Как решать log уравнения – Логарифмические уравнения Решения. Разбор примеров..

Содержание

Решение логарифмических уравнений. Как решать, на примерах.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с понятием и видами логарифмов и основными формулами.
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид logax = b, где a и b -некоторые числа,x — неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log2х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log22. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log2х = log216. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения logax = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log2х = 2log2 (1- х) потенцирование неприменимо — коэффициент 2 справа не позволяет. В следующем примере log2х+log2 (1 — х) = log2 (1+х) также не выполняется одно из ограничений — слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

loga (…) = loga (…)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log3 (2х-5) = log3х

Применяем потенцирование, получаем:

2х-5 = х

х=5

Пойдем дальше. Решим следующий пример:

log3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм — это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

3 2 = 2х-1

Дальше уже дело техники:

2х-1 = 9

х =5

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо. Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log39, ведь 3 2=9.

Тогда log3 (2х-1) = log39 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь решение логарифмических уравнений, даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая — работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log3 2-3) = log3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log3 2-3) = log3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

х 2-3 = 2х

х 2-2х-3 = 0

Находим корни уравнения:

х1= 3

х2= -1

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х1= 3:

log36 = log36

Проверка прошла успешно, теперь очередь х2= -1:

log3 (-2) = log3 (-2)

Так, стоп! Внешне всё идеально. Один момент — логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею — 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log3 2-3) = log3 (2х)

log3 2-3) = log3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х1= 3 и х2= -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый — решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео:


На видео другие примеры решения лог. уравнений и отработка метода интервалов на практике.

На это по вопросу, как решать логарифмические уравнения, пока всё. Если что то по решению лог. уравнений осталось не ясным или непонятным, пишите свои вопросы в комментариях.

Заметка: Академия социального образования (КСЮИ) — готова принять новых учащихся.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Как решать логарифмические уравнения — подробный разбор

Чтобы ответить на вопрос как решать логарифмические уравнения давайте вспомним, что такое логарифм. Логарифм — это показатель степени, в которую нужно возвести основание логарифма, чтобы получить число.

Например,

или число 3 (показатель степени) мы можем записать так  , таким образом 

Основание логарифма всегда положительное число, не равное 1. Число под знаком логарифма — строго больше нуля.

Теперь переходим непосредственно к вопросу — как решать логарифмические уравнения из профильного и из базового ЕГЭ.

Пример 1 Найдите корень уравнения.

согласно определению логарифма:

Все неизвестные переносим в левую часть уравнения (слева от =), а известные — переносим в правую сторону.

Получим:

Делаем проверку:

Ответ:

Пример 2. Найдите корень уравнения.

Здесь для решения данного логарифмического уравнения будем использовать свойство логарифма:

То есть внесем число 3 справа под знак логарифма.

или

Если показатели степени равны, основания степени равны, то равны числа, получаемые в результате, то есть получим

Делаем проверку:

Получаем:

Ответ:

Пример 3. Найдите корень уравнения

Используем следующее свойство логарифма:

Тогда получим:

Делаем проверку:

Ответ:

Пример 4. Найдите корень уравнения.

Используя определение логарифма, получим:

Проверим:

Ответ: .

Таким образом, теперь вы можете составить четкую инструкцию, как решать логарифмические уравнения. Она заключается в следующих шагах:

  1. Сделать справа и слева от знака равенства (=) логарифмы по одному основанию, избавившись от коэффициентов перед логарифмами, используя свойства логарифмов.
  2. Избавляемся от логарифмов, используя правило потенцирования. Остаются только числа, которые были под знаком логарифма.
  3. Решаем получившееся обычное уравнение — как найти корень уравнения смотрите здесь.
  4. Делаем проверку
  5. Записываем ответ.

repetitor-mathematics.ru

Логарифмические уравнения. Видеоурок. Алгебра 11 Класс

Напомним центральное определение – определение логарифма. Оно связано с решением показательного уравнения . Данное уравнение имеет единственный корень, его называют логарифмом b по основанию а:

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Напомним основное логарифмическое тождество.

Выражение  (выражение 1) является корнем уравнения  (выражение 2). Подставим значение х из выражения 1 вместо х в выражение 2 и получим основное логарифмическое тождество:

Итак мы видим, что каждому значению  ставится в соответствие значение . Обозначим b за х (), с за у, и таким образом получаем логарифмическую функцию:

Например:

Вспомним основные свойства логарифмической функции.

Еще раз обратим внимание, здесь , т. к. под логарифмом может стоять строго положительное выражение,  как основание логарифма.

Рис. 1. График логарифмической функции при различных основаниях

График функции  при  изображен черным цветом. Рис. 1. Если аргумент возрастает от нуля до бесконечности, функция возрастает от минус до плюс бесконечности.

График функции  при  изображен красным цветом. Рис. 1.

Свойства данной функции:

Область определения: ;

Область значений: ;

Функция монотонна на всей своей области определения. При  монотонно (строго) возрастает, большему значению аргумента соответствует большее значение функции. При  монотонно (строго) убывает, большему значению аргумента соответствует меньшее значение функции.

Свойства логарифмической функции являются ключом к решению разнообразных логарифмических уравнений.

Рассмотрим простейшее логарифмическое уравнение, все остальные логарифмические уравнения, как правило, сводятся к такому виду.

Поскольку равны основания логарифмов и сами логарифмы, равны и функции, стоящие под логарифмом, но мы должны не упустить область определения. Под логарифмом может стоять только положительное число, имеем:

Мы выяснили, что функции f и g равны, поэтому достаточно выбрать одно любое неравенство чтобы соблюсти ОДЗ.

Таким образом, мы получили смешанную систему, в которой есть уравнение и неравенство:

Неравенство, как правило, решать необязательно, достаточно решить уравнение и найденные корни подставить в неравенство, таким образом выполнить проверку.

Сформулируем метод решения простейших логарифмических уравнений:

Уравнять основания логарифмов;

Приравнять подлогарифмические функции;

Выполнить проверку.

Рассмотрим конкретные примеры.

Пример 1 – решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства первый логарифм:

Найдем корень и подставим его в неравенство:

Ответ:

Пример 2 – решить уравнение:

Данное уравнение отличается от предыдущего тем, что основания логарифмов меньше единицы, но это никак не влияет на решение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства второй логарифм:

Найдем корень и подставим его в неравенство:

Получили неверное неравенство, значит, найденный корень не удовлетворяет ОДЗ.

Ответ:

Пример 3 – решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства второй логарифм:

Найдем корень и подставим его в неравенство:

Очевидно, что только первый корень удовлетворяет ОДЗ.

Ответ:

Итак, мы приступили к изучению важной темы – решение логарифмических уравнений. Мы рассмотрели методику решения простейших уравнений и несколько примеров ее применения. Далее мы перейдем к изучению более сложных логарифмических уравнений.

 

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Reshit.ru (Источник).
  2. Egesdam.ru (Источник).
  3. Math.md (Источник).

 

Домашнее задание

1. Решить уравнение:

а) ; б) ; в) ; г) ;

2. Решить уравнение:

а) ; б) ;

в) ; г) ;

3. Решить уравнение:

а) ; б) ;

в) ; г) ;

interneturok.ru

Логарифмические уравнения в задаче C1

В этом видеоуроке мы рассмотрим решение довольно серьезного логарифмического уравнения, в котором не просто требуется найти корни, но и отобрать те из них, которые лежат на заданном отрезке.

Задача C1. Решите уравнение. Найдите все корни этого уравнения, принадлежащие промежутку.

Замечание по поводу логарифмический уравнений

Перед тем как переходить непосредственно к уравнению, хочу поделиться небольшой исторической справкой. Дело в том, что ЕГЭ по математике в том виде, котором нам предстоит его сдавать, существует в России уже не первый год. И то уравнение, которое вы сейчас видите на своих экранах, появилось в контрольно-измерительных материалах уже давно.

Однако из года в год ко мне приходят ученики которые пытаются решать вот такие, прямо скажем, непростые уравнения, но при этом не могут понять: с чего им вообще начинать и как подступиться к логарифмам? Такая проблема может возникнуть даже у сильных, хорошо подготовленных учеников.

В результате многие начинают опасаться этой темы, а то и вовсе считать себя тупыми. Так вот, запомните: если у вас не получается решить такое уравнение, это совершенно не значит, что вы — тупые. Потому что, например, вот с таким уравнением вы справитесь практически устно:

log2x = 4

А если это не так, вы сейчас не читали бы этот текст, поскольку были заняты более простыми и приземленными задачами. Конечно, кто-то сейчас возразит: «А какое отношение это простейшее уравнение имеет к нашей здоровой конструкции?» Отвечаю: любое логарифмическое уравнение, каким бы сложным оно ни было, в итоге сводится вот к таким простейшим, устно решаемым конструкциям.

Разумеется, переходить от сложных логарифмических уравнений к более простым нужно не с помощью подбора или танцев с бубном, а по четким, давно определенным правилам, которые так и называются — правила преобразования логарифмических выражений. Зная их, вы без труда разберетесь даже с самыми навороченными уравнениями в ЕГЭ по математике.

И именно об этих правилах мы будем говорить в сегодняшнем уроке. Поехали!

Решение логарифмического уравнения в задаче C1

Итак, решаем уравнение:

В первую очередь, когда речь заходит о логарифмических уравнениях, вспоминаем основную тактику — если можно выразиться, основное правило решения логарифмических уравнений. Заключается оно в следующем:

Теорема о канонической форме. Любое логарифмическое уравнение, что бы в него не входило, какие бы логарифмы, по какому бы основанию, и что бы в себе не cодержали, обязательно нужно привести к уравнению вида:

logaf (x) = logag(x)

Если мы посмотрим на наше уравнение, то заметим сразу две проблемы:

  1. Слева у нас стоит сумма двух чисел, одно из которых вообще не является логарифмом.
  2. Справа стоит вполне себе логарифм, однако в его основании стоит корень. А у логарифма слева — просто 2, т.е. основания логарифмов слева и справа различаются.

Итак, мы составили этакий список проблем, которые отделяют наше уравнение от того канонического уравнения, к которому нужно привести любое логарифмическое уравнение в процессе решения. Таким образом, решение нашего уравнения на данном этапе сводится к тому, чтобы устранить описанные выше две проблемы.

Любое логарифмическое уравнение решается быстро и легко, если свести его к канонической форме.

Сумма логарифмов и логарифм произведения

Давайте действовать по порядку. Сначала разберемся с конструкцией, которая стоит слева. Что мы можем сказать про сумму двух логарифмов? Давайте вспомним замечательную формулу:

logaf (x) + logag(x) = logaf (x) · g(x)

Но стоить учесть, что в нашем случае первое слагаемо вообще не является логарифмом. Значит, нужно представить единицу в виде логарифма по основанию 2 (именно 2, потому что слева стоит логарифм по основанию 2). Как это сделать? Опять вспоминаем замечательную формулу:

a = logbba

Здесь нужно понимать: когда мы говорим «Любое основание b», то подразумеваем, что b все-таки не может быть произвольным числом. Если мы вставляем какое-то число в логарифм, на него сразу накладываются определенные ограничения, а именно: основание логарифма должно быть больше 0 и не должно быть равно 1. Иначе логарифм просто не имеет смысла. Запишем это:

0 < b ≠ 1

Давайте посмотрим, что происходит в нашем случае:

1 = log2 21 = log2 2

Теперь перепишем все наше уравнение с учетом этого факта. И сразу же применяем другое правило: сумма логарифмов равна логарифму произведения аргументов. В итоге получим:

Мы получили новое уравнение. Как видим, оно уже гораздо ближе к тому каноническому равнению, к которому мы стремимся. Но есть одна проблема, мы записали ее в виде второго пункта: у наших логарифмов, которые стоят слева и справа, разные основания. Переходим к следующему шагу.

Правила вынесения степеней из логарифма

Итак у логарифма, который стоит слева, основание просто 2, а у логарифма, который стоит справа, в основании присутствует корень. Но и это не является проблемой, если вспомнить, что из оснований из аргументов логарифма можно выносить в степень. Давайте запишем одно из этих правил:

logabn = n · logab

Переведя на человеческий язык: можно выносить степень из основания логарифма и ставить ее спереди в качестве множителя. Число n «мигрировало» из логарифма наружу и стало коэффициентом спереди.

С тем же успехом мы можем вынести степень из основания логарифма. Выглядеть это будет так:

Другими словами, если вынести степень из аргумента логарифма, эта степень также пишется в качестве множителя перед логарифмом, но уже не в виде числа, а в виде обратного числа 1/k.

Однако и это еще не все! Мы можем объединить две данные формулы и почить следующую формулу:

Когда степень стоит и в основании, и в аргументе логарифма, мы можем сэкономить время и упростить вычисления, если сразу же вынести степени и из основания, и из аргумента. При этом то, что стояло в аргументе (в нашем случае это коэффициент n), окажется в числителе. А то, что было степенью у основания, ak, отправится в знаменатель.

И именно эти формулы мы сейчас будем применять для того, чтобы свести наши логарифмы к одному и тому же основанию.

Вынесение степени из основания логарифма

Прежде всего, выберем более-менее красивое основание. Очевидно, что с двойкой в основании намного приятней работать, чем с корнем. Таким образом, давайте попробуем привести второй логарифм к основанию 2. Давайте выпишем этот логарифм отдельно:

Что мы можем здесь сделать? Вспомним формулу степени с рациональным показателем. Другими словами, мы можем записать в корни в качестве степени с рациональным показателем. А затем выносим степень 1/2 и из аргумента, и из основания логарифма. Сокращаем двойки в коэффициентах в числителе и знаменателе, стоящих перед логарифмом:

Наконец, перепишем исходное уравнение с учетом новых коэффициентов:

log2 2(9x2 + 5) = log2 (8x4 + 14)

Мы получили каноническое логарифмическое уравнение. И слева, и справа у нас стоит логарифм по одному и тому же основанию 2. Помимо этих логарифмов никаких коэффициентов, никаких слагаемых ни слева, ни справа нет.

Следственно, мы можем избавиться от знака логарифма. Разумеется, с учетом области определения. Но прежде, чем это сделать, давайте вернемся назад и сделаем небольшое уточнение по поводу дробей.

Деление дроби на дробь: дополнительные соображения

Далеко не всем ученикам понятно, откуда берутся и куда деваются множители перед правым логарифмом. Запишем еще раз:

Давайте разберемся, что такое дробь. Запишем:

А теперь вспоминаем правило деления дробей: чтобы разделить на 1/2 нужно умножить на перевернутую дробь:

Разумеется, для удобства дальнейших вычислений мы можем записать двойку как 2/1 — и именно это мы наблюдаем в качестве второго коэффициента в процессе решения.

Надеюсь, теперь всем понятно, откуда берется второй коэффициент, поэтому переходим непосредственно к решению нашего канонического логарифмического уравнения.

Избавление от знака логарифма

Напоминаю, что сейчас мы можем избавиться от логарифмов и оставить следующее выражение:

2(9x2 + 5) = 8x4 + 14

Давайте раскроем скобки слева. Получим:

18x2 + 10 = 8x4 + 14

Перенесем все из левой части в правую:

8x4 + 14 − 18x2 − 10 = 0

Приведем подобные и получим:

8x4 − 18x2 + 4 = 0

Можем разделить обе части этого уравнения на 2, чтобы упростить коэффициенты, и получим:

4x4 − 9x2 + 2 = 0

Перед нами обычное биквадратное уравнение, и его корни легко считаются через дискриминант. Итак, запишем дискриминант:

D = 81 − 4 · 4 · 2 = 81 − 32 = 49

Прекрасно, Дискриминант «красивый», корень из него равен 7. Все, считаем сами иксы. Но в данном случае корни получатся не x, а x2, потому что у нас биквадратное уравнение. Итак, наши варианты:

Обратите внимание: мы извлекали корни, поэтому ответов будет два, т.к. квадрат — функция четная. И если мы напишем лишь корень из двух, то второй корень мы просто потеряем.

Теперь расписываем второй корень нашего биквадратного уравнения:

Опять же, мы извлекаем арифметический квадратный корень из обеих частей нашего уравнения и получаем два корня. Однако помните:

Недостаточно просто приравнять аргументы логарифмов в канонической форме. Помните об области определения!

Итого мы получили четыре корня. Все они действительно являются решениями нашего исходного уравнения. Взгляните: в нашем исходном логарифмическом уравнении внутри логарифмов стоит либо 9x2 + 5 (эта функция всегда положительна), либо 8x4 + 14 — она тоже всегда положительна. Следовательно, область определения логарифмов выполняется в любом случае, какой бы корень мы не получили, а это значит, что все четыре корня являются решениями нашего уравнения.

Прекрасно, теперь переходим ко второй части задачи.

Отбор корней логарифмического уравнения на отрезке

Отбираем из наших четырех корней те, которые лежат на отрезке [−1; 8/9]. Возвращаемся к нашим корням, и сейчас будем выполнять их отбор. Для начала предлагаю начертить координатную ось и отметить на ней концы отрезка:

Обе точки будут закрашенные. Т.е. по условию задачи нас интересует заштрихованный отрезок. Теперь давайте разбираться с корнями.

Иррациональные корни

Начнем с иррациональных корней. Заметим, что 8/9 < 9/9 = 1. С другой стороны, корень из двух явно больше единицы. Следовательно, наши корни будут находиться на отрезке в таком положении:

Из этого следует, что корень из двух не попадает в интересующий нас отрезок. Аналогично мы получим и с отрицательным корнем: он меньше, чем −1, т. е. лежит левее интересующего нас отрезка.

Рациональные корни

Остается два корня: x = 1/2 и x = −1/2. Давайте заметим, что левый конец отрезка (−1) — отрицательный, а правый (8/9) — положительный. Следовательно, где-то между этими концами лежит число 0. Корень x = −1/2 будет находиться между −1 и 0, т.е. попадет в окончательный ответ. Аналогично поступаем с корнем x = 1/2. Этот корень также лежит на рассматриваемом отрезке.

Убедиться, что число 8/9 больше, чем 1/2, можно очень просто. Давайте вычтем эти числа друг из друга:

Получили дробь 7/18 > 0, а это по определению означает, что 8/9 > 1/2.

Давайте отметим подходящие корни на оси координат:

Окончательным ответом будут два корня: 1/2 и −1/2.

Сравнение иррациональный чисел: универсальный алгоритм

В заключении хотел бы еще раз вернуться к иррациональным числам. На их примере мы сейчас посмотрим, как сравнивать рациональные и иррациональные величины в математике. Для начала по между ними вот такую галочку V — знак «больше» или «меньше», но мы пока не знаем, в какую сторону он направлен. Запишем:

Зачем вообще нужны какие-то алгоритмы сравнения? Дело в том, что в данной задаче нам очень повезло: в процессе решения возникло разделяющее число 1, про которое мы точно можем сказать:

Однако далеко не всегда вы с ходу увидите такое число. Поэтому давайте попробуем сравнить наши числа «в лоб», напрямую.

Как это делается? Делаем то же самое, что и с обычными неравенствами:

  1. Сначала, если бы у нас где-то были отрицательные коэффициенты, то мы умножили бы обе части неравенства на −1. Разумеется, поменяв при этом знак. Вот такая галочка V изменилась бы на такую — Λ.
  2. Но в нашем случае обе стороны уже положительны, поэтому ничего менять не надо. Что действительно нужно, так это возвести обе части в квадрат, чтобы избавится от радикала.

Если при сравнении иррациональных чисел не удается с ходу подобрать разделяющий элемент, рекомендую выполнять такое сравнение «в лоб» — расписывая как обычное неравенство.

При решении это оформляется вот таким образом:

Теперь это все легко сравнивается. Дело в том, что 64/81 < 81/81 = 1 < 2. На основании той цепочки преобразований мы заключаем, что 64/81 < 2 и, следовательно, корень больше 8/9.

Все, мы получили строгое доказательство, что все числа отмечены на числовой прямой х правильно и именно в той последовательности, в которой они должны быть на самом деле. Вот к такому решению никто не придерется, поэтому запомните: если вы сразу не видите разделяющее число (в нашем случае это 1), то смело выписывайте приведенную выше конструкцию, умножайте, возводите в квадрат — и в итоге вы получите красивое неравенство. Из этого неравенства точно будет понятно, какое число больше, а какое — меньше.

Возвращаясь к нашей задаче, хотелось бы еще раз обратить ваше внимание на то, что мы делали в самом начале при решении нашего уравнения. А именно: мы внимательно посмотрели на наше исходное логарифмическое уравнение и попытались свести его к каноническому логарифмическому уравнению. Где слева и справа стоят только логарифмы — без всяких дополнительных слагаемых, коэффициентов спереди и т. д. Нам нужны не два логарифма по основанию a или b, именно логарифм, равный другому логарифму.

Кроме того, основания логарифмов также должны быть равны. При этом если уравнение составлено грамотно, то с помощью элементарных логарифмических преобразований (сумма логарифмов, преобразование числа в логарифм и т.д.) мы сведем это уравнение именно к каноническому.

Поэтому впредь, когда вы видите логарифмическое равнение, которое не решается сразу «в лоб», не стоит теряться или пробовать подобрать ответ. Достаточно выполнить следующие шаги:

  1. Привести все свободные элементы к логарифму;
  2. Затем эти логарифмы сложить;
  3. В полученной конструкции все логарифмы привести к одному и тому же основанию.

В результате вы получите простое уравнение, которое решается элементарными средствами алгебры из материалов 8—9 класса. В общем, заходите на мой сайт, тренируйтесь решать логарифмы, решайте логарифмические уравнения как я, решайте их лучше меня. А у меня на этом все. С Вами был Павел Бердов. До новых встреч!

Смотрите также:

  1. Задача C1: логарифмы и тригонометрия в одном уравнении
  2. Задача C1: еще одно показательное уравнение
  3. Пробный ЕГЭ-2011 по математике, вариант №8
  4. Пробный ЕГЭ 2012. Вариант 3 (без логарифмов)
  5. Что такое метод коэффициентов в ЕГЭ по математике?
  6. Изюм и виноград (смеси и сплавы)

www.berdov.com

Логарифмические уравнения

   Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях «Тригонометрические уравнения», «Решение рациональных уравнений». В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение  в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение

Логарифмом числа a  по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.

Основное логарифмическое тождество:

Например:

 log39 = 2, так как  32 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения:  log3(4–x) = 4

Используем основное логарифмическое тождество.

Так как  logba = x   bx = a,  то

34 = 4 – x

x = 4 – 81

x =  – 77

Проверка:

log3(4–(–77)) = 4

log381 = 4

34 = 81  Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения:  log(4 – x) = 7

Посмотреть решение 

Найдите корень уравнения log5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как   logab = x       bx = a,   то

52 = 4 + x

x =52 – 4

x = 21

Проверка:

log5(4 + 21) = 2

log525 = 2

52 = 25 Верно.

Ответ: 21

Найдите корень уравнения  log3(14 – x) = log35.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

 Если    logca = logcb,   то  a = b

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения  log5(5 – x) = log53.

Посмотреть решение 

Найдите корень уравнения: log4(x + 3) = log4(4x – 15).

Если   logca = logcb,   то  a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения   log1/8(13 – x) = – 2.

(1/8)–2 = 13 – x

82 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени (отрицательная степень дроби).

Ответ: – 51

Решите самостоятельно: 

Найдите корень уравнения:  log1/7(7 – x) = – 2

Посмотреть решение 

Найдите корень уравнения  log(4 – x) = 2 log5.

Преобразуем правую часть. воспользуемся свойством:

logabm = m∙logab

log2(4 – x) = log252

Если    logca = logcb,   то  a = b

4 – x = 52

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно: 

Найдите корень уравнения:  log5(5 – x) = 2 log3

Посмотреть решение 

Решите уравнение   log5(x2 + 4x) = log5(x2 + 11)

Если    logca = logcb,   то  a = b

x2 + 4x = x2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно: 

Найдите корень уравнения  log5(x2 + x) = log5(x2 + 10).

Посмотреть решение 

Решите уравнение   log2(2 – x) = log2(2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log2 (……)

Представляем 1 как логарифм с основанием 2:

1 = log2

Далее применяем свойство:

logс(ab) = logсa + logсb

log2(2 – x) = log2(2 – 3x) + log22

Получаем:

log2(2 – x) = log2 2 (2 – 3x)

Если    logca = logcb,   то  a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: 

Найдите корень уравнения  log5(7 – x) = log5(3 – x) +1

Посмотреть решение 

Решите уравнение logх–125 = 2.  Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Воспользуемся основным логарифмическим тождеством:

(x – 1)2= 25

Далее необходимо решить квадратное уравнение. Кстати, квадратное уравнение, как вы поняли, это очень важная «буковка» в математической азбуке. К нему сводятся очень многие решения совершенно различных задач. Помнить формулы дискриминанта и корней нужно обязательно, и уметь решать такое уравнение вы должны очень быстро, периодически практикуйтесь.

Конечно же, опытный глаз сразу увидит, что в нашем примере выражение, стоящее под знаком квадрата равно 5 или – 5, так как только эти два числа  при возведении в квадрат дают 25, устно можно посчитать:

корни равны 6  и  – 4.

Корень  «–4» не является решением, так как основание логарифма должно быть больше нуля, а при  «– 4» оно равно «–5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно: 

Решите уравнение logx–5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Посмотреть решение

 

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать  свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Решение уравнений, содержащих неизвестную в основании логарифма

Разделы: Математика


Цели урока:

  • обучающие: закрепить основные способы решения логарифмических уравнений: по определению логарифма с учётом области определения, на основании свойств монотонности (потенцирование) с учётом равносильности перехода, переход к новому основанию, введение новой переменной; рассмотреть некоторые приемы быстрого решения уравнений рассматриваемого типа;
  • развивающие: содействовать развитию логического мышления учащихся; развивать умения рассуждать, сравнивать, осмысливать материал; развивать у учащихся умения анализа условия задачи перед выбором способа ее решения; развивать навыки исследовательской деятельности; учить видеть задачу целиком, логически мыслить при переходе от частного к общему; развивать навыки обобщения;
  • воспитывающие: воспитание познавательного интереса, элементов культуры общения; побуждение учащихся к преодолению трудностей в процессе умственной деятельности; воспитание у учащихся уверенности в себе, веры в свои силы в нестандартной ситуации.

Тип урока: урок комплексного применения знаний и навыков.

Ход урока:

1. Организационный момент

(сообщить учащимся тему урока, поставить перед ними задачи урока), (на партах у каждого раздаточный материал см. Приложение 1).

Изучив основные свойства логарифмической функции, правила вычисления логарифмов, овладев основными приемами решения логарифмических уравнений и неравенств, наша основная задача на сегодняшний урок – обобщить методы решения логарифмических уравнений, содержащих переменную в основании логарифма.

2. Активизация знаний учащихся.

Устная работа:

  1. Найдите область определения функций:

 

 

 

Ответ: (0;1) U (1;∞)

(- 4; — 3) U (- 3; — 1) U (1;∞)

(-∞; — 2) U (- 2; 2)

  1. Каким способом решается уравнение:

. Ответ: по определению логарифма. Решений нет!!

  1. При каком значении параметра а функция определена на множестве (1; ∞); если изменить основание, значение параметра изменится?

Ответ: а 1

 

Ответ: а 1

 

Ответ: а > 1

3. Основная часть урока.

Слайд 2. Виды уравнений и методы решения

слайд 3.

На области определения  по определению логарифма

Или

слайд 4.

Пример  Решение:   x=6. Ответ: 6.

слайд 5.

На области определения  по определению логарифма

слайд 6.

Пример:

Решение: 7x-14=3-2x; 9x=17; x=17/9; НО!!!  промежутки не пересекаются, значит, решений нет!! Ответ: решений нет.

слайд 7.

Пример:Каким способом решается уравнение?

предполагаемый ответ учащихся: решаем, применяя определение логарифма (решение учеником письменно на доске и в тетрадях)

Решение:    

при х= 6  верно. Ответ: 6

Слайд 8

Слайд 10. На найденной области определения  

решим уравнение: , , х = 0 или х = 1,5

 Ответ: 1,5

Слайд 11 Следующий вид уравнения:

Одна и та же функция в основании логарифма

Вопрос: Каким способом решать?

Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к следствию  

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 12. Одна и та же функция является подлогарифмическим выражением

Вопрос: Каким способом решать? Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к совокупности уравнений

 Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 13 .Пример

Решение:

 

Слайд 14. На промежутке  решаем совокупность уравнений:

  

Слайд 15. Проверяем на принадлежность этих чисел области определения, делаем вывод: решением уравнения являются числа: ; . Ответ: ;.

Слайд 16 Следующий вид уравнений:

Область определения достаточно объёмная

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 17. Как вы думаете, каким способом лучше решать это уравнение?

Один из вариантов ответов: переход к новому основанию (числовому)

Слайд 18. или к буквенному  

Слайд 19. Пример:

(решение с подробным комментарием письменно на доске и в тетрадях).

Решение: Очевидно . Выполним преобразования основания и подлогарифмического выражения правой части уравнения

,

Перейдём в правой части уравнения к новому основанию х, применяя свойство: логарифм произведения равен сумме логарифмов множителей по такому же основанию

 ,

Выполним замену переменных

Получим уравнение , ,

Выполнив обратную замену, получим

 Х= — 1.

Очевидно – 1 не входит в область определения заданного уравнения.

Или , , .

По свойству: если коэффициенты квадратного уравнения таковы, что

a + c – b =0, то Х= — 1, Х= ½. Ответ: ½

Слайд 20   

Следующий тип уравнений

Слайд 21. Пример  

Решение:

  Ответ: 5,5.

Слайд 22 «Комбинированные» виды уравнений

Пример

Решение: очевидно   

  

Слайд 23  , ,  

(очевидно, последнее уравнение решений не имеет)

Слайд 24 , . Ответ:

Слайд 25 Уравнения, левая часть которых – сумма взаимно обратных слагаемых

Пример:  (*)

Очевидно, каждое слагаемое равно 1.

Получим систему, равносильную уравнению (*)

Слайд 26

  x = 2. Ответ: 2

Слайд 27. В чём отличие в решении следующего уравнения?

  (*)

Равенство взаимно обратных слагаемых верно при условии х > 0,5, х ≠ 1,5.

На рассматриваемом промежутке уравнение (*) равносильно совокупности

 

Слайд 28

Слайд 29

с учётом области определения:  Ответ: 1

Подведение итогов урока

4. Домашнее задание.

Слайд 30. Решите уравнения: ,

 

P. S. Урок проведён в 10 классе физико-химического профиля. Уложились за урок за счёт экономии времени: на партах лежали у каждого ученика листы с напечатанными типами уравнений, учащиеся записывали только метод решения (без области определения и решения). Эти листы ученики забрали с собой и вклеили в тетрадь.

В слабом классе лучше потратить на эту тему сдвоенный урок.

P. S. S. В кабинете один компьютер с выходом на экран телевизора. В связи с этим, на слайдах текст печатается очень крупно.

Список используемой литературы:

  1. Балаян Э. Н. ЕГЭ по математике: Новейшие тесты. Пособие для учащихся старших классов и абитуриентов вузов. — М: ИКЦ «МарТ»; Ростов-на-Дону: Издательский центр «МарТ», 2004.
  2. Балаян Э. Н. Математика. Серия «Единый госэкзамен». — Ростов н/Д: Феникс, 2004.
  3. Математика. Интенсивный курс подготовки к Единому государственному экзамену. — М.: Айрис-пресс, 2004.
  4. Математика: Варианты задач для вступительных испытаний в НГУЭУ. — Новосибирск: НГУЭУ, 2005.
  5. Математика: Учебное пособие для поступающих в вузы и старшеклассников / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. — М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.
  6. Уравнения и неравенства: Учеб. пособие / А. Г. Калашникова и др.— Новосибирск: Изд-во НГТУ, 2003.

Презентация.

2.09.2009

xn--i1abbnckbmcl9fb.xn--p1ai

Логарифмические уравнения. Способы решения и примеры

С уравнениями мы все знакомы с начальных классов. Еще там мы учились решать самые простые примеры, и надо признать, что они находят свое применение даже в высшей математике. С уравнениями все просто, в том числи и с квадратными. Если у вас проблемы с этой темой, настоятельно рекомендуем вам повторить ее.

Логарифмы вы, вероятно, тоже уже прошли. Тем не менее, считаем важным рассказать, что это для тех, кто еще не знает. Логарифм приравнивается к степени, в которую нужно возвести основание, чтобы получилось число, стоящее справа от знака логарифма. Приведем пример, исходя из которого, вам все станет ясно.

Если вы возведете 3 в четвертую степень получится 81. Теперь подставьте по аналогии числа, и поймете окончательно, как решаются логарифмы. Теперь осталось лишь совместить два рассмотренных понятия. Изначально ситуация кажется чрезвычайно сложной, но при ближайшем рассмотрении весе становится на свои места. Мы уверены, что после этой короткой статьи у вас не будет проблем в этой части ЕГЭ.

Как правильно решать?

Сегодня выделяют множество способов решения подобных конструкций. Мы расскажем о самых простых, эффективных и наиболее применимых в случае заданий ЕГЭ. Решение логарифмических уравнений должно начинаться с самого простого примера. Простейшие логарифмические уравнения состоят из функции и одной переменной в ней.

Важно учесть, что x находится внутри аргумента. A и b должны быть числами. В таком случае вы можете попросту выразить функцию через число в степени. Выглядит это следующим образом.

Разумеется, решение логарифмического уравнения таким методом приведет вас к верному ответу. Ног проблема подавляющего большинства учеников в этом случае заключается в том, что они не понимают, что и откуда берется. В результате приходится мириться с ошибками и не получать желаемых баллов. Самой обидной ошибкой будет, если вы перепутаете буквы местами. Чтобы решить уравнение этим способом, нужно зазубрить эту стандартную школьную формулу, потому что понять ее сложно.

Чтобы было проще, можно прибегнуть к другому способу – канонической форме. Идея крайне проста. Снова обратите внимание на задачу. Помните, что буква a – число, а не функция или переменная. A не равно одному и больше нуля. На b никаких ограничений не действует. Теперь из всех формул вспоминаем одну. B можно выразить следующим образом.

Из этого следует, что все исходные уравнения с логарифмами можно представить в виде:

Теперь мы можем отбросить логарифмы. Получится простая конструкция, которую мы уже видели ранее.

Удобство данной формулы заключается в том, что ее можно применять в самых разных случаях, а не только для самых простых конструкций.

Не переживайте насчет ООФ!

Многие опытные математики заметят, что мы не уделили внимание области определения. Сводится правило к тому, что F(x) обязательно больше 0. Нет, мы не упустили этот момент. Сейчас мы говорим об еще одном серьезном преимуществе канонической формы.

Лишних корней здесь не возникнет. Если переменная будет встречаться лишь в одном месте, то область определения не является необходимостью. Она выполняется автоматически. Чтобы убедиться в данном суждении, займитесь решением нескольких простых примеров.

Как решать логарифмические уравнения с разными основаниями

Это уже сложные логарифмические уравнения, и подход к их решению должен быть особым. Здесь редко получается ограничиться пресловутой канонической формой. Начнем наш подробный рассказ. Мы имеем следующую конструкцию.

Обратите внимание на дробь. В ней находится логарифм. Если вы увидите такое в задании, стоит вспомнить один интересный прием.

Что это значит? Каждый логарифм можно представить в виде частного двух логарифмов с удобным основанием. И у данной формулы есть частный случай, который применим с этим примером (имеем ввиду, если c=b).

Именно такую дробь мы и видим в нашем примере. Таким образом.

По сути, перевернули дробь и получили более удобное выражение. Запомните этот алгоритм!

Теперь нужно, что логарифмическое уравнение не содержало разных оснований. Представим основание дробью.

В математике есть правило, исходя из которого, можно вынести степень из основания. Получается следующая конструкция.

Казалось бы, что мешает теперь превратить наше выражение в каноническую форму и элементарно решить ее? Не все так просто. Дробей перед логарифмом быть не должно. Исправляем эту ситуацию! Дробь разрешается выносить в качестве степени.

Соответственно.

Если основания одинаковые, мы можем убрать логарифмы и приравнять сами выражения. Так ситуация станет в разы проще, чем была. Останется элементарное уравнение, которое каждый из нас умел решать еще в 8 или даже в 7 классе. Расчеты вы сможете произвести сами.

Мы получили единственно верный корень этого логарифмического уравнения. Примеры решения логарифмического уравнения достаточно просты, не так ли? Теперь и у вас получится самостоятельно разобраться даже с самыми сложными задачами для подготовки и сдачи ЕГЭ.

Что в итоге?

В случае с любыми логарифмическими уравнениями мы исходим из одного очень важного правила. Необходимо действовать так, чтобы привести выражение к максимально простому виду. В таком случае у вас будет больше шансов не просто решить задание правильно, но еще и сделать это максимально простым и логичным путем. Именно так всегда действуют математики.

Настоятельно не рекомендуем вам искать сложных путей, особенно в этом случае. Запомните несколько простых правил, которые позволят преобразовать любое выражение. К примеру, привести два или три логарифма к одному основанию или вывести степень из основания и выиграть на этом.

Также стоит помнить о том, что в решении логарифмических уравнений необходимо постоянно тренироваться. Постепенно вы будете переходить ко все более сложным конструкциям, а это приведет вас к уверенному решению всех вариантов задач на ЕГЭ. Готовьтесь к экзаменам заблаговременно, и удачи вам!

Похожие статьи

Рекомендуем почитать:

karate-ege.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *