Как решить выражение с корнями – Квадратный корень. Подробная теория с примерами.

Преобразование и упрощение более сложных выражений с корнями

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

2. ;

3. ;

4. .

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения  число 120 необходимо разложить на простые множители:

. Квадрат суммы раскроем по соответствующей формуле:

.

Ответ. 11.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ:  ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

 при.

Ответ.  при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Ответ. 13.

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

 .

б) выполним аналогичные действия:

.

Ответ.; .

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

 

 

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых  является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.

. Подставим это выражение под корень:

. Модуль раскрывается в таком виде, т. к. .

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid.ru (Источник).

2. Математическая школа (Источник).

3. Интернет-портал XReferat.Ru (Источник).

 

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) , б) .

3. Упростите выражение: а) , б) .

4. Докажите тождество .

interneturok.ru

Как решать примеры с корнями 🚩 упрощение выражений с корнями 🚩 Математика


Город Вавилон (Врата Бога) с населением полтора тысяч человек был основан в Междуречье более 3000 лет до н.э. На раскопках этого древнего поселения были найдены глиняные таблички с нанесенными на них знаками. Их возраст превышает 5000 лет. Когда были расшифрованы символы клинописи, археологи с изумлением прочитали уравнения вычисления различных площадей с помощью квадратных корней. Не известие об открытии, а уже его использование. Имя великого математика, первым догадавшегося извлечь квадратный корень, утеряно в анналах истории.
Как любое великое открытие, оно возникло одновременно в нескольких местах в головах разных гениальных людей. Например, в 2500 гг. до н.э. в Древнем Египте возводились пирамиды – усыпальницы фараонов. Археологи просчитали, что без знания числа π и квадратного корня построить такие сооружения с четко выстроенными коридорами и строгой ориентацией помещений по сторонам света было просто невозможно. И снова даже граффити на стенах каменных блоков не донесли до современности имен гениальных математиков.
Если Шумерская цивилизация еще могла как-то перетечь на Африканский континент, то математика племен майя в Южной Америке в это же время развивалась совершенно обособленно. Дворцы, возводимые в южноамериканских джунглях, не могли быть построены без знаний математики (квадратного корня в том числе), астрономии и даже основ оптики.
В V веке до н.э. астроном, врач и математик Гиппократ написал первый учебник по геометрии, в котором ввел и объяснил множество математических формул и терминов, в том числе «гиппократовы луночки», при помощи которых пытался вычислить квадратуру круга.

Древнегреческому математику Эвклиду в III веке до н.э досталась великая миссия сублимировать мудрость предков, работы Гиппократа, изложить все в своих трудах «Начала», объяснив между прочим значение квадратного корня, и донести до последующих поколений.


Спустя 600 лет в той же Греции Диафант Александрийский, основываясь на работах своих предшественников, ввел математические обозначения, которые человечество использует и сегодня, описал решения неопределенных уравнений, ввел понятия рациональных и иррациональных чисел. Им было написано 13 трактатов «Арифметика», только 6 из которых сохранились. В этих трудах великий грек объясняет решения уравнений с двумя неизвестными второго порядка, используя для их решений извлечение квадратного корня из числа, как давно известное математическое действии.

Из всей истории появления в математике квадратного корня получается, что патент на изобретение квадратичных исчислений, так же, как и на изобретение колеса, выдавать некому.

www.kakprosto.ru

Преобразование, упрощение выражений с корнями. Видеоурок. Алгебра 8 Класс

Ключ к решению примеров, содержащих квадратные корни, – определение и свойства корней.

Напомним определение квадратного корня:

квадратным корнем из неотрицательного числа называется такое число неотрицательное число , квадрат которого равен : .

Из определения квадратного корня сразу следует следующее тождество:

.

Напомним также основные свойства квадратного корня:

1.  (). Если  и  – неотрицательные числа, то корень из их произведения равен произведению корней.

2.  (). Если  – неотрицательное число, а  – положительное число, то корень из их отношения равен отношению корней.

3. , т. е.: .

4. Правило внесения множителя под знак корня:  и .

Решим несколько примеров на применение указанных свойств.

Пример

1. Упростить выражение:

а) .

б) .

в) .

Теперь рассмотрим более сложные примеры, в которых, в частности, встречаются буквенные переменные.

2. Упростить выражение:

а) .

б) . При этом необходимо указать ОДЗ данного выражения (так как знаменатель дроби не может равняться ), поэтому: .

в) . Формально на этом решение можно было бы закончить. Однако иногда в условии просят избавиться от иррациональности в знаменателе (то есть, чтобы в знаменателе не было бы корней). В этом случае сделать это очень легко:

.

г) . Прежде, чем упрощать данный пример, необходимо выписать ОДЗ данного выражения: , а, кроме того, обе переменные одновременно не должны равняться  (иначе знаменатель равен ). Этот факт можно записывать по-разному, но чаще всего его записывают следующим образом: , так как сумма квадратов двух чисел может быть равна  тогда и только тогда, когда они оба одновременно равны . Теперь можем перейти непосредственно к преобразованию данного выражения:

.

Рассмотрим теперь принципиально другой пример, в котором требуется разложить выражение на множители.

3. Разложить на множители:

.

Сгруппируем слагаемые так, чтобы можно было вынести общие множители, получим:

.

Итак, мы разобрали несколько примеров на упрощение выражений, содержащих квадратные корни.

На следующем уроке мы рассмотрим более сложные примеры на упрощение таких выражений.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Подготовка к единому государственному экзамену по математике (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Фестиваль педагогических идей «Открытый урок» (Источник).

 

Домашнее задание

1. №352-357 Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Упростить выражение: а) ; б) ; в) ; г) .

3. Упростить выражение: а) , б) , в) .

interneturok.ru

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\)). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\), при возведении которого в квадрат мы получим число \(a\): \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\).
\(\bullet\) Чему равен \(\sqrt{25}\)? Мы знаем, что \(5^2=25\) и \((-5)^2=25\). Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\)).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\), а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\), \(\sqrt{-4}\) и т.п. не имеют смысла.  

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\): \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\). Дальше это выражение, к сожалению, упростить никак нельзя   \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\);   \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);   \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\).   \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\),
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\).

 

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\). Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\)). А мы знаем, что это равно четырем таким числам \(a\), то есть \(4\sqrt2\).  

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.  

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\).
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\).
Пример: \(|5|=5\); \(\qquad |\sqrt2|=\sqrt2\).   \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\).
Пример: \(|-5|=-(-5)=5\); \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\).
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\), модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\).   \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\). Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\), а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\)!   Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\), т.к. \(-\sqrt2<0\);

 

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\).   \(\bullet\) Так как \(\sqrt{a^2}=|a|\), то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

 

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\), то \(a<b\); если \(\sqrt a=\sqrt b\), то \(a=b\).
Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\). Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\). Таким образом, так как \(50<72\), то и \(\sqrt{50}<\sqrt{72}\). Следовательно, \(\sqrt{50}<6\sqrt2\).
2) Между какими целыми числами находится \(\sqrt{50}\)?
Так как \(\sqrt{49}=7\), \(\sqrt{64}=8\), а \(49<50<64\), то \(7<\sqrt{50}<8\), то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\).
3) Сравним \(\sqrt 2-1\) и \(0,5\). Предположим, что \(\sqrt2-1>0,5\): \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\[1ex] &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\[1ex] &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!   \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!   \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\). Мы знаем, что \(100^2=10\,000\), \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\). Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\).
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\)). Также из таблицы квадратов знаем, что \(11^2=121\), \(12^2=144\) и т.д., тогда \(110^2=12100\), \(120^2=14400\), \(130^2=16900\), \(140^2=19600\), \(150^2=22500\), \(160^2=25600\), \(170^2=28900\). Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\). Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\).
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\)? Это \(2^2\) и \(8^2\). Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\):
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\).
Следовательно, \(\sqrt{28224}=168\). Вуаля!

shkolkovo.net

Как упростить сложный радикал

Автор Сергей Валерьевич

Четверг, Январь 26, 2017

В 8 классе школьники на уроках математики знакомятся с таким понятием, как «радикал» или, попросту говоря, «корень». Тогда же они впервые сталкиваются с такой проблемой, как упрощение сложных радикалов. Сложные радикалы – это такие выражения, в которых один корень находится под другим. Поэтому их ещё иногда называют вложенными радикалами. В данной статье репетитор по математике и физике подробно рассказывает о том, как упростить сложный радикал.


Методы упрощения сложных радикалов

Упростить сложный радикал — значит избавиться от внешнего корня. Правильнее всего начать изучение этой темы с упрощения двойных радикалов. Ведь если мы научимся упрощать двойные радикалы, то и более сложные тоже сумеем.

Пример 1. Упростить сложный радикал:

   

Как нам избавиться от внешнего корня? Понятно, что для этого нужно преобразовать подкоренное выражение, представив его в виде полного квадрата. Для этого воспользуемся известной формулой «Квадрат разности»:

   

Здесь, как видите, справа у отрицательного члена есть множитель . Поэтому и под корнем давайте получим этот множитель. Для этого представим в виде произведения на :

   

Тогда и . Осталось только обратить внимание на то, что . Теперь видно, что под корнем у нас получился квадрат разности:

   

yourtutor.info

Как решать примеры с корнями

Корнем n степени из числа называют такое число, которое при возведении в эту степень даст то число, из которого извлекается корень. Почаще каждого, действия производятся с корнями квадратными, которые соответствуют 2 степени. При извлечении корня зачастую нереально обнаружить его очевидно, а итогом является число, которое нереально представить в виде естественной дроби (трансцендентное). Но применяя некоторые приемы, дозволено гораздо упростить решение примеров с корнями.

Вам понадобится

  • – представление корня из числа;
  • – действия со степенями;
  • – формулы сокращенного умножения;
  • – калькулятор.

Инструкция

1. Если не требуется безусловная точность, при решении примеров с корнями воспользуйтесь калькулятором. Дабы извлечь из числа квадратный корень, наберите его на клавиатуре, и примитивно нажмите соответствующую кнопку, на которой изображен знак корня. Как водится, на калькуляторах берется корень квадратный. Но для вычисления корней высших степеней, воспользуйтесь функцией возведения числа в степень (на инженерном калькуляторе).

2. Для извлечения квадратного корня возведите число в степень 1/2, кубического корня в 1/3 и так дальше. При этом неукоснительно рассматривайте, что при извлечении корней четных степеней, число должно быть позитивным, напротив калькулятор примитивно не выдаст результат. Это связанно с тем, что при возведении в четную степень всякое число будет позитивным, скажем, (-2)^4=(-2)? (-2)? (-2)? (-2)=16. Для извлечения квадратного корня нацело, когда это допустимо, воспользуйтесь таблицей квадратов естественных чисел.

3. Если же рядом нет калькулятора, либо требуется безусловная точность в расчетах, используйте свойства корней, а также разные формулы для облегчения выражений. Из многих чисел дозволено извлечь корень отчасти. Для этого воспользуйтесь свойством, что корень из произведения 2-х чисел равен произведению корней из этих чисел ?m?n=?m??n.

4. Пример. Вычислите значение выражения (?80-?45)/ ?5. Прямое вычисление ничего не даст, от того что нацело не извлекается ни один корень. Преобразуйте выражение (?16?5-?9?5)/ ?5=(?16??5-?9??5)/ ?5=?5?(?16-?9)/ ?5. Произведите сокращение числителя и знаменателя на ?5, получите (?16-?9)=4-3=1.

5. Если подкоренное выражение либо сам корень построены в степень, то при извлечении корня воспользуйтесь тем свойством, что показатель степени подкоренного выражения дозволено поделить на степень корня. Если деление производится нацело, число вносится из-под корня. Скажем, ?5^4=5?=25. Пример. Вычислить значение выражения (?3+?5)?(?3-?5). Примените формулу разности квадратов и получите (?3)?-(?5)?=3-5=-2.

Обычная дробь – число своенравное. Изредка доводится помучиться, дабы обнаружить решение задачи с дробью и представить его в надлежащем виде. Обучившись решать примеры с дробью , вы легко совладаете с этой неприятной вещью.

Инструкция

1. Разглядите сложение и вычитание дробей. К примеру, 5/2+10/5. Приведите обе дроби к всеобщему знаменателю. Для этого обнаружьте то число, которое дозволено поделить без остатка на знаменатель и первой, и 2-й дроби. В нашем случае это число 10. Преобразуйте вышеуказанные дроби, получается 25/10+20/10.Сейчас сложите между собой числители, а знаменатель оставьте непоколебимым. Получается 45/10.Дозволено сократить полученную дробь, то есть поделить числитель и знаменатель на одно и то же число. Получается 9/2.Выделите целую часть. Обнаружьте наивысшее число, которое дозволено поделить без остатка на знаменатель. Это число 8. Поделите его на знаменатель – это и будет целая часть. Выходит, в итоге получается 4 1/2.Произведите схожие действия при вычитании дробей.

2. Разглядите умножение дробей. Тут все примитивно. Перемножьте между собой числители и знаменатели. К примеру, 2/5 умножить на 4/2 получается 8/10. Сократите дробь, получается 4/5.

3. Разглядите деление дробей. При выполнении этого действия опрокиньте одну из дробей, а после этого перемножьте числители и знаменатели. Скажем, 2/5 поделить на 4/2 – получается 2/5 умножить на 2/4 – получается 4/20. Сократите дробь, получается 1/5.

Видео по теме

jprosto.ru

Упрощение выражений, содержащих корни и степени

При упрощении выражений, содержащих корни и степени, прежде чем воспользоваться свойствами степени,  полезно совершить такие предварительные действия:

1. Записать корни в виде степени. Для этого нужно воспользоваться следующим  свойством:

2. Десятичную дробь записать в виде обыкновенной.

Например: 

3. Смешанные числа записать в виде неправильных дробей.

Например: 

4. Разложить основания степеней на простые множители. Или, по крайней мере, разложить на множители так, чтобы количество различных оснований было минимальным.

Решим несколько задач из Задания В11 из  Открытого банка заданий для подготовки к ЕГЭ  по математике , воспользовавшись этим правилом.

1. Задание В10 ( 26745) Найдите значение выражения .

Запишем корни в виде степени и воспользуемся свойствами степеней с одинаковым основанием:

Ответ: 1.

2. Задание В10 ( 26748) Найдите значение выражения  

Разложим число 10 в знаменателе дроби на простые множители и воспользуемся свойствами степеней:

Ответ: 5.

3.  Задание В10( 26749) Найдите значение выражения   .

Представим число 0,8 в виде обыкновенной дроби, разложим число 20 на  множители и воспользуемся свойствами степеней:

Ответ: 20.

4. Задание В10 ( 26749) Найдите значение выражения  .

Разложим число 42 на множители и воспользуемся свойствами степеней.

 

Ответ: 42.

5Задание В10 ( 26749) Найдите значение выражения  при  .

1. Запишем корни в виде степени:

2. Воспользуемся свойствами степени, получим:

Ответ: 0,25

Вероятно, Ваш браузер не поддерживается. Попробуйте скачать
Firefox

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *