной во многих случаях можно привести её к рациональному виду или к такой функции, интеграл от которой является табличным. Интегрирование при помощи замены переменной, которая приводит подынтегральное выражение к рациональному виду, называется интегрированием посредством рационализации подынтегрального выражения.

Интегралы вида приводятся к интегралам от рациональных функций аргумента t с помощью подстановки , гдеk – наименьшее общее кратное чисел .

Пример 2. Найти интеграл

.

Решение. Наименьшее общее кратное чисел иравно 6. Поэтому нужно применить подстановку. Тогда

. Подынтегральную функцию разложим на простейшие: . Приравняем коэффициенты прии свободные члены:Отсюда найдёмТогда. Таким образом,=. Так как, то. Подставим в полученное выражение:

.

Интегралы вида приводятся к интегралам от рациональных функций с помощью подстановки.

Пример 3. Найти интеграл .

Решение. Выполним подстановку :

.

  1. Интегрирование выражений, содержащих

тригонометрические функции

Рассмотрим основные случаи интегрирования выражений, содержащих тригонометрические функции.

При нахождении интегралов вида ,

, подынтегральные функции из произ-

ведений преобразовываются в суммы с помощью формул:

,

,

.

В результате полученные интегралы находятся с использованием методов интегрирования и таблицы интегралов. При этом можно использовать формулы и.

Пример 4. Найти интеграл .

Решение. Воспользуемся первой из вышеприведённых формул:

Интегралы вида можно находить довольно просто в следующих случаях.

Если m – положительное нечётное число, то можно отделить первую степень синуса и применить подстановку . Тогдаи подынтегральное выражение с помощью тригонометрических формул сведётся к степенным функциям. Еслиn — положительное нечётное число, то можно отделить первую степень косинуса и выполнить замену . Тогдаи подынтегральное выражение с помощью тригонометрических функций тоже сведётся к степенным функциям.

Пример 5. Найти интеграл .

Решение

.

.

Пример 6. Найти интеграл .

Решение.

.

Если m и n – неотрицательные чётные числа, то преобразование подынтегральных выражений можно выполнять с помощью формул понижения степени и.

Пример 7. Найти интеграл .

Решение.

.

Подынтегральная функция представляет собой дробь, в числителе которой находится степень синуса, а в знаменателе – степень косинуса, или наоборот. При этом показатели степени или оба чётные, или оба нечётные, т.е. одинаковой чётности.

В этом случае, если в числителе синус, то наиболее подходящей является подстановка

. Отсюда,,,.

Если же в числителе косинус, то удобно использовать подстановку . Тогда,,,.

Пример 8. Найти интеграл .

Решение.

.

Нахождение интегралов вида сводится с помощью подстановки

к нахождению интегралов от рациональных функций. Подстановканазываетсяуниверсальной тригонометрической подстановкой, которая всегда приводит к результату. В этом случае ,,,,.

Пример 9. Найти интеграл .

Решение. .

Вопросы для самоконтроля знаний

  1. Какая функция называется рациональной?

  2. Какая рациональная дробь называется правильной, а какая – неправильной?

  3. С помощью какой подстановки интегралы вида приводятся к интегралам от рациональных функций аргумента?

  4. С помощью какой подстановки интегралы вида

приводятся к интегралам от рациональных функций?

  1. Как находятся интегралы вида ,

,

  1. Что называется универсальной тригонометрической подстановкой и когда она используется?

Задания для самостоятельной работы

  1. Найти интегралы от рациональных функций:

а) ; б); в).

2) Проинтегрировать выражения, содержащие тригонометрические функции:

а)

; б); в);

г) ; д).

10

studfiles.net

Примеры интегрирования функций

Ниже приведены примеры интегрирования, каторые охватывают значительную часть разнообразных способов нахождения неопределенного интеграла. Такого типа примеры интегрирования функций Вы чаще всего увидите на 1,2 курсах учебы из высшей математики. Ниже приведены ответы одновременно и объясняют методику взятия интегралов, и служат инструкцией по их вычислению. Чтобы сэкономить время и место самих условий до примеров мы не выписывали.

Пример 1. Если бы перед интегралом имели множителем «икс», то его можно было бы внести под дифференциал и провести замену переменных.
Однако интеграл более сложен, потому выражения в скобках подносим к кубу, а дальше выполняем интегрирование каждого из слагаемых.


Пример 2. Задана дробная функция в знаменателе которой содержится иррациональность. Чтобы от нее избавиться функцию под корнем обозначим за новую переменную, дальше находим ее дифференциал и подставляем в интеграл. После незначительных манипуляций с показателями вычисляем интеграл, и вместо переменной подставляем выполненную замену.


Пример 3. Кто часто вычисляет интегралы или хорошо знает теорию интегралов, то в этом и подобных заданиях за новую переменную выбирает логарифм. При дифференцировании логарифма получаем единицу разделенную на «икс», который значительно упрощает дальнейшее интегрирование.
Напоследок не забывайте в примерах на замену переменных перейти к начальной переменной «икс».


Пример 4. Выполняем интегрирование частями, для этого синус вносим под дифференциал

После первого раза опять получим интеграл, который вычисляем интегрированием частями.


Пример 5. Имеем задание под правило интегрирования частями u*dv. За переменную выбираем экспоненту, а синус вносим под дифференциал.

После повторного интегрирования частями придем к рекуррентной формуле, из которой и определяем интеграл.


Пример 6. В этом интеграле квадратный трехчлен, который стоит в знаменателе надо возвести к сумме или разнице квадратов.

Дальше за формулами интегрирования получим арктангенс.


Пример 7. Интегрирование произведения тригонометрических функций дается не всем студентам, и здесь нужно учитывать как степени, так и сам вид функций.
В этом примере один косинус нужно внести под дифференциал и свести задание к интегрированию функции от синуса.


Сам интеграл не сложен и находится по правилу степенных функций .


Пример 8. Если имеем синусы или косинусы в показателях больше единицы, то за тригонометрическими формулами их надо расписать вплоть до первой степени. Дальше применяют формулы интегрирования синусов или косинусов.


Пример 9. Чтобы найти интеграл от дробной функции сначала разделим числитель на знаменатель, и полученную в остатке дробь распишем на самые простые дроби. После этого, используя формулы интегрирования, вычисляем значение каждого из интегралов.


Пример 10. Имеем интеграл от дробной функции

Записываем ее через самые простые дроби первого и второго типов.

Дальше возводим дроби под общий знаменатель и из условия равенства числителей складываем систему линейных уравнений для вычисления неизвестных постоянных.


После ее решения возвращаемся к дроби, подставляем сталые и выполняем интегрирование.


Пример 11. Имеем интеграл от дробной иррациональной функции. Для раскрытия иррациональности выполняем следующую замену переменных под интегралом

В результате придем к дробной рациональной функции под интегралом, которую расписав на простые дроби легко проинтегрировать.


Пример 12. В этом задании чтобы избавиться иррациональности под интегралом необходимо использовать одну известную схему.
Она заключается в том, что проведя следующую замену переменных придем к рациональной функции от косинуса.


После интегрирования возвращаемся к выполненной замене и на этом вычислению можно завершить.
Однако, если иметь под рукой тригонометрические формулы то ответ можно упростить и записать в более компактном виде.


Пример 13. Имеем в знаменателе рациональную функцию от косинуса и синуса. Такие интегралы следует находить через универсальную тригонометрическую замену t=tg (x/2)

После подстановки формул синус и косинуса через тангенс половины кута подинтегральная функция превратится к дробной, в знаменателе которой будем иметь квадратный трехчлен. Его возводим к квадрату выражения, которое содержит переменную и интегрируем по правилу степенных функций .

После интегрирования не забываем, что наше t=tg (x/2) и подставляем его в формулу интеграла.


На этом подборка примеров завершается, больше примеров Вы найдете в категории интегрирования.
Для увеличения базы готовых интегралов присылайте интересные примеры на Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. или заказывайте у нас решение контрольных и расчетных работ.

yukhym.com

Решение интегралов. Рассказываем, как решать интегралы.

Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная диференциированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .



Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b.
Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:

Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3.
Попробуем решить тоже самое не прибегая к построению, используя интегрирование:

Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными.
Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.

F(x) – первообразная. Дифференцируя первообразую, мы получим исходное подинтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференциируем полученный ответ и сравниваем с исходным выражением.
Основные функции и первообразные для них приведены в таблице:

Таблица первообразных для решения интегралов


Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:

Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.

Основные приемы решения интегралов

1. Замена переменной.

Для выполнения данного приема потребуется хороший навык нахождения производных.

2. Интегрирование по частям. Пользуются следующей формулой.

Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.

3. Интегрирование дробно-рациональных функций.
— разложить дробь на простейшие
— выделить полный квадрат.
— создать в числителе дифференциал знаменателя.

4. Интегрирование дробно-иррациональных функций.
— выделить под корнем полный квадрат
— создать в числителе дифференциал подкоренного выважения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
— Применяем свойство tg2x=1/cos2x — 1

С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первобразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию.
2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен.
3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя.
Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференциируем полученное выражение и сравниваем с исходным интегралом.
Отработаем основные моменты на нескольких примерах:

Примеры решения интегралов

Пример 1:
Решить интеграл:

Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.

Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:

Проверим решение(найдем производную):

Пример 2. Решаем интеграл

Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.

Но dx нужно тоже заменить на t. x= t5 — 5, dx = (t5 — 5)’ = 5t4. Подставляем:

Интеграл из таблицы. Считаем:

Подставляем в ответ вместо t ,

Решение интеграла:

Пример 3. Решение интеграла:

Для решения в этом случае необходимо выделить полный квадрат. Выделяем:

В данном случае коэфециент ? перед интегралом получился в результате замены dx на ?*d(2x+1). Если вы найдете производные x’ = 1 и ?*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.

В итоге получаем:

Для закрепления темы интегралов рекомендуем также посмотреть видео.

В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.

Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.

Рекламная заметка: Для особо пытливых умов советуем Видео-лекции по математическому программированию. Программирование одна из дочек математики!


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Интегрирование рациональных функций

Рациональная функция — это дробь вида , числитель и знаменатель которой — многочлены или произведения многочленов.

Из урока «Интегрирование некоторых рациональных дробей и иррациональностей» известно, что рациональные дроби бывают неправильные, если степень многочлена в её числителе не меньше степени многочлена в знаменателе, и правильные, если степень многочлена в числителе меньше степени многочлена в знаменателе. В том же уроке говорилось о том, как представить неправильную дробь в виде суммы её целой части и некоторой правильной дроби.

На этом уроке будем учиться интегрировать такие рациональные функции, которые представлены в виде правильных дробей. Для этого существует метод неопределённых коэффициентов, основанный на теореме, которая гласит, что всякая правильная дробь может быть представлена в виде суммы простых дробей.

Приведённый ниже алгоритм интегирования рациональных функций будет пошагово проиллюстрирован в примерах.

Алгоритм интегрирования рациональных функций

  • Шаг 1. Определить вид многочлена в знаменателе дроби (он может иметь действительные, кратные действительные, комплексные и кратные комплексные корни) и в зависимости от вида разложить дробь на простые дроби, в числителях которых — неопределённые коэффициенты, число которых равно степени знаменателя.
  • Шаг 2. Определить значения неопределённых коэффициентов. Для этого потребуется решить систему уравнений, сводящуюся к системе линейных уравнений.
  • Шаг 3. Найти интеграл исходной рациональной функции (дроби) как сумму интегралов полученных простых дробей, к которым применяются табличные интегралы.

Переходим к первому шагу алгоритма

Многочлен в знаменателе имеет действительные корни. То есть, в знаменателе имеет место цепочка сомножителей вида , в которой каждый из сомножителей находится в первой степени. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 1. Шаг 1. Дан интеграл от рациональной функции .

От нас требуется разложить подынтегральное выражение — правильную дробь на простые дроби.

Решение. Дискриминант уравнения положительный, поэтому многочлен в знаменателе имеет действительные корни. Получаем следующее разложение исходной дроби на сумму простых дробей:

.

Пример 2. Шаг 1.Дан интеграл от рациональной функции

.

Решение. Разложим знаменатель подынтегрального выражения на множители. Сначала можно вынести за скобки x. (На сайте есть урок о вынесении общего множителя за скобки.) Получаем следующую дробь:

.

Для разложения квадратного трёхчлена в скобках решаем квадратное уравнение:

Получаем разложение знаменателя на множители в подынтегральном выражении:

.

Дискриминант решённого выше квадратного уравнения положительный, то есть имеем дело со случаем, когда многочлен в знаменателе имеет действительные корни. Разложение исходной дроби подынтегрального выражения будет следующим:

.

Как и в первом примере, числа, обозначенные большими буквами, пока неизвестны. Отсюда и название — метод неопределённых коэффициентов.

Многочлен в знаменателе имеет кратные действительные корни. Этот случай имеет место, когда в цепочке сомножителей в знаменателе присутствует выражение вида , то есть один из многочленов в степени 2 и больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 3. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представляем разность квадратов в виде произведения суммы и разности .

Тогда подынтегральное выражение запишется в виде

,

все уравнения с многочленами которого имеют действительные корни. Это случай кратных действительных корней, так как последний сомножитель находится во второй степени. Получаем следующее разложение исходной дроби на простые дроби:

Как видим, в этом случае нужно понижать степень кратного многочлена с исходной до первой и записывать простую дробь с каждой из этих степеней в знаменатель.

Пример 4. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнения с многочленами в знаменателе имеют действительные корни, а сами многочлены присутствуют в степенях больше первой. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Многочлен в знаменателе имеет комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля. В этом случае при разложении дроби в простой дроби, соответствующей описанному выше сомножителю, в числителе нужно записывать линейное выражение с переменной x (это выражение — последнее в следующей записи):

Пример 5. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнение в скобках имеет комплексные корни, а оба сомножителя присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Пример 6. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представим знаменатель дроби в подынтегральном выражении в виде следующего произведения сомножителей:

.

Решение. Уравнение с последним сомножителем имеет комплексные корни, а все сомножители присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

Многочлен в знаменателе имеет кратные комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля и этот сомножитель присутствует в степени 2 или больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

То есть в сумме простых дробей число простых дробей с линейным выражением в числителе должно быть равно степени сомножителя, имеющего комплексные корни.

Пример 7. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен имеет комплексные корни и присутствует в знаменателе подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

Пример 8. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен в знаменателе имеет комплексные корни и присутствует в подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

На первом шаге мы представили подынтегральные дроби в виде суммы дробей с неопределёнными коэффициентами. В начале этого шага потребуется привести полученную сумму дробей к общему знаменателю. После этого в их числителях будут произведения неопределённых коэффициентов на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях.

Полученное таким образом выражение приравнивается к числителю исходной дроби. Затем составляется система из уравнений, в которых степени икса одинаковы. Путём решения системы и находятся неопределённые коэффициенты. Для решения достаточно знать, как системы уравнений решаются методом подстановки и методом сложения.

Пример 1. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

.

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

.

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем:

Можно заметить, что если принять за значение икса единицу, то второе и третье слагаемые в правой части равенства обратятся в нули и нет необходимости их вычислять. Тогда получаем, что . Далее по уже отработанной схеме получаем систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Полученные простые дроби и интегировать проще. К исходной сумме дробей применяется правило интеграла суммы (интеграл суммы равен сумме интегралов) и табличные интегралы. Чаще всего требуется применять табличные интегралы, приводящие к натуральному логарифму и арктангенсу.

Пример 1. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем изначальную рациональную функцию как сумму дробей и используем табличный интеграл, приводящий к натуральному логарифму:

Последнее действие с натуральным логарифмом — приведение к единому выражению под логарифмом — может требоваться при выполнении работ, но требуется не всегда.

Пример 2. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Вновь применяем табличный интеграл, приводящий к натуральному логарифму:

Пример 3. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

В результате интегрирования получаем сумму натуральных логарифмов и одной простой дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 4. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

В результате интегрирования получаем сумму натуральных логарифмов и одной дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 5. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем и получаем сумму натурального логарифма и арктангенса:

Пример 6. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Опять получаем сумму натурального логарифма и арктангенса:

Пример 7. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем натуральные логарифмы и дробь:

Приведение к единому логарифму попробуйте выполнить самостоятельно.

Пример 8. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем сумму натурального логарифма, арктангенса и дроби:

Начало темы «Интеграл»

Продолжение темы «Интеграл»

function-x.ru

Интегрирование функций — ПриМат

Рациональной функцией (или дробью) называется функция вида
$$f(x) = \displaystyle\frac{P(x)}{Q(x)},$$
где $P(x)$ и $Q(x)$ – многочлены. Если степень числителя меньше степени знаменателя, то рациональная дробь называется правильной. Ясно, что каждая рациональная дробь может быть представлена в виде
$$\displaystyle\frac{P(x)}{Q(x)} = R(x) + \displaystyle\frac{P_{1}(x)}{Q(x)},$$
где $R(x)$ – многочлен, а дробь $\displaystyle\frac{P_{1}(x)}{Q(x)}$ – правильная. Поскольку интегралы от многочленов вычисляются совсем просто, то мы будем рассматривать методы интегрирования правильных дробей.

Будем различать следующие четыре вида дробей:

  • $\displaystyle\frac{A}{x-a}$, где $A$, $a$ — постоянные.
  • $\displaystyle\frac{A}{(x-a)^k}$, где $A$, $a$ — постоянные, $k = 2,3 \ldots$
  • $\displaystyle\frac{Mx + N}{x^2 + px + q}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.

Покажем как вычисляются интегралы от каждой из этих дробей.

  • $\int \displaystyle\frac{a}{x-a}dx = A\ln\left | x — a \right | + C$.
  • $\int \displaystyle\frac{a}{(x-a)^k}dx = -\frac{A}{k-1}\cdot \displaystyle\frac{1}{(x-a)^{k-1}} + C$.
  • $\int \displaystyle\frac{Mx + N}{x^2 + px + q}dx$. Для вычисления этого интеграла представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{x^2 + px + q} = \displaystyle\frac{\frac{M}{2}(2x+p) + N — p\frac{M}{2}}{x^2 + px + q} = \displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{x^2 + px + q} + \displaystyle\frac{N-p\displaystyle\frac{M}{2}}{x^2 + px + q}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q$. Тогда получим
    $$\int \displaystyle\frac{2x + p}{x^2 + px + q} = \ln(x^2 + px + q) + C.$$
    Для вычисления интеграла от второго слагаемого справа выделим полный квадрат в знаменателе, т.е. представим знаменатель в виде $x^2 + px + q = (x+\displaystyle\frac{p}{2})^2 + q — \displaystyle\frac{p^2}{4}$. Поскольку квадратный трехчлен в знаменателе не имеет действительных корней, то его дискриминант $\displaystyle\frac{p^2}{4} — q < 0$. Обозначим $a^2 = q — \displaystyle\frac{p^2}{4}$. Выполняя замену $x + \displaystyle\frac{p}{2} = t$, получим
    $$\int \displaystyle\frac{1}{x^2 + px + q}dx = \int \displaystyle\frac{1}{(x+\displaystyle\frac{p}{2})^2 + a^2}dx = \int \displaystyle\frac{dt}{t^2 + a^2} = \frac{1}{a^2} \int \displaystyle\frac{dt}{\displaystyle\frac{t^2}{a^2} + 1} =\\= \displaystyle\frac{1}{a} \int \displaystyle\frac{d(\displaystyle\frac{t}{a})}{(\displaystyle\frac{t}{a})^2 + 1} = \displaystyle\frac{1}{a} \text{arctg}\: \displaystyle\frac{t}{a} + C .$$
    Возвращаясь теперь к старой переменной, получим исходный интеграл.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$. Для вычисления этого интеграла, как и в предыдущем случае, представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{(x^2 + px + q)^k} = \displaystyle\frac{\frac{M}{2}(2x + p) + N — p\displaystyle\frac{M}{2}}{(x^2 + px + q)^k} =\\=\displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{(x^2 + px + q)^k} + \displaystyle\frac{N-p\frac{m}{2}}{(x^2 + px + q)^k}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q.$ Тогда получим
    $$\int \displaystyle\frac{2x + p}{(x^2 + px + q)^k}dx = \displaystyle\frac{1}{-k+1}(x^2+px+q)^{-k+1} +C.$$
    Для вычисления интеграла от второго слагаемого, как и в предыдущем случае, выделим полный квадрат из квадратного трехчлена в знаменателе. Тогда после замены переменной $t = x+\displaystyle\frac{p}{2}$ он сведется к интегралу вида $\int \displaystyle\frac{dt}{(t^2+a^2)^k}$. Обозначим этот интеграл через $I_{k}$ и выведем рекуррентную формулу для вычисления этого интеграла. Будем применять формулу интегрирования по частям. Имеем
    $$ I_{k} = \int \displaystyle\frac{dt}{(t^2 + a^2)^k} = \begin{bmatrix}u = \displaystyle\frac{1}{(t^2+a^2)^k}, & dv = dt \\ du = -\displaystyle\frac{2kt}{(t^2+a^2)^{k+1}}, & v = t \end{bmatrix} =\\=\displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{t^2}{(t^2 + a^2)^{k+1}}dt = \displaystyle\frac{t}{(t^2 + a^2)^k}+2k\int\displaystyle\frac{t^2 + a^2 — a^2}{(t^2 + a^2)^{k+1}}dt =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{dt}{(t^2 + a^2)^k} — 2ka^2 \int \displaystyle\frac{dt}{(t^2 + a^2)^{k+1}} =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2kI_{k} — 2ka^2I_{k+1}.$$
    Отсюда находим
    $$I_{k+1} = \displaystyle\frac{1}{2ka^2}\begin{bmatrix} \displaystyle\frac{t}{(t^2 + a^2)^k} +(2k-1)I_k \end{bmatrix} (k = 1,2,\ldots).$$
    При этом, как мы уже вычислили ранее,
    $$I_{1} = \int \displaystyle\frac{dt}{t^2 + a^2} = \displaystyle\frac{1}{a} \text{arctg}\:\displaystyle\frac{t}{a} + C.$$
    Итак, и в этом случае мы получили правило вычисления интеграла от дроби четвертого вида.

Из основной теоремы алгебры следует, что каждый многочлен с действительными коэффициентами может быть представлен в виде произведения конечного числа линейных сомножителей вида $x — a$ и квадратичных сомножителей вида $x^2 + px + q$, где $\displaystyle\frac{p^2}{4} — q < 0$. Именно, справедливо равенство
$$Q(x) = A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x+q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}, (1)$$
где $k_i$ и $m_i$ – целые неотрицательные числа.
С использованием этого представления можно показать, что справедлива следующая

Теорема. Пусть $\displaystyle\frac{P(x)}{Q(x)}$ – правильная дробь, знаменатель которой допускает разложение (1). Тогда эта дробь единственным образом может быть представлена в виде суммы простых дробей, т.е.
$$\displaystyle\frac{P(x)}{Q(x)} = \sum_{i=1}^{r}\sum_{j=1}^{k_i}\displaystyle\frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^{r}\sum_{j=1}^{m_i}\displaystyle\frac{M_{ij}x + N_{ij}}{(x^2 + P_ix+q_i)^j}.$$

Выше уже показано, что интеграл от каждой простой дроби выражается через элементарные функции. Таким образом, справедлива

Теорема. Каждая рациональная дробь имеет первообразную, которая выражается через элементарные функции, а именно, с помощью рациональных функций, логарифмической функции и арктангенса.

Метод Остроградского. Этот метод интегрирования рациональных дробей предназначен для выделения рациональной части из интеграла от рациональной функции. Именно, используя представление (1), интеграл от правильной дроби представляется в виде
$$\int \displaystyle\frac{P(x)}{Q(x)} =\\=\int \displaystyle\frac{P(x)}{A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x +q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}}dx =\\=\int \displaystyle\frac{R_{k_1 + \ldots + k_r + 2(m_1 + \ldots + m_s) — r — 2s — 1}(x)dx}{A(x-a_1)^{k_1-1}\ldots(x-a_r)^{k_r-1}(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)^{m_s-1}} +\\+ \int \displaystyle\frac{S_{r+2r-1}(x)}{A(x-a_1)…(x-a_r)(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)}dx,$$
где многочлены $R_{k_1+\ldots+k_r+2(m_1 + \ldots + m_s)-r-2s-1}(x)$ и $S_{r+2s-1}(x)$ степени $k_1+\ldots+k_r+2(m_1+\ldots+m_s)-r-2s-1$ и $r+2s-1$ соответственно имеют неопределенные коэффициенты. Эти коэффициенты находятся затем из условия равенства производных левой и правой частей записанного равенства. Таким образом, вычисление интеграла от правильной дроби сводится к вычислению интеграла от другой правильной дроби, у которой в знаменателе все множители в первой степени. Такой интеграл вычисляется, как указано выше, путем разложения подынтегрального выражения
на простые дроби. Тем самым отпадает необходимость в использовании полученной выше рекуррентной формулы для вычисления интегралов от простой дроби четвертого типа.

Примеры решения задач

  1. Найти неопределенный интеграл $I = \int \displaystyle\frac{2x^2 — 3x + 3}{x^3 — 2x^2 + x}dx$.
    Решение

    Разложим знаменатель на множители: $x^3 -2x^2 + x = x(x-1)^2$. Тогда подынтегральная функция представима в виде

    $$\displaystyle\frac{2x^2-3x+3}{x(x-1)^2} = \displaystyle\frac{A}{x} + \displaystyle\frac{B}{x-1} + \displaystyle\frac{C}{(x-1)^2},$$
    где $A$, $B$, $C $ – постоянные коэффициенты. Для их нахождения приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем

    $$2x^2-3x+3=A(x-1)^2 + Bx(x-1)+Cx.$$

    Поскольку это тождество имеет место при всех $x$, кроме $x=0,x=1,$ то коэффициенты этих многочленов при одинаковых степенях $x$ равны. Приравнивая их, получаем линейную систему уравнений

    $$\left.\begin{matrix}x^2 : & A+B=2\\ x : & -2A-B+C=-3\\ x^0 : & A=3\end{matrix}\right\}$$

    Решая эту систему, находим $A = 3$, $B = −1$, $C = 2.$ Подставляя эти значения в разложение подынтегральной функции и вычисляя соответствующие интегралы, получаем
    $$I=3\ln\left | x \right | — \ln \left | x-1 \right | — \displaystyle\frac{2}{x-1} + C = \ln \displaystyle\frac{\left | x \right |^3}{\left | x-1 \right |} — \displaystyle\frac{2}{x-1} +C.$$

  2. Найти неопределенный интеграл $I = \int \displaystyle\frac{x dx}{x^3 + 1}dx$.
    Решение

    Как и в предыдущем примере, разложим на множители знаменатель:

    $$x^3 + 1 = (x+1)(x^2-x+1).$$
    Раскладываем подынтегральное выражение с неопределнными коэффициентами
    $$\displaystyle\frac{x}{x^3 + 1} = \displaystyle\frac{A}{x+1} + \displaystyle\frac{Mx+N}{x^2-x+1},$$
    откуда $x = A(x^2−x+1)+(Mx+N)(x+1)$. Приравнивая коэффициенты при одинаковых степенях $x$, составляем линейную систему для нахождения чисел $A$, $M$, $N$:
    $$\left.\begin{matrix}x^2 : & 0+A+M,\\ x : & 1=-A+M+N,\\ x^0 : & 0=A+N.\end{matrix}\right\}$$
    Решая эту систему, находим $A = −\displaystyle\frac{1}{3}, M = N =\displaystyle\frac{1}{3}$. Поэтому
    $$I=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{3}\int \displaystyle\frac{x+1}{x^2-x+1}dx=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\int \displaystyle\frac{2x-1}{x^2-x+1}dx + \displaystyle\frac{1}{2}\int \displaystyle\frac{dx}{x^2-x+1}=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{2} \int \displaystyle\frac{dx}{(x — \displaystyle\frac{1}{2})^2 + \displaystyle\frac{3}{4}} =\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{\sqrt{3}}\text{arctg}\:\displaystyle\frac{2}{\sqrt{3}}(x-\displaystyle\frac{1}{2}) + C.$$

  3. Найти неопределенный интеграл $\int \displaystyle\frac{(x^2 — 19x + 6)}{(x-1)(x^2 + 5x + 6)}dx$
    Решение

    Разложим знаменатель на множители: $(x-1)(x^2+5x+6) = (x-1)(x-2)(x-3).$ Тогда подынтегральная функция представима в виде:
    $$\displaystyle\frac{x^2-19x+6}{(x-1)(x^2+5x+6)} = \displaystyle\frac{A}{x-1} + \displaystyle\frac{B}{x+2} + \displaystyle\frac{C}{x+3}$$
    Для нахождения $A, B$ и $C$ приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем
    $$A(x^2 + 5x + 6) + B(x^2 + 2x — 3) + c(x^2 + x — 2) = x^2 -19x+6$$
    Приравнивая коэффициенты при одинаковых степенях $x$, составляем систему линейных уравнений для нахождения чисел $A, B, C$
    $$\left.\begin{matrix} x^2 : & 1=A+B+C \\ x : & -19 = 5A+2B+C \\ x^0 : & 6=6A-3B-2C \end{matrix}\right\}$$
    Решаем систему, получаем значения $A = -1; B = -16; C=18$. Возвращаемся к изначальному интегралу и находим окончательное решение
    $$\int (-\displaystyle\frac{1}{x-1}-\displaystyle\frac{16}{x+2}+\displaystyle\frac{18}{x+3})dx = -\ln\left | x-1 \right | — 16\ln\left | x+2 \right |+18\ln\left | x+3 \right | + C.$$

  4. Найти неопределенный интеграл $\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx$
    Решение

    По формуле суммы кубов раскладываем знаменатель на множители, используя формулу сокращенного умножения $a^3 + b^3 = (a+b)(a^2-ab+b^2)$
    $$\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx = \int \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}dx.$$
    Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей
    $$\displaystyle\frac{A}{x+2} +\displaystyle\frac{Bx+C}{x^2-2x+4} = \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}.$$
    Приводим дробь к общему знаменателю
    $$A(x^2 — 2x + 4) + B(x^2 + 2x) + C(x+2) = x^2-6x+8$$
    Составим и решим систему
    $$\left.\begin{matrix}x^2 : & A+B=1\\ x : & -2A+2B+C=-6\\ x^0 : & 4A+2C=8\end{matrix}\right\}$$
    Подставим значения $A = 2$, $B = -1$, $C = 0$ в функцию и найдем интеграл
    $$\int (\displaystyle\frac{2}{x+2} — \displaystyle\frac{x}{x^2-2x+4})dx = 2\int \displaystyle\frac{dx}{x+2} + \int \displaystyle\frac{-\displaystyle\frac{1}{2}d(x^2-2x+4) — dx}{x^2 -2x +4} =\\= 2\ln \left | x+2 \right | — \displaystyle\frac{1}{2}\int\displaystyle\frac{d(x^2-2x+4)}{x^2-2x+4} — \int\displaystyle\frac{dx}{x^2-2x+1 +3} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \int \frac{d(x-1)}{(x-1)^2 + (\sqrt{3})^2} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \frac{1}{\sqrt{3}}\text{arctg}\:(\frac{x-1}{\sqrt{3}}) + C.$$

Литература:

Смотрите также:

 

Поделиться ссылкой:

ib.mazurok.com

Интегрирование — Электронный учебник K-tree

Задача: посчитать площадь фигуры, которая ограничена произвольной функцией.

Пусть задана некоторая функция f : D ∈ R2 → R на закрытом интервале D=[a,b]. Разобьём область определения на промежутки и представим данный интервал в виде ряда: D = {x0=a,x1,…,xn-1,xn=b}.

Высшая сумма Римана

U(f,D) = Σni=1Mi(xi-xi-1), где Mi = sup x∈[xi-1,xi]{f(x)}

Низшая сумма Римана

L(f,D) = Σni=1Mi(xi-xi-1), где Mi = inf x∈[xi-1,xi]{f(x)}

Интеграл Римана

Пусть дана функция f ограниченная на интервале [a,b]. Функция является интегрируемой на интервале [a,b] и значение интеграла равно s, если

ba f = ∫ba f = s ∴ ∫ba f = s
Критерий интегрируемости Римана

Функция f, ограниченная на интервале [a,b], является интегрируемой, если для любого ε > 0 существует такое разделение области определения, что U(f,D) — L(f,D) < ε

Теоремы интегрального исчисления

Теорема о среднем значении

Пусть дана непрерывная функция f : [a,b] ⊂ R → R, тогда существует c ∈ (a,b) такое, что f(c) = ∫baf(t)dt / (b-a) и это значение будет иметь смысл среднего арифметического.

Основная теорема анализа

Пусть дана непрерывная функция f(x), тогда существует некоторая дифференциируемая функция F(x) такая, что F(x) = ∫xaf(t)dt. При этом F'(x) = f(x). Функция F называется первообразной функции f. Если F и G — две первообразные фукнции f, то они различаются на константу: G(x) = F(x) + c

baf(x)dx = F(b) — F(a) = F(x) ]x=bx=a

Интегрирование по частям

d(u⋅v) = du⋅v + dv⋅u
∫udv = u⋅v — ∫v du
bau⋅dv = u⋅v]ba — ∫bav du

Замена переменной

Пусть даны две функции f и g, G — первообразная g, тогда по правилу цепочки:
(G○f(x))’ = G'(f(x))⋅f'(x) = g(f(x))⋅f'(x)
Заменим t = f(x), dt = f'(x)dx и получим следующий интеграл:
∫g(f(x))f'(x)dx = ∫g(t)dt = G(t) + C = G(f(x)) + C

Нахождение площади с помощью интеграла

Задача: найти площадь фигуры, ограниченной эллипсом с радиусами a и b.

Уравнение эллипса выглядит так: x2/a2 + y2/b2 = 1.
Для расчёта площади нам необходимо получить выражение функции y=f(x), выразим y:
y = √[b2(1-x2/a2)]
Площадь фигуры:
A = 2∫a-af(x)dx = 2 ∫a-a √[b2(1-x2/a2)dx] = 2 (b/a)∫√[a2-x2]dx
Воспользуемся заменой переменной a⋅sin(t) = x, a⋅cos(t)dt = dx:
= 2(b/a)a2π/2-π/2cos2tdt = 2ba∫π/2-π/2[(1+cos2t)/2]dt = ab(t + &half;sin2t)π/2-π/2 = πab
Площадь между графиками двух функций

Площадь между двумя функциями на закрытом интервале [a,b] определяется как ∫ba|f(x)-g(x)|dx. На практике проще разбить интеграл на интервалы, в которых не меняется знак и проинтегрировать найденные участки отдельно.

Объём фигуры метод дисков

Пусть дана некоторая функция f : [a,b] → R. Объём фигуры, образованной путём вращения функции вокруг оси X можно найти с помощью интеграла: V = ∫bay2dx

Длина кривой

Длина кривой, образованной некоторой функцией f, между точками a и b равна интегралу: L = ∫ba √[1+f'(x)]dx.

Площадь поверхности тела вращения

Площадь поверхности тела вращения, образованного в результате вращения функции f(x) вокруг оси x, равна интегралу: A = 2π∫baf(x)√[1+f'(x)2]dx

k-tree.ru

Интегрирование функций методом замены переменных

Примеры на интегрирование функций методом замены переменных взято из материалов контрольной работы, которую задавали студентам 1, 2 курсов математических факультетов. Для экономии Вашего времени сами условия задач пропущенные, везде нужно или «Найти неопределенный интеграл» или «Вычислить интеграл». Текста в комментариях к каждому заданию ровно столько, сколько нужно Вам для усвоения материала и изучение методики и схем интегрирования.


Пример 1. При интегрировании дробной функции необходимо в знаменателе корень квадратный превратить в показатель, далее разделить числитель на знаменатель и полученные слагаемые проинтегрировать. Если не вдаваться в детали то в конечном варианте интеграл примет значение

Для большинства студентов ход вычислений должен быть понятным, если переход между последними двумя строками Вы не можете осуществить то начните с того, что откройте или распечатайте основные формулы интегрирования.


Пример 2. Имеем под интегралом дробь от синус функции, которую упрощаем делением числителя на знаменатель. Далее знаменатель дроби во втором интеграле расписываем по теореме косинуса, а синус вносим под дифференциал. Таким образом перейдем к новой переменной t=cos(x) в интегрировании.

Второй интеграл по табличным формулам равный разнице логарифмов от простых множителей знаменателя

Возвращаемся к замене которую выполняли. На этом интегрирования можно было и завершить, а можно записать в компактном виде. Но для этого необходимо знать или иметь под рукой тригонометрические формулы и свойства логарифма.


Пример 3. Для вычисления интеграла запишем знаменатель дроби в виде разности квадратов, а дальше умножим на минус единицу и сведем к разности логарифмов от простых множителей

Минус перед логарифмом преобразовали в показатель функции, поэтому дробь под логарифмом в конечном варианте перевернута.


Пример 4. Очень поучительное задание на интегрирование, побольше бы таких на контрольных и тестах. Если бы в степени имели 3 или 4, то поднимать еще хоть как-то было бы можно. Здесь же стоит 10, поэтому возводить к 10 степени мало кто захочет. Выражение в скобках в подобных заданиях на интегрирование обозначьте за новую переменную t=2x+5. Далее применяем табличную формулу и после того как проинтегрировали не забываем подставить замену.

Хорошо запомните схему вычисления этого интеграла.


Пример 5. На первый взгляд сложный интеграл, однако схема вычислений достаточно проста. Обозначим арккосинус за новую переменную t=arccos(x) и запишем ее дифференциал. Как видите дифференциал равен dx разделить на знаменатель. И такая схема присущая большинству сложных примеров на неопределенные интегралы. Поэтому Ваша основная задача — научиться видеть замены переменных, схемы возведения под табличную формулу, удачно выбирать функцию под правило интегрирования по частям. А для этого нужно решить много интегралов, поэтому лучше учиться на готовых ответах + самостоятельная работа.


Пример 6. Под интегралом имеем дробную иррациональную функцию от экспоненты. Для вычисления интеграла обозначим функцию под корнем за новую переменную. Также преобразуем экспоненту в числителе и найдем дифференциал от новой переменной.

После таких действий полученный интеграл по сложности ничем не будет уступать первому из рассмотренных примеров. После интегрирования не забываем вернуться к выполненной в начале замене переменных.


Пример 7. Для вычисления этого и подобных примеров Вы должны знать что производная от логарифма равна единице разделенной на переменную. Таким образом большинство интегралов где содержится показательная функция от логарифма и «икс» в знаменателе за новую переменную выбирайте логарифм t=ln(x). В результате интеграл существенно упростится и получим компактный ответ


Остальные ответы в следующих материалах. Помните что такого рода интегралы задают на контрольной и тестах, поэтому внимательно разбирайте ответы к заданиям.

Готовые решения контрольной по интегрированию

yukhym.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *