Как решить квадратное уравнение по теореме виета – Теорема Виета

Теорема Виета

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов — теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

Примеры:

  1. x2 + 7x + 12 = 0 — это приведенное квадратное уравнение;
  2. x2 − 5x + 6 = 0 — тоже приведенное;
  3. 2x2 − 6x + 8 = 0 — а вот это нифига не приведенное, поскольку коэффициент при x
    2
    равен 2.

Разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать приведенным — достаточно разделить все коэффициенты на число a. Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3x2 − 12x + 18 = 0;
  2. −4x2 + 32x + 16 = 0;
  3. 1,5x2 + 7,5x + 3 = 0;
  4. 2x2 + 7x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x2. Получим:

  1. 3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
  2. −4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
  3. 1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x1 и x2. В этом случае верны следующие утверждения:

  1. x1 + x2 = −b. Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x, взятому с противоположным знаком;
  2. x1 · x2 = c. Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

  1. x2 − 9x + 20 = 0 ⇒ x1 + x2 = − (−9) = 9; x1 · x2 = 20; корни: x1 = 4; x2 = 5;
  2. x2 + 2x − 15 = 0 ⇒ x1 + x2 = −2; x1 · x2 = −15; корни: x1 = 3; x2 = −5;
  3. x2 + 5x + 4 = 0 ⇒ x1 + x2 = −5; x1 · x2 = 4; корни: x1 = −1; x2 = −4.

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x2 − 9x + 14 = 0;
  2. x2 − 12x + 27 = 0;
  3. 3x2 + 33x + 30 = 0;
  4. −7x2 + 77x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x2 − 9x + 14 = 0 — это приведенное квадратное уравнение.
    По теореме Виета имеем: x1 + x2 = −(−9) = 9;x1 · x2 = 14. Несложно заметить, что корни — числа 2 и 7;
  2. x2 − 12x + 27 = 0 — тоже приведенное.
    По теореме Виета: x1 + x2 = −(−12) = 12;x1 · x2 = 27. Отсюда корни: 3 и 9;
  3. 3x2 + 33x + 30 = 0 — это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x2 + 11x + 10 = 0.
    Решаем по теореме Виета: x1 + x2 = −11;x1 · x2 = 10 ⇒ корни: −10 и −1;
  4. −7x2 + 77x − 210 = 0 — снова коэффициент при x2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x2 − 11x + 30 = 0.
    По теореме Виета: x1 + x2 = −(−11) = 11;x1 · x2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 — по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x2 отличен от 1), это легко исправить — взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5x2 − 35x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x2 − 7x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные — попробуем решить по теореме Виета. Имеем: x1 + x2 = −(−7) = 7;x1 · x2 = 10. В данном случае корни угадываются легко — это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5x2 + 8x − 2,4 = 0.

Смотрим: −5x

2 + 8x − 2,4 = 0 — это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x2 − 1,6x + 0,48 = 0 — уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5x2 + 8x − 2,4 = 0 ⇒D = 82 − 4 · (−5) · (−2,4) = 16 ⇒… ⇒x1 = 1,2; x2 = 0,4.

Задача. Решите уравнение: 2x2 + 10x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x2 + 5x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x1 + x2 = −5;x1 · x2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно — лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 52 − 4 · 1 · (−300) =1225 = 352. Если вы не помните корень из дискриминанта, просто отмечу, что 1225 : 25 = 49. Следовательно, 1225 = 25 · 49 =5

2 · 72 = 352.

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x1 = 15; x2 = −20.

Смотрите также:

  1. Следствия из теоремы Виета
  2. Как решать квадратные уравнения
  3. Стандартный вид числа
  4. Задача B3 — работа с графиками
  5. Пробный ЕГЭ 2012 от 7 декабря. Вариант 6 (без производной)
  6. Опасные ошибки в задачах на площади

www.berdov.com

Устное решение квадратных уравнений и теорема Виета

Любое полное квадратное уравнение ax2 + bx + c = 0 можно привести к виду x2 + (b/a)x + (c/a) = 0, если предварительно разделить каждое слагаемое на коэффициент a перед x2. А если ввести новые обозначения  (b/a) = p

и (c/a) = q, то будем иметь уравнение x2 + px + q = 0, которое в математике называется приведенным квадратным уравнением.

Корни приведенного квадратного уравнения и коэффициенты p и q связаны между собой. Это подтверждается теоремой Виета, названной так в честь французского математика Франсуа Виета, жившего в конце XVI века.

Теорема. Сумма корней приведенного квадратного уравнения x2 + px + q = 0 равна второму коэффициенту p, взятому с противоположным знаком, а произведение корней  – свободному члену q.

Запишем данные соотношения в следующем виде:

Пусть x1 и xразличные корни приведенного уравнения x2 + px + q = 0. Согласно теореме Виета x1 + x2

= -p и x1 · x2 = q.

Для доказательства подставим каждый из корней x1 и xв уравнение. Получаем два верных равенства:

x12 + px1 + q = 0

x22 + px2 + q = 0

Вычтем из первого равенства второе. Получим:

x12 – x22 + p(x1 – x2)  = 0

Первые два слагаемых раскладываем по формуле разности квадратов:

(x1 – x2)(x1 – x2) + p(x1 – x2)  = 0

По условию корни x1 и xразличные. Поэтому мы можем сократить равенство на (x1 – x2) ≠ 0 и выразить p.

(x1 + x2) + p = 0;

(x1 + x2) = -p.

Первое равенство доказано.

Для доказательства второго равенства подставим в первое уравнение

x12 + px1 + q = 0 вместо коэффициента p равное ему число  – (x1 + x2):

x12 – (x1 + x2) x1 + q = 0

Преобразовав левую часть уравнения, получаем:

x12 – x22  – x1x2  + q = 0;

x1x2  =  q, что и требовалось доказать.

Теорема Виета хороша тем, что, даже не зная корней квадратного уравнения, мы можем вычислить их сумму и произведение.

Теорема Виета помогает определять целые корни приведенного квадратного уравнения. Но у многих учащихся это вызывает затруднения из-за того, что они не знают четкого алгоритма действия, особенно если корни уравнения имеют разные знаки.

Итак, приведенное квадратное уравнение имеет вид  x2 + px + q = 0, где x1 и xего корни. Согласно теореме Виета x1 + x2 = -p и x1 · x2 = q.

Можно сделать следующий вывод.

Если в уравнении перед последним членом стоит знак «минус», то корни x1 и xимеют различные знаки. Кроме того, знак меньшего корня совпадает со знаком второго коэффициента в уравнении.

Исходя из того, что при сложении чисел с разными знаками их модули вычитаются, а перед полученным результатом ставится знак большего по модулю числа, следует действовать следующим образом:

  1. определить такие множители числа q, чтобы их разность была равна числу p;
  2. поставить перед меньшим из полученных чисел знак второго коэффициента уравнения;  второй корень будет иметь противоположный знак.

Рассмотрим некоторые примеры.

Пример 1.

Решить уравнение x2 – 2x – 15 = 0.

Решение.

Попробуем решить данное уравнение с помощью предложенных выше правил. Тогда можно точно сказать, что данное уравнение будет иметь два различных корня, т.к. D = b2 – 4ac= 4 – 4 · (-15) = 64 > 0.

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Это будут числа 3 и 5. Перед меньшим числом ставим знак «минус», т.е.  знак второго коэффициента уравнения. Таким образом, получим корни уравнения x1 = -3 и  x2 = 5.

Ответ. x1 = -3 и  x2 = 5.

Пример 2.

Решить уравнение x2 + 5x – 6 = 0.

Решение.

Проверим, имеет ли данное уравнение корни. Для этого найдем дискриминант:

D = b2 – 4ac= 25 + 24 = 49 > 0. Уравнение имеет два различных корня.

Возможные множители числа 6 — это 2 и 3, 6 и 1. Разность равна 5 у пары 6 и 1. В этом примере коэффициент второго слагаемого имеет знак «плюс», поэтому и меньшее число будет иметь такой же знак. А вот перед вторым числом будет стоять знак «минус».

Ответ: x1 = -6 и  x2 = 1.

Теорему Виета можно записать и для полного квадратного уравнения. Так, если квадратное уравнение ax2 + bx + c = 0 имеет корни x1  и  x2, то для них выполняются равенства

x1 + x2 = -(b/a) и x1 · x2 = (c/a). Однако применение этой теоремы в полном квадратном уравнении довольно проблематично, т.к. при наличии корней, хотя бы один из них является дробным числом. А работать с подбором дробей достаточно трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение ax2 + bx + c = 0. Умножим его левую и правую части на коэффициент a. Уравнение примет вид (ax)2 + b(ax) + ac = 0. Теперь введем новую переменную, например t = ax.

В этом случае полученное уравнение превратиться в приведенное квадратное уравнение вида t2 + bt + ac = 0, корни которого t1 и  t2 (при их наличии) могут быть определены по теореме Виета.

В этом случае корни исходного квадратного уравнения будут  

x1 = (t1 / a) и  x2 = (t2 / a).

Пример 3.

Решить уравнение 15x2 – 11x + 2 = 0.

Решение.

Составляем вспомогательное уравнение. Умножим каждое слагаемое уравнения на 15:

152x2 – 11 · 15x + 15 · 2 = 0.

Делаем замену t = 15x. Имеем:

t2 – 11t + 30 = 0.

По теореме Виета корнями данного уравнения будут t1 = 5 и  t2 = 6.

Возвращаемся к замене t = 15x:

5 = 15x или 6 = 15x. Таким образом, x1 = 5/15 и  x2 = 6/15. Сокращаем и получаем окончательный ответ: x1 = 1/3 и  x2 = 2/5.

Ответ. x1 = 1/3 и  x2 = 2/5.

Чтобы освоить решение квадратных уравнений с помощью теоремы Виета, учащимся необходимо как можно больше тренироваться. Именно в этом и заключается секрет успеха.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Теорема Виета. Примеры и решение

Теорема:

Сумма корней приведённого квадратного уравнения

x2 + px + q = 0

равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

x1 + x2 = —p,   x1 · x2 = q

Доказательство:

Если приведённое квадратное уравнение имеет вид

x2 + px + q = 0

то его корни равны:

где D = p2 — 4q. Чтобы доказать теорему, сначала найдём сумму корней:

а теперь найдём их произведение:

Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

x1 + x2 = —p

x1 · x2 = q

называются формулами Виета.

Теорема Виета применима к квадратным уравнениям только в том случае, если оно имеет два корня, поэтому, если дискриминант равен нулю, то принято считать, что уравнение имеет не один корень, а два равных корня. Таким образом, теорема Виета становится верна для любого квадратного уравнения, имеющего корни.

Обратная теорема

Теорема:

Если сумма двух чисел равна —p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

x2 + px + q = 0

Доказательство:

Пусть дано x1 + x2 = —p,   значит   x2 = —px1. Подставим это выражение в равенство   x1 · x2 = q, получим:

x1(-px1) = q

px1x12 = q

x12 + px1 + q = 0

Это доказывает, что число x1 является корнем уравнения   x2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

x2 — 3x + 2 = 0

Решение: так как

x1 + x2 = -(-3) = 3

x1 · x2 = 2

очевидно, что корни равны 1 и 2:

1 + 2 = 3

1 · 2 = 2

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

12 — 3 · 1 + 2 = 0

и

22 — 3 · 2 + 2 = 0

Ответ: 1, 2.

Пример 2. Найти корни уравнения:

x2 + 8x + 15 = 0

Решение:

x1 + x2 = -8

x1 · x2 = 15

Методом подбора находим что корни равны -3 и -5:

-3 + -5 = -8

-3 · -5 = 15

Ответ: -3, -5.

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

x1 = -3, x2 = 6.

Решение: так как x1 = -3, x2 = 6 корни уравнения x2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:

p = -(x1 + x2) = -(-3 + 6) = -3

q = x1 · x2 = -3 · 6 = -18

Следовательно, искомое уравнение:

x2 — 3x — 18 = 0

Ответ: x2 — 3x — 18 = 0.

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

x1 = 2, x2 = 3.

Решение:

p = -(x1 + x2) = -(2 + 3) = -5

q = x1 · x2 = 2 · 3 = 6

Ответ: x2 — 5x + 6 = 0.

naobumium.info

уравнения Виета

Теорема Виета (точнее, теорема, обратная теореме Виета) позволяет сократить время на решение квадратных уравнений. Только надо уметь ею пользоваться. Как научиться решать квадратные уравнения по теореме Виета? Это несложно, если немного порассуждать.

Сейчас мы будем говорить только о решении по теореме Виета приведенного квадратного уравнения.Приведенное квадратное уравнение — это уравнение, в котором a, то есть коэффициент перед x², равен единице. Не приведенные квадратные уравнения решить по теореме Виета тоже можно, но там уже, как минимум, один из корней — не целое число. Их угадывать сложнее.

Теорема, обратная теореме Виета, гласит: если числа x1 и x2 таковы, что

   

то x1 и x2 — корни квадратного уравнения 

   

При решении квадратного уравнения по теореме Виета возможны всего 4 варианта. Если запомнить ход рассуждений, находить целые корни можно научиться очень быстро.

I. Если q — положительное число,

это означает, что корни x1 и x2 — числа одинакового знака (поскольку только при умножении чисел с одинаковыми знаками получается положительное число).

I.a. Если -p — положительное число, (соответственно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Если -p — отрицательное число, (соответственно, p>0), то оба корня — отрицательные числа (складывали числа одного знака, получили отрицательное число).

II. Если q — отрицательное число,

это значит, что корни x1 и x2 имеют разные знаки (при умножении чисел отрицательное число получается только в случае, когда знаки у множителей разные). В этом случае x1+x2 является уже не суммой, а разностью (ведь при сложении чисел с разными знаками мы вычитаем из большего по модулю меньшее). Поэтому x1+x2 показывает, на сколько одно отличаются корни x1 и x2, то есть, на сколько один корень больше другого (по  модулю).

II.a. Если -p — положительное число, ( то есть p<0), то  больший (по модулю) корень — положительное число.

II.b. Если -p — отрицательное число, (p>0), то больший (по модулю) корень — отрицательное число.

Рассмотрим решение квадратных уравнений по теореме Виета на примерах.

Решить приведенное квадратное уравнение по теореме Виета:

   

Здесь q=12>0, поэтому корни x1 и x2 — числа одного знака. Их сумма равна -p=7>0, поэтому оба корня — положительные числа. Подбираем целые числа, произведение которых равно 12. Это 1 и 12, 2 и 6, 3 и 4. Сумма равна 7 у пары 3 и 4. Значит, 3 и 4 — корни уравнения.

   

В данном примере q=16>0, значит, корни x1 и x2 — числа одного знака. Их сумма -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

   

Здесь q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то бОльшее число положительно. Значит, корни 5 и -3.

   

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.

www.uznateshe.ru

Теорема Виета.

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x2+px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x1+x2=-p;  x1∙x2=q.

 Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x2-x-30=0. Это приведенное квадратное уравнение ( x2+px+q=0), второй коэффициент  p=-1, а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D=b2— 4ac=(-1)2-4∙1∙(-30)=1+120=121=112.

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p), а произведение равно свободному члену, т.е. (q). Тогда:

x1+x2=1; x1∙x2=-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30, а сумма – единице. Это числа -5 и 6. Ответ: -5; 6.

Пример 2) x2+6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8. Убедимся, что есть целочисленные корни. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=32-1∙8=9-8=1=12. Дискриминант Dявляется полным квадратом числа 1, значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6, а произведение корней равно q=8. Это числа -4 и -2.

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x2+2x-4=0. В этом приведенном квадратном уравнении второй коэффициент р=2, а свободный член q=-4. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=12-1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод: корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам для частного случая с четным вторым коэффициентом). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x1=-7, x2=4.

Решение. Искомое уравнение запишется в виде: x2+px+q=0, причем, на основании теоремы Виета –p=x1+x2=-7+4=-3 → p=3; q=x1∙x2=-7∙4=-28. Тогда уравнение примет вид: x2+3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax2+bx+c=0.

Сумма корней равна минус b, деленному на а, произведение корней равно с, деленному на а:

x1+x2=-b/a;  x1∙x2=c/a.

Пример 6). Найти сумму корней квадратного уравнения 2x2-7x-11=0.

Решение.

Убеждаемся, что данное уравнение будет иметь корни. Для этого достаточно составить выражение для дискриминанта, и, не вычисляя его, просто убедиться, что дискриминант больше нуля. D=72-4∙2∙(-11)>0. А теперь воспользуемся теоремой Виета для полных квадратных уравнений.

x1+x2=-b:a=- (-7):2=3,5.

Пример 7). Найдите произведение корней квадратного уравнения 3x2+8x-21=0.

Решение.

Найдем дискриминант D1, так как второй коэффициент (8) является четным числом. D1=42-3∙(-21)=16+63=79>0. Квадратное уравнение имеет 2 корня, по теореме Виета произведение корней x1∙x2=c:a=-21:3=-7.     

 

www.mathematics-repetition.com

Как решать уравнения по теореме Виета

Практически любое квадратное уравнение \[ax^2+ bx + c = 0\]можно преобразовать к виду \[x^2 + (\frac {b}{a})x + (\frac {c}{a}) = 0.\] Однако это возможно, если изначально разделить каждое слагаемое на коэффициент \[a\] перед \[x_2.\] Кроме того, можно ввести новое обозначение:

\[(\frac {b}{a})= p\] и \[(\frac {c}{a}) = q\]

Так же читайте нашу статью «Решить уравнение с х онлайн решателем»

Благодаря чему будем иметь уравнение \[x^2+ px + q = 0,\] именуемое в математике приведенным квадратным уравнением. Корни данного уравнения и коэффициенты \[p, q\] взаимосвязаны между собой, что подтверждено теоремой Виета.

Теорема Виета: Сумма корней приведенного квадратного уравнения \[x^2+ px + q = 0\] равна второму коэффициенту \[p,\] взятому с противоположным знаком, а произведение корней — свободному члену \[q.\]

Для наглядности решим уравнение следующего вида:

\[x^2 — 2x — 15 = 0\]

Решим данное квадратное уравнение с помощью выписанных правил. Проанализировав исходные данные, можно сделать вывод, что уравнение будет иметь два различных корня, поскольку:

\[D = b^2 — 4ac= 4 — 4 \cdot (-15) = 64 > 0\]

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Под это условие попадают числа 3 и 5. Перед меньшим числом ставим знак «минус». Таким образом, получим корни уравнения \[x_1= -3, x_2 = 5.\]

Ответ: \[ x_1= -3 и x_2 = 5\]

Где можно решить уравнение по теореме Виета онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Решение квадратных уравнений. Теорема Виета

Для начала введем непосредственно определение квадратного уравнения.

Определение 1

Квадратным будем называть уравнение, которое имеет вид $αx^2+βx+γ=0$ (1), где $α≠0,γ \ и \ β$ являются действительными числами.

Рассмотрим далее два различных способа решения такого уравнения. В этой статье мы приведем метод его решения через формулы, а также с применением теоремы, приведенной Франсуа Виетом.

Решение с помощью формул

Рассмотрим

$αx^2+βx+γ=0$

Для начала умножим его обе части на $4α$, будем иметь

$4α^2 x^2+4αβx+4αγ=0$

Преобразуем его левую часть так, чтобы можно было использовать формулу суммы квадрата

$4α^2 x^2+4αβx+β^2-β^2+4αγ=0$

После этого будем получать

$(2αx+β)^2-β^2+4αγ=0$

$(2αx+β)^2=β^2-4αγ$

Теперь в этом полученном равносильном уравнении количество и вид корней зависит от значения его правой части. Введем следующее определение

Определение 2

Значение $β^2-4αγ$, составленное из коэффициентов уравнения (1) будем называть дискриминантом этого уравнения.

Обозначение: $D$

Теперь далее возможны три случая. Рассмотрим их по отдельности.

  1. $D >0$

    При таком случае наше уравнение будет иметь два корня. Чтобы разрешить этот случай сделаем такую замену:

    $2αx+β=y$

    Тогда

    $y^2=D$

    $y=±\sqrt{D}$

    Возвращаясь

    $2αx+β=±\sqrt{D}$

    $x=\frac{±\sqrt{D}-β}{2α}$

  2. $D=0$

    Тогда, при той же замене

    $y^2=0$

    $y=0$

    Возвращаясь

    $2αx+β=0$

    $x=\frac{-β}{2α}$

  3. $D

    В этом случае $y^2

Замечание 1

Данный способ также верен и для случаев, когда коэффициент при x или свободный коэффициент равняются нулю, то есть уравнение является неполным.

Пример 1

Решить

$2x^2+\sqrt{7} x-7=0$

Решение.

Найдем для начала для нашего уравнения значение дискриминанта.

$D=(\sqrt{7})^2-4\cdot 2\cdot (-7)=7+56=63$

Так как $63$ – положительное число, то мы приходим к первому случаю (два корня). Найдем их по выше найденным формулам.

Первый корень:

$x=\frac{\sqrt{63}-\sqrt{7}}{2\cdot 2}=\frac{2\sqrt{7}}{4}=0,5\sqrt{7}$

Второй корень:

$x=\frac{-\sqrt{63}-\sqrt{7}}{2\cdot 2}=\frac{-4\sqrt{7}}{4}=-\sqrt{7}$

Ответ: $0,5\sqrt{7} \ и \ -\sqrt{7}$.

Теорема Виета

Приведем и докажем здесь теорему Франсуа Виета.

Теорема 1

Для приведенного квадратного уравнения сумма его корней равняется числу, противоположному второму коэффициенту этого уравнения, а их произведение равняется свободному коэффициенту этого же уравнения.

Для уравнения (1) математически это можно записать так:

$α=1, x_1+x_2=-β, x_1 x_2=γ$

Доказательство.

Так как корней два, то они будут иметь следующий вид (выведенный нами ранее):

$x_1=\frac{\sqrt{D}-β}{2}$

$x_1=\frac{-\sqrt{D}-β}{2}$

с учетом того, что α равняется единице.

Найдем их сумму:

$x_1+x_2=\frac{\sqrt{D}-β}{2}+\frac{-\sqrt{D}-β}{2}=\frac{-2β}{2}=-β$

Теперь найдем их произведение:

$x_1 x_2=\frac{\sqrt{D}-β}{2} \frac{-\sqrt{D}-β}{2}=-\frac{(\sqrt{D}-β)(\sqrt{D}+β)}{4}=-\frac{D-β^2}{4}$

Введем значение дискриминанта

$x_1 x_2=-\frac{β^2-4γ-β^2}{4}=\frac{4γ}{4}=γ$ Теорема доказана.

Решение с помощью теоремы Виета

Для теоремы 1 также справедлива и обратная теорема. Введем ее (без доказательства).

Теорема 2

Если сумма двух чисел равняется $–β$, а их же произведение равняется γ, то они будут являться корнями уравнения, имеющего вид $x^2+βx+γ=0$

С помощью этой теоремы мы может решать квадратные уравнения, при условии, что первый коэффициент равняется 1.

Пример 2

Решить

$x^2+3x-4=0$

Решение.

Обозначим корни нашего уравнения через $x_1$ и $x_2$. Тогда для его решения нам нужно разрешить следующую систему:

$\cases{x_1+x_2=-3,\\x_1 x_2=-4.}$

Чаще всего решения таких систем находим в уме. В этом и смысл применения обратной теоремы Виета для разрешения таких уравнений – как более рационального способа, чем использование формул.

В нашем случае получаем

Ответ: $1$ и $-4$.

spravochnick.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *