Действия со степенями и корнями
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции
и производной функции, заданной неявно.Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
4. Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
Другие темы в блоке «Школьная математика»
function-x.ru
Решение | Преобразуем, степени в числителе по свойству , а степени из знаменателя поднимем в числитель, при этом они изменят знак:
Далее воспользуемся тем фактом, что при умножении степеней с одинаковыми основаниями показатели степеней складываются
Используя свойства степеней: и , получим:
|
ru.solverbook.com
Умножение чисел со степенями с разными основаниями
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
4. Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня.
Правило умножение степеней с разными основаниями
Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
Что делать со степенями при сложении и вычитании числа?
Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
4. Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
Алгебра – 7 класс. Умножение и деление степеней
Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
Как умножить степени с разными основаниями и показателями?
Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Действия со степенями и корнями
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:
.
Например, .
3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:
.
Например, .
4. Степень произведения равна произведению степеней множителей:
.
Например, .
5. Степень частного равна частному степеней делимого и делителя:
.
Например, .
Пример 1. Найти значение выражения
.
Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:
(степень произведения равна произведению степеней множителей),
(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Преобразования арифметических корней
1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
4. Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
Свойства степени
Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т. д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Степень с натуральным показателем и её свойства
Степень с натуральным показателем и ее свойства.
Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:
an =
В выражении an :
— число а (повторяющийся множитель) называют основанием степени
— число n (показывающее сколько раз повторяется множитель) – показателем степени
Например:
25 = 2·2·2·2·2 = 32,
здесь:
2 – основание степени,
5 – показатель степени,
32 – значение степени
Отметим, что основание степени может быть любым числом.
Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).
Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108
Каждое число большее 10 можно записать в виде: а · 10n , где 1 < a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.
Например: 4578 = 4,578 · 103 ;
103000 = 1,03 · 105.
Свойства степени с натуральным показателем:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются
am · an = am + n
например: 71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 = 70.8
Как умножать и делить степени? Что делают при умножении и делении степеней?
При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются
am / an = am — n ,
где, m > n,
a ? 0
например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6
3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.
(am )n = a m · n
например: (23)2 = 2 3·2 = 26
4. При возведении в степень произведения в эту степень возводится каждый множитель
(a · b)n = an · b m ,
например:(2·3)3 = 2n · 3 m ,
5. При возведении в степень дроби в эту степень возводятся числитель и знаменатель
(a / b)n = an / bn
например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53
pasmr21.ru
Как умножить степени с разными основаниями и показателями?
1) Если умножаются 2 числа с одинаковыми основаниями, но разными показателями, то общее основание возводится в сумму степеней.:
Пример
3⁴*3³=3⁴⁺³=3⁷
2) Если основания разные, а показатели одинаковые. В этом случае мы возводим в степень произведение оснований.
aⁿ*bⁿ=(ab)ⁿ
Пример:
5²*2²=(5*2)²=10²=100
3) Если основания разные и показатели разные, то тут 2 варианта:
1. Выделяем одинаковое основание, т.е. раскладываем один из множителей.
Представим число b=a*c
Пример
2. Приводим к общему показателю:
Пример
Оцени ответ
nebotan.com
Найдите значение выражения (степени, с разными основаниями) – как решать
Формулировка задачи: Найдите значение выражения (степени, с разными основаниями).
Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 2 (Действия со степенями).
Рассмотрим, как решаются подобные задачи на примере.
Пример задачи 1:
Найдите значение выражения 80,76 ∙ 640,12.
Решение:
Найдем значение выражения. Для этого приведем числа к одинаковому основанию и выполним необходимые действия:
Ответ: 8
Пример задачи 2:
Найдите значение выражения:
Решение:
Найдем значение выражения. Для этого приведем числа к одинаковому основанию и выполним необходимые действия:
Ответ: 512
Пример задачи 3:
Найдите значение выражения 35-4,7 ∙ 75,7 : 5-3,7.
Решение:
Найдем значение выражения. Для этого приведем числа к одинаковому основанию и выполним необходимые действия:
Ответ: 1,4
Пример задачи 4:
Найдите значение выражения:
Решение:
Найдем значение выражения. Для этого приведем числа к одинаковому основанию и выполним необходимые действия:
Ответ: 2
Поделитесь статьей с одноклассниками «Найдите значение выражения (степени, с разными основаниями) – как решать».
При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.
worksbase.ru
Обобщение понятия степени и решение примеров со степенями
Здравствуйте. Многие ученики испытывают сложности при решении заданий, в которых встречаются выражения с корнями. В данной статье я попытаюсь обобщить материал по темам «Радикал» и «Степень». Покажу как решать некоторые задания. Если у Вас во время прочтения статьи появятся вопросы, Вы можете записаться ко мне на занятие, я с радостью помогу Вам во всем разобраться, помогу с решением именно Ваших задач!
1. Свойства степеней и корней
Степенью числа а с натуральным показателем n называется произведение n множителей, каждый из которых равняется а.
Степень числа а с показателем n обозначают an, например:
В общем случае при n > 1 имеем
Число a называется основой степени, число n — показателем степени.
Приведем основные свойства действий со степенями.
Приведенные свойства обобщаются для любых показателей степени
Часто в вычислениях используются степени с рациональным показателем. При этом удобным оказалось такое обозначение:
Корнем n— ой степени из числа а называется число b, n— я степень которого равняется a:
Корень также называется радикалом.
Корень нечетной степени n всегда существует. Корень четной степени 2n из отрицательного числа не существует. Существуют два противоположных числа, которые являются корнями четной степени из положительного числа а > 0. Положительный корень n— ой степени из положительного числа называют арифметическим корнем.
Из формул (3), (4) вытекают такие свойства радикалов
Если степень корня n = 2, то показатель корня обычно не пишется.
Пример 1.1. Найти значение выражения
Подкоренное выражение разложим на простые множители:
Пример 1.2. Упростить выражение
Имеем:
Пример 1.3. Извлечь корень
Имеем:
Пример 1.4. Упростить выражение
Поскольку при
2. Действия с радикалами
1) Преобразование корня по формуле называется внесением множителя под знак радикала.
Пример 2.1. Внести множитель под знак корня 5√2.
Исходя из формулы (7) получим
Пример 2.2. Внести множитель под знак радикала x√y при x< 0.
Имеем равенство
2) Преобразование корня исходя из формулы называется вынесением множителя из-под знака радикала.
Пример 2.3. Вынести множитель из-под знака корня в выражении
Получим:
Пример 2.4. Вынести множитель из-под знака корня
Имеем:
Пример 2.5. Вынести множитель из-под знака корня:
Радикалы вида , где a, b — рациональные числа, называются подобными. Их можно прибавлять и отнимать:
Пример 2.6. Упростить:
Пример 2.7. Сложить радикалы:
Пример 2.8. Выполнить действие:
Заметим, что равенство не выполняется. В этом можно убедиться на таком примере:
Приведем примеры умножения радикалов.
Пример 2.9.
Аналогично освобождаются от кубических иррациональностей в знаменателе:
Рассмотрим более сложные примеры рационализации знаменателей:
Чтобы перемножить радикалы с разными степенями, их сначала превращают в радикалы с одинаковыми степенями.
Пример 2.10. Перемножим радикалы:
Во время умножения радикалов можно использовать формулы сокращенного умножения. Например:
Если радикалы находятся в знаменателе дроби, то, используя свойства радикалов, можно избавиться от иррациональности.
Пример 2.11. Рационализируем знаменатели дробей
Выражения называются сопряженными. Произведение сопряженных выражений не содержит радикалов:
Это свойство используется для рационализации знаменателей.
Пример 2.12. Избавиться от иррациональности в знаменателе:
Избавимся от иррациональности в знаменателе дроби:
3. Вычисление иррациональных выражений
С помощью свойств корней можно упрощать и вычислять иррациональные выражения.
Пример 3.1. Вычислить
Выполним последовательно действия:
Пример 3.2. Вычислить:
Выполним действия.
Часто используется формула двойного радикала:
Пример 3.3. Исходя из формулы (8) находим:
Пример 3.4. Вычислить
Исходя из формулы (8) находим:
Окончательно получаем:
Аналогично вычисляются кубические корни. Имеем:
Возводим обе части равенства в куб:
Сравнивая выражения при √с, получаем однородную систему уравнений:
Поделив уравнение почленно, приходим к уравнению для z = y/x:
Пример 3.5. Вычислить значение радикала
После возведения в куб уравнения приходим к системе уравнений:
Поделив почленно первое уравнение на второе, получим уравнение для z= y/x:
По схеме Горнера находим корень z = — ½
Из системы уравнений и уравнения y/x = — ½ находим x = 2, y = -1. Итак,
Пример 3.6. Вычислить .
Возьмем .
Возведя обе части уравнения в куб, получаем откуда вытекает система уравнений
Система уравнений имеет очевидное решение x= 1, y= 1.
Поэтому .
Вычисляем радикал
Окончательно имеем a = — 1.
Пример 3.7. Вычислить
Поскольку
Дальше имеем:
Итак, a = — 2.
Пример 3.8. Вычислить
Возведем уравнение в куб, воспользовавшись равенством .
Получили для x кубическое уравнение
или x3 – 3x – 18 = 0,
имеет корни
Во множестве действительных чисел имеем корень x = 3.
4. Оценки для радикалов
Если
Это неравенство можно использовать для доведения неровностей, которые содержат радикалы.
Пример 4.1. Доказать, что .
Возведя неравенство в шестую степень, получим очевидное неравенство
Можно приводить радикалы к одной и то й же самой степени :
Пример 4.2. Оценим .
Поскольку
При преобразовании неравенств можно использовать символ V, понимая под ним знаки « > », « < », или « ».
Пример 4.3. Какое число больше
.
Поскольку
На этом все. Напоминаю, что Вы можете записываться ко мне на занятия в расписании, я с радостью помогу Вам с любыми вопросами по математике или высшей математике.
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Свойства степени
Наверное, ни для кого не является секретом, что большинство математических утверждений, прежде, чем установится, проходят несколько этапов. Давайте подробно рассмотрим, как же.
Первый этап – это, конечно же, когда человек замечает некоторую одну и ту же закономерность в ряде случаев.
Второй этап – формулировка закономерности. Говоря проще, человек пытается предположить, что данная закономерность действует не только в одном конкретном случае, а и во всех подобных.
Третий этап – человек пытается доказать то, что закономерность, которую он подметил, а потом сформулировал, верна, то есть он пытается ее доказать. Но что же значит доказать, что утверждение верно? Конечно же, это значит объяснить верность предположений, но при этом опираться необходимо обязательно только лишь на уже проверенные факты, теоремы и утверждения.
Теперь давайте рассмотрим подробнее, непосредственно, свойства степеней.
Итак, первое свойство: aH * aK = aH+K
Проверим данное свойство на примере: 22 * 23 = 22+3. Как видим, утверждение правильное. Мы можем взять еще несколько подобных примеров, и все время будет получать только лишь верный результат.
Второе свойство (подобное к первому, за исключением нескольких различий в знаках). В данном случае мы будем иметь дело с делением: aH : aK = aH-K
Проверяем данное свойство также на примере: : 22 : 23 = 22-3. Опять-таки получили верный результат.
Третье свойство: (aH)K = aH*K
Опять же проверяем на примере: (22)3 = 26. Получили очередное правильное свойство.
Исходя из вышеуказанных формул и примеров, легко выводятся три основных правила, связанные со свойством степеней:
- Если у степени одинаковое основание, показатели разные, а сами основания умножаются, то мы можем преобразоваться это в степень с одним основанием, а показатели степени просто суммируются.
- Если у степени одинаковое основание, показатели разные, а сами основания делятся, то мы можем преобразоваться это в степень с одним основанием, а показатели степени просто вычитаются.
- Если мы хотим возвести степень в степень, то необходимо просто перемножить показатели степени.
Например: 2^2+3^2
Свойства степени | |||||||||
| |||||||||
| |||||||||
| |||||||||
| |||||||||
| |||||||||
|
mateshka.ru